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ABSTRACT  ARTICLE INFO 
Solving a linear system of equations is needed in 
many different applications and there exist many 
different techniques to solve such a system with no 
need to compute inverse matrix, as a costly and not 
stable computation. But the challenge is that in 
some other applications such as 3D prints, the goal 
is exactly computing the inverse of a matrix. In this 
paper, an optimization model equivalent to inverse 
matrix is introduced and an effective algorithm 
based on steepest-descent and Barzilai-Borwein 
step length is suggested. We also used conjugate 
gradient instead, to provide better numerical results. 
Finally, we used the Metropolis-Hastings algorithm 
to accelerate the convergence rate. The probabilities 
are chosen to have an inverse relation to remainder 
norm. A key point is that even a random step length 
is working for global convergence. Numerical 
results look promising based on stability and 
accuracy.  
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1 Introduction 
If the aim is to solve a linear system, computing the inverse matrix is not necessary. However, in 
some applications such as geometric design computing the inverse is of interest. Moreover, in 
usual algorithms for solving nonlinear matrix equations [5] a sequence converging to the inverse 
matrix is needed. Since computing the exact inverse matrix is complicated specially for large 
matrices, providing a reletively close approximation would be of high utility. Several algorithms 
exist based on optimization and numerical linear algebra. The iterative formula’ 

𝑋௡ାଵ = 𝑋௡(2𝐼 − 𝐴𝑋௡), (1) 

as Newton’s iteration, to converge to the solution 𝐴ିଵ of 𝐴 − 𝑋ିଵ = 0, is used to compute the 
inverse matrix approximately; e.g., see [2, 3]. We note that finding a suitable starting point which 
is relatively close to the inverse is not possible; hence, a global algorithm converging to the inverse 
matrix from an arbitrary starting point is necessary. Here, we present a novel global algorithm to 
approximate the inverse matrix. 

The rest of our work is organized as follows. In Section 2, our newly defined optimization problem 
and some necessary optimality conditions are presented. In Section 3, two global 𝑅-linear 
algorithms converging to the inverse matrix are outlined. A randomized strategy based on the 
Metropolis-Hastings algorithm is presented in Section 4 for computing a proper inverse 
approximation without considerable sensitivity to starting point or extra computational cost for 
step length. Section 5 includes numerical results obtained using both sequential and parallel 
implementations of our presented algorithms. Comparisons with the existing methods confirm the 
efficiency of our algorithm in computing more accurate solutions in less computing times. 

2 New Optimization Problem 
The iterative formula (1) has been used to solve some nonlinear matrix equations iteratively; see 
[2, 3]. The Newton iteration (1) converges to the inverse matrix locally, meaning that a starting 
point sufficiently close to the inverse matrix is necessary for convergence. Here, we develop a 
globally convergent iterative algorithm to approximate the inverse matrix. The inverse of a non-
singular matrix 𝐴 ∈ ℝ௡×௡ is the solution of the following optimization problem:  

min
1

2
∥ 𝐴𝑋 − 𝐼 ∥ி

ଶ , 
(2) 

where 𝐼 is the 𝑛 × 𝑛 identity matrix and ∥⋅∥ி denotes the Frobenius norm. In the following two 
theorems, we discuss some properties of the objective function of (2). 

Theorem 1. If 𝐴 ∈ R௡×௡ is non-singular, then problem (2) has the unique solution 𝑋∗ = 𝐴ିଵ. 
Otherwise, for a singular 𝐴 ∈ R௡×௡, the general solution of (2) is 𝐴ା + 𝑍, where 𝑍 ∈ R௡×௡ is an 
arbitrary matrix with its columns in the null space of 𝐴்𝐴. Moreover, the solution of (2) with 
minimal Frobenius norm is 𝐴ା.  
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Proof. First, let 𝐴 be a nonsingular matrix. The objective function 𝑓(𝑋) =
ଵ

ଶ
∥ 𝐴𝑋 − 𝐼 ∥ி

ଶ  is strictly 

convex, because its Hessian, 𝐻 = 𝐴்𝐴, is positive definite. Hence, the staitionary point of 𝑓(𝑋) is 
a global minimizer. We thus have:  

∇𝑓 = 𝐴்𝐴𝑋 − 𝐴் = 0 → 𝐴𝑋 − 𝐼 = 0 → 𝑋∗ = 𝐴ିଵ. 

