TY - JOUR
ID - 68342
TI - One Modulo Three Geometric Mean Graphs
JO - Journal of Algorithms and Computation
JA - JAC
LA - en
SN - 2476-2776
AU - Jeyanthi, P.
AU - Maheswari, A.
AU - Pandiaraj, P.
AD - Govindammal Aditanar College for Women Tiruchendur-628 215, Tamil Nadu, India.
AD - Department of Mathematics Kamaraj College of Engineering and Technology Virudhunagar- 626 001, Tamil Nadu, India
Y1 - 2018
PY - 2018
VL - 50
IS - 1
SP - 101
EP - 108
KW - mean labeling
KW - one modulo three mean labeling
KW - geometric mean labeling
KW - one modulo three geometric mean labeling
KW - one modulo three geometric mean graph
DO - 10.22059/jac.2018.68342
N2 - A graph $G$ is said to be one modulo three geometric mean graph if there is an injective function $\phi$ from the vertex set of $G$ to the set $\{a \mid 1\leq a \leq 3q-2\} $ and either $a\equiv 0(mod 3) $ or $ a\equiv 1(mod 3)\}$ where $q$ is the number of edges of $G$ and $\phi$ induces a bijection $\phi^{*}$ form the edge set of $G$ to $\{a \mid 1\leq a\leq 3q-2 $ and $ a\equiv 1(mod3)\}$ given by $\phi^{*}(uv)=\left\lceil \sqrt{\phi(u)\phi(v)}\right\rceil$ or $\left\lfloor \sqrt{\phi(u)\phi(v)}\right\rfloor$ and the function $\phi$ is called one modulo three geometric mean labeling of $G$. In this paper, we establish that some families of graphs admit one modulo three geometric mean labeling.
UR - https://jac.ut.ac.ir/article_68342.html
L1 - https://jac.ut.ac.ir/article_68342_e53cdfd892a4cf9b99d51c533e8902a6.pdf
ER -