TY - JOUR
ID - 7939
TI - A note on 3-Prime cordial graphs
JO - Journal of Algorithms and Computation
JA - JAC
LA - en
SN - 2476-2776
AU - Ponraj, R.
AU - Singh, Rajpal
AU - Sathish Narayanan, S.
AD - Department of Mathematics, Sri Paramakalyani College,Alwarkurichi-627412, India
AD - Research Scholar, Department of Mathematics Manonmaniam Sundaranar University, Tirunelveli-627012, India
Y1 - 2016
PY - 2016
VL - 48
IS - 1
SP - 45
EP - 55
KW - Path
KW - union of graphs
DO - 10.22059/jac.2016.7939
N2 - Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map. For each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of G if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labeled with x, ef (1) and ef (0) respectively denote the number of edges labeled with 1 and not labeled with 1. A graph with a k-prime cordial labeling is called a k-prime cordial graph. In this paper we investigate 3- prime cordial labeling behavior of union of a 3-prime cordial graph and a path Pn.
UR - https://jac.ut.ac.ir/article_7939.html
L1 - https://jac.ut.ac.ir/article_7939_495c61efe2289c038edc6c7099386507.pdf
ER -