Now, letting 𝐴 be an 𝑛 × 𝑛 singular matrix, it can be easily seen that the Hessian matrix is positive 
semi-definite and any stationary point would be a local minimizer. Moreover, 𝑋∗ = 𝐴ା is a 
solution of ∇𝑓 = 𝐴்𝐴𝑋 − 𝐴் = 0 and the general solution is 𝑋 = 𝐴ା + 𝑍, where 𝑍 ∈ R௡×௡ is an 
arbitrary matrix with its columns lying in the null space of 𝐴்𝐴. Now, we aim to compute the 
minimal norm solution of (2). Letting 𝐴 = 𝑈௥Σ𝑉௥

் be the singular value decomposition (SVD) of 
𝐴 with rank 𝑟, we have  

𝑚𝑖𝑛 ∥ 𝑉௥Σ𝑈௥
் + 𝑉௡ି௥𝑃 ∥ଶ, (3) 

with 𝑃 being an arbitrary (𝑛 − 𝑟) × 𝑛 matrix. It is clear that 𝑃 = 0 is the global solution of (3); 
hence, the solution of (2) with minimal norm is 𝐴ା. Now, we are ready to outline the new algorithm 
for approximating the inverse matrix. 

3 New Iterative Algorithm for Inverse 

To solve the quadratic optimization problem (2), we first use the steepest descent algorithm. 

Letting 𝑄(𝑋) =
ଵ

ଶ
∥ 𝐴𝑋 − 𝐼 ∥ி

ଶ , the steepest descent direction would be −∇𝑄(𝑋) = −𝐴୘(𝐴𝑋 − 𝐼). 

Moreover, the Barzilai-Borwein (BB) step length [1] is used to guarantee the global convergence 
of the algorithm. Hence, to compute the solution of (2), starting from an arbitrary matrix 𝑋଴ ∈

ℝ௡×௡, in each iteration 𝑘 ≥ 1, we set  

𝑋௞ାଵ = 𝑋௞ − 𝛼௞𝐴୘(𝐴𝑋௞ − 𝐼), (4) 

where 𝛼௞ is the BB step length. Letting 𝑆௞ = 𝑋௞ − 𝑋௞ିଵ, 𝑌௞ = ∇𝑄(𝑋௞) − ∇𝑄(𝑋௞ିଵ) and 𝑅௞ =

𝑆௞ − 𝛼௞ିଵ𝑌௞, the BB step length is computed by  

𝛼௞ =

⎩
⎪
⎨

⎪
⎧

tr(𝑆௞
୘𝑅௞)

tr(𝑌௞
୘𝑅௞)

,    tr(𝑌௞
୘𝑅௞) > 0,

tr(𝑆௞
୘𝑆௞)

tr(𝑌௞
୘𝑌௞)

,    tr(𝑌௞
୘𝑅௞) ≤ 0.

 

 

 

(5) 

Now, we give the steps of a steepest descent algorithm for computing the inverse matrix as 
Algorithm 1. We refer to this algorithm by SDBBI.  

Algorithm 1: SDBBI. 

(0) Choose an arbitrary matrix 𝑋଴ ∈ ℝ௡×௡ and set 𝑘 = 0. let 𝛿 be the tolerance for machine zero.  

(1) While  ∥ 𝐴 ∗ 𝑋௞ − 𝐼 ∥> 𝛿  Do 
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     Set 𝛼௞ =

⎩
⎪
⎨

⎪
⎧

୲୰(ௌೖ
౐ோೖ)

୲୰(௒ೖ
౐ோೖ)

,    tr(𝑌௞
୘𝑅௞) > 0,

୲୰(ௌೖ
౐ௌೖ)

୲୰(௒ೖ
౐௒ೖ)

,    tr(𝑌௞
୘𝑅௞) ≤ 0.

