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1 Introduction

The theory of generalized topology was introduced by Csaszar in [1]. The properties of
generalized topology, basic operators, generalized neighborhood systems and some con-
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structions for generalized topologies have been studied by the same author in [1, 2, 3, 4, 5,
6]. Tt is well known that generalized topology in the sense of Csaszér [1] is a generalization
of topology on a nonempty set. On the other hand, many important collections of sets
related with topology on a set form a generalized topology. In this paper we define several
subsets in a generalized topological spaces and study their properties.

A nonempty family p of subsets of a set X is said to be a generalized topology [2] if ) € p
and arbitrary union of elements of i is again in u. The pair (X, p) is called a generalized
topological space and elements of u are called u—open sets. A C X is p—closed it X — A
is p—open. By a space (X, 1), we always mean a generalized topological space. If X € p,
(X, p) is called a strong [3] space. Clearly, (X, ) is strong if and only if () is u—closed if and
only if ¢,(0) = 0. In a space (X, ), if p is closed under finite intersection, (X, u) is called
a quasi-topological space [5]. Clearly, every strong, quasi-topological space is a topological
space. For A C X, ¢,(A) is the smallest 1—closed set containing A and i,,(A) is the largest
pu—open set contained in A. Moreover, X —¢,,(A) = 14,(X —A), for every subset A of X. A
subset A of a space (X, u) is said to be a—open [4]( resp. o—open [4], —open [4], b-open
7], B—open [4]) if A C i c,i,(A) (resp. A C cuin(A), A Ciycu(A), A Ciue,(A)Ucyin(A),
A C cuipc (A) ). A subset A of a space (X, p) is said to be a—closed (resp. o—closed,
m—closed, b-closed, f—closed) if X — A is a—open (resp. o—open, m—open, b-open,
f—open). Let (X, u) be a space and ¢ = {u,«,0,m,b,B}. For k € ¢, we consider the
space (X, k), throughout the paper. For A C M, = U{B C X | B € u}, the subset
A, (A) is defined by A,(A) =N{G | A C G,G € k}. The proof of the following lemma is
clear.

Lemma 1.1. Let A, B and B,,a € A be subsets of M, in a space (X, k). Then the
following properties are hold.

(a) B C Au(B).

(b) If A C B then A,(A) C Ax(B).

() Aul(Ax(B)) = Ax(B).

(d) If A € k, then A = A,(A).

(€) Au(U{Ba | a € A}) = U{Ax(Ba) | € A}
(f) A

£) Ap(N{Ba | a € AY) € N{AL(B.) | @ € A).

2 More on )\.—closed sets

In a space (X,k), a subset B of M, is called a A,—set if B = A,(B). We state the
following theorem without proof.

Theorem 2.1. For subsets A and A,, a € A of M, in a space (X, k), the following
hold.

(a) Ax(A) is a A,—set.

(b) If A € K, then A is a A,—set.
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(c) If A, is a A,—set for each o € A, then N{A, | « € A} is a A,—set.

(d) If A, is a A, — set for each o € A, then U{A, | « € A} is a A —set.

A subset A of M, in a space (X, k) is said to be a A,—closed set if A =T N C, where
T is a A,—set and C' is a k—closed set. The complement of a \,—closed set is called
a A,—open set. We denote the collection of all A,—open (resp., A\,—closed) set of X by
AO(X) (resp., \oC(X)). The following theorem gives the characterization of \,—closed
sets.

Lemma 2.2. Let A C M, be a subset in a space (X, k). Then the following are equiva-
lent.

(a) Ais a A;—closed set.

(b)A =T nNc,(A), where T is a A,—set.

() A = Ay(A) N cy(A).

Let (X, k) be a space. A point z € M, is called a \,—cluster point of A if for every
A.—open set U of M, containing z we have AN U # (). The set of all \,—cluster points
of A is called the A\,—closure of A and is denoted by c,, (A).

Lemma 2.3 gives some properties of ¢, the easy proof of which is omitted.

Lemma 2.3. Let (X, k) be a space and A, B C M. Then the following properties hold.
(a) A C ey (A).

(b) ex,(A)=n{F | AC F and F is \, — closed}.

(c) If A C B, then ¢, (A) C ¢y, (B).

(d) Ais a A\,—closed set if and only if A = ¢, (A).

(e) e (A) is a A\,—closed set.

