TY - JOUR
ID - 7926
TI - Further results on total mean cordial labeling of graphs
JO - Journal of Algorithms and Computation
JA - JAC
LA - en
SN - 2476-2776
AU - Ponraj, R.
AU - Sathish Narayanan, S.
AD - Department of Mathematics, Sri Paramakalyani College,Alwarkurichi-627 412, India
Y1 - 2015
PY - 2015
VL - 46
IS - 1
SP - 73
EP - 83
KW - cycle
KW - Path
KW - union of graphs
KW - Star
KW - ladder
DO - 10.22059/jac.2015.7926
N2 - A graph G = (V,E) with p vertices and q edges is said to be a total mean cordial graph if there exists a function f : V (G) → {0, 1, 2} such that f(xy) = [(f(x)+f(y))/2] where x, y ∈ V (G), xy ∈ E(G), and the total number of 0, 1 and 2 are balanced. That is |evf (i) − evf (j)| ≤ 1, i, j ∈ {0, 1, 2} where evf (x) denotes the total number of vertices and edges labeled with x (x = 0, 1, 2). In this paper, we investigate the total mean cordial labeling of Cn2, ladder Ln, book Bm and some more graphs.
UR - https://jac.ut.ac.ir/article_7926.html
L1 - https://jac.ut.ac.ir/article_7926_9d2173db725a3759d46d6f1e33486b61.pdf
ER -