  

             Set 𝑋௞ାଵ = 𝑋௞ − 𝛼௞𝐴୘(𝐴𝑋௞ − 𝐼).   
             Set 𝑘 = 𝑘 + 1.    

Next, we cite a theorem to establish the 𝑅-linear convergence of Algorithm 1.   

Theorem 2. The BB step length leads to an 𝑅-linear global convergence.   

Proof. See [1].  

We note that the steepest descent method may produce dependent directions. To avoid this, the 
conjugate gradient method was introduced. Therefore, to achieve a more reliable performance, a 
combination of the conjugate gradient mehod with the BB step length was recommended; see [4]. 
Here, we also suggest using the conjugate gradient method in conjunction with the BB step length 
(CGBBI) for solving (2).  

Algorithm 2: CGBBI. 

(0) Choose an arbitrary matrix 𝑋଴ ∈ ℝ௡×௡, 𝜔 > 0, Ω > 0 and set 𝑑଴ = −𝐴்(𝐴𝑋଴ − 𝐼) and 𝑘 = 0. 
Let 𝛿 be the tolerance for machine zero.  

(1) While  ∥ 𝐴 ∗ 𝑋௞ − 𝐼 ∥> 𝛿  Do          

Set 𝛼௞ =

⎩
⎪
⎨

⎪
⎧

୲୰(ௌೖ
౐ோೖ)

୲୰(௒ೖ
౐ோೖ)

,    tr(𝑌௞
୘𝑅௞) > 0,

୲୰(ௌೖ
౐ௌೖ)

୲୰(௒ೖ
౐௒ೖ)

,    tr(𝑌௞
୘𝑅௞) ≤ 0.

  

          Set 𝑋௞ାଵ = 𝑋௞ + 𝛼௞𝑑௞, 

          If 𝑌௞ = 0, then let 𝑡 =
ଶ

ஐ
, 

          Elseif tr൫ 𝑌௞
୘𝑆௞൯ = 0, then let 𝑡 =

ଶ

ன
, 

          Else let 𝑞ො =
୲୰൫௒ೖ

౐௒ೖ൯

୲୰൫ௌೖ
౐௒ೖ൯

 and 𝑞ത =
୲୰൫ௌೖ

౐௒ೖ൯

୲୰൫ௌೖ
౐ௌೖ൯

, 

          If tr൫ 𝑌௞
୘𝑆௞൯ > 0, 𝑡 = 2𝑞ො 

        Else let 𝑐௞ =
ଶ(௤തି௤ො)

‖ௌೖ‖ಷ
 and  

𝑡 =
2𝑐௞‖∇𝑄(𝑋௞)‖ி

−𝑞ො௞ + ට𝑞ො௞
ଶ + 2𝑐௞‖∇𝑄(𝑋௞)‖ி

 

𝑡 = ቊ
𝜔                  𝑡 < 𝜔
Ω                   𝑡 > Ω
𝑡           otherwise

 , 
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𝛽௞ = max ቆ
୲୰ቀ∇ொ(௑ೖశభ)೅(௒ೖି௧ௌೖ)ቁ

୲୰൫ௗೖ
౐௒ೖ൯

, 0ቇ  

𝑑௞ାଵ = −∇𝑄(𝑋௞ାଵ) + 𝛽௞𝑑௞, 
 

         Set 𝑘 = 𝑘 + 1.    

Additionally, the Newton iteration for approximating the inverse is faster than R-linear algorithms 
but does not converge globally. To overcome this deficiency, a natural idea is to use the SDBBI 
or the CGBBI algorithm in early iterations to compute a relatively good starting point for the 
Newton method and use the Newton algorithm to converge to the inverse matrix faster. The hybrid 
algorithm constructed from the SDBBI and Newton’s method, HBBNI, is presented as Algorithm 
3 below.  

Algorithm3: HBBNI. 