Let (X, k) be a space and A C M,. A point x € M, is said to be a k—limit point of A
if for each k—open set U containing x, U N {A — {x}} # (). The set of all k— limit points
of A is called a k—derived set of A and is denoted by D, (A).

Let (X, k) be a space and A C M,. A point x € M, is said to be a A\,—limit point of
A if for each \,—open set U containing z, U N {A — {z}} # 0. The set of all \,— limit
points of A is called a A\,—derived set of A and is denoted by D,, (A).

Theorem 2.4 gives some properties of A\, —derived sets and Theorem 2.5 gives the charac-
terization of \,—derived sets.

Theorem 2.4. Let (X, x) be a space and A, B C M,. Then the following hold.

(a) Dy, (A) C Dy(A). (b) If A C B, then D,_(A) C Dy, (B).

(¢) D). (A)UD,_ (B)C D,,(AUB) and D, (AN B) C Dy.(A) N Dy, (B).
(d)Dx.Dx, (A) = A C Dy, (A).

(e) Di.(AU D, (A)) € AU D, (A).

Proof. (a) Since every k—open set is a \,—open set, it follows.

(b) Let « € Dy, (A). Let U be any \,—open set containing z. Then U N {A — {z}} # 0
and so VN {B — {z}} # 0, since A C B. Therefore, z € D, (B).

(c) Since AN B C A, B we have Dy (AN B) C D, .(A)N Dy, (B). Since A,B C AU B,
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we have D, (A)U D, (B) C D, (AU B).

(d) Let x € Dy, Dy, (A) — A and U be a \,—open set containing z. Then U N (D, (A) —
{z}) # 0. Let y € UN(Dy,(A)—{z}). Sincey € D, (A) andx # y € U, UN(A—{y}) # 0.
Let z € UN(A—{y}). Then z € UN(A—{y}) implies that z € U and z € A—{y} and so
z#y.Sincex € A, z€ UN(A—{z}) and so UN (A —{x}) # (). Therefore, x € D, _(A).
(e) Let x € Dy, (AU D, (A)). If z € A, the result is clear. Suppose = ¢ A. Since = €
D, . (AUD,, (A))— A, then for \,—open set U containing z, UN((AUD,, (A))—{z}) # 0.
Thus U N (A —{z}) # 0 or UnN (D, (A) — {z}) # 0. Now it follows from (d) that
UN(A—{z}) # 0. Hence, x € D,,_(A). Therefore, in all the cases D, (AU Dy, (4)) C
AU D, (A).

Theorem 2.5. Let (X, k) be space and A C X. Then ¢, (A) = AUD,_(A).

Proof. Since D, (A) C ¢y (A), AUD,_ (A) C ¢y, (A). On the other hand, let z € ¢, (A).
If x € A, the proof is complete. If z ¢ A, then each \,—open set U containing x intersects
A at a point distinct from z. Therefore, x € D, (A). Thus, ¢y, (A) C AU D, (A) and so
ca(A) = AU D, (A) which completes the proof.

Let (X, k) be a space and A C X. Then iy, (A) is the union of all A,—open set contained
in A.

Theorem 2.6 gives some properties of 7, .

Theorem 2.6. Let (X, k) be a space and A, B C X. Then the following hold.

(a) Ais a A,—open set if and only if A =1,_(A).

(b) i, (ir. (4)) = i (4).

(c) in.(4) = A — Dy, (X — A)

(d) X =iy (A) = e (X = A).

(0) X — ex.(4) = iy, (X — A).

(f) A C B then iy, (A) C iy, (B).

(8) ir.(A) Uir (B) Cin (AU B) and iy, (A) Ny, (B) D i (AN B).

Proof. (¢)Ifx € A—D, (X —A), then z ¢ D, (X — A) and so, there exists a \,—open
set U containing z such that U N (X — A) = (). Then 2 € U C A and hence z € iy, (A).
That is, A— D, (X —A) C i,,(A). On the other hand, if x € i,,(A), then z ¢ D, (X —A),
since iy, (A) is a \,—open set and iy, (A)N(X — A) = (). Hence, iy, (A) = A— D, (X — A).
(@) X = 50(4) = X = (4= Du(X = ) = (X = UDLX =) =, (X - 4)

Let (X, k) be a space and A C X. Then b,(A) = A —i.(A) is said to be k—border of A.
Let (X, k) be a space and A C X. Then by, (A) = A — iy, (A) is said to be \,—border of
A.

Theorem 2.7 gives some properties of by, .

Theorem 2.7. Let (X, x) be a space and A C X. Then the following hold.

(a) bx.(A) C bk(A).

(b) A =5 (A)U b (A).

(€) in.(A) N by, (A) = 0.
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(d) Ais a A,—open set if and only if by (A) = 0.

(€) ba, (ia.(A4)) = 0.

() ix. (b2 (A)) = 0.

() bx, (b2 (A)) = bx, (A).

(h) by, (A) =ANey (X —A).

i) by (4) = Dy (X — A).

Proof. (f) If x € iy, (br.(A)), then z € by (A). On the other hand, since b, (A) C

A, x € iy, (by.(A) C ir,(A). Hence z € iy, (A) N by, (A) which contradicts (c). Thus,
ire (br.(A4)) = 0.
(h) by, (A)=A—i) (A)=A— (X —c, (X —A)=ANnc, (X —A).
(i) br.(A) = A— iy (A) = A= (A—- D) (X — A4)) =D, (X - A).
Let (X, k) be a space and A C X. Then Fj(A) = cx(A)—i.(A) is said to be the k—frontier
of A.
Let (X,k) be a space and A C X. Then F) (A) = ¢y, a) — ix.(A) is said to be the
Ax—frontier of A.
Theorem 2.8 gives some properties of F), .
Theorem 2.18 Let (X, k) be a space and A C X. Then the following hold.
(2) Py, (4) C Fo(A)
b) cx.(A) =iy, (A) U F) (A).
) ix, (A) N By (4) = 0.
) bx.(A) C Fy.(4).
) Fx.(A) =05, (A) U D, (A).
) Ais a A,—open set if and only if F) (A) = D, (A).
F\.(A) =c (A)Ney (X — A).(h) F).(A) = F), (X — A).
i) ). (A) is a A,—closed set.
J) Fa(F5(A)) C By (A).
k)FAﬁ ir (A)) C By (A).
D) By (e (A4)) € By (A).
m) iy, (A) = A—F\_ (A).
Proof. (b) ix (A) U Fy (A) = ix,(A) U (ex,(A) = ix.(A)) = ex.(A),
) ir (A) N By, (A) =5 (4) N (C>\ (A) —ir (A) = 0.
) UF\ (A) =iy, (A)Uby, (A)UD,, (A), Fr.(A) =0y, (A)UD,, (A).
) FA.(A) =) (A) —in (A) = e (A) Ny (X — A).
Dea (. (A4)) = en(ex(A) Nen (X = A) C exlen(A)) Nan(er (X —A)) = 1 (A),
Hence F), (A) is a A\, —closed set.
) Fx (F).(A)) = ex (Fy(A) Nen (X = F (A)) C e (F)(A) = F . (4).
) Fx.(en.(A) = ex.((ex.(A)) —in (er.(A) = ex.(A) — in (er.(A) Cer(A) —in (A) =

(1) A— By (A) = A— (e, (A) — ix.(A)) = ir. (A).
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Let (X, r) be a space and A C X. Then E,(A) = i,(X — A) is said to be k—exterior of
A.
Let (X, k) be a space and A C X. Then E,_(A) = i,,(X — A) is said to be \,—exterior
of A.
Theorem 2.9 gives some properties of E), .
Theorem 2.9. Let (X, k) be a space and A C X. Then the following hold.
) E.(A) C E\ (A) where E,(A) denotes the exterior of A.
b) E,, (A) is A\,—open.
c) E,\K( )=i (X —A) =X —c)\.(A).
d) Ei. (Ex.(A)) = ix.(cr.(A4)).
e) If AC B,then E, (A) D E,.(B).
f) E)\ (A U B) - E)\K(A) U EAN(B)
g)E\.(AUB) D E,, (A) N E,. (B).
h) Ey, (X) = 0.
i) Ey, (0) = X.
(A) = By (X — By (A)).
(k) ZAK(A) C Ex.(Ex.(A)).
(1) X =5 (A) U By (A) UF, (A).
Proof. (d)E, (E\.(A)) = Ex. (X — ey (A)) = i), (X — (X — 2, (A)) =iy
()ExN (X = E\(A) = E\ (X — iy (X = A4)) = 1), (X = (X =iy (X = A)))
A)) =i\ (X — A) = Ex(A).
(k) ix,(A) Cir (er.(A) =in (X —in . (X — A)) =i, (X — E\ (A)) = E\ . (E) (A)).
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