(0) Choose an arbitrary matrix 𝑋଴ ∈ ℝ௡×௡ and set 𝑘 = 0. Let 𝛿ଵ be the tolerance for machine zero 
and 𝛿ଵ > 𝛿ଶ be a sufficiently small number.  
(1) While  ∥ 𝐴 ∗ 𝑋௞ − 𝐼 ∥> 𝛿ଵ  Do 

     Set 𝛼௞ =

⎩
⎪
⎨

⎪
⎧

୲୰(ௌೖ
౐ோೖ)

୲୰(௒ೖ
౐ோೖ)

,    tr(𝑌௞
୘𝑅௞) > 0,

୲୰(ௌೖ
౐ௌೖ)

୲୰(௒ೖ
౐௒ೖ)

,    tr(𝑌௞
୘𝑅௞) ≤ 0.

  

     Set  𝑋௞ାଵ = 𝑋௞ − 𝛼௞𝐴୘(𝐴𝑋௞ − 𝐼).   
     Set 𝑘 = 𝑘 + 1.    
(2) Set 𝑋଴ = 𝑋௞ and 𝑘 = 0.  
(3) While  ∥ 𝐴 ∗ 𝑋௞ − 𝐼 ∥> 𝛿ଶ Do  
     Set 𝑋௞ାଵ = 𝑋௞(2𝐼 − 𝐴𝑋௞).   
     Set 𝑘 = 𝑘 + 1.   

The most important challenge of the presented algorithms would be their computational 
complexity, specially in case of large matrices. So, in Section 4 we make use of the brilliant idea 
by Metropolis to discard with solutions and control the complexity. 

4 Metropolis-Hastings Idea 
In this section, a randomized approach will be defined to improve the computational cost and 
convergence properties of the outlined algorithm for approximating inverse matrix. There are some 
motivating issues to continue with randomized approach such as Metropolis-Hastings: 

a) An extra cost is needed for computing the BB step length. 
b) In first iterations, we do not necessarily see improvement in error function. 
c) Performing a greater number of iterations although lead to a better result, increase the 

computational cost. 

To overcome these challenges, we make use of Metropolis approach. We compute k different 
approximations 𝑋௜ , … 𝑖 = 1, … , 𝑘, each by performing t iterations with random step lengths. We 
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then generate a convex combination of 𝑋௜s as a proper inverse approximation. We note that these 
k approximations might be computed in parallel. Moreover, a random step length is of more 
interest in comparison with previously used step length BB. Before specifying the convex 
combination, let review the Metropolis-Hastings algorithm. 

To provide a guided sampling among a large number of samples, based on a desired probability 
distribution, the Metropolis-Hastings algorithm [6] as a Markov chain Monte Carlo (MCMC) 
method might be used. In this algorithm, new samples are added to the sequence in two steps: first 
a new sample is proposed randomly, then the proposed sample is either added to the sequence or 
rejected depending on the value of the probability distribution at that point. The resulting sequence 
can be used to approximate the distribution. Moreover, to follow a target distribution, the 
probability conditions for accepting a sample might be computed based on the target distribution. 
In Figure 1 the Metropolis Hastings scheme is showed. 

 

Figure 1: Metropolis Hastings Scheme 

In inverse approximation, since our target is to minimize the norm ‖𝐴𝑋 − 𝐼‖, among k computed 
approximations each 𝑋௜ with lower residue is a better approximation for inverse matrix and must 
have a larger weight in the desired convex combination. To this end, we define a target probability 
distribution 

𝑃(𝑋௜) =

1
‖𝐴𝑋௜ − 𝐼‖

∑
1

ฮ𝐴𝑋௝ − 𝐼ฮ
௞
௝ୀଵ

 

so that a reasonable combination would be constructed. So, the first approach for approximating 
inverse is 

1) Compute 𝑋ప
෩ s in parallel for 𝑖 = 1, … , 𝑘 by performing the iteration below d times  

𝑋௞ାଵ = 𝑋௞ − 𝛼௞𝐴୘(𝐴𝑋௞ − 𝐼)  
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with 𝛼௞ being a random positive number. 

2) Compute 𝑃൫𝑋ప
෩ ൯ =

భ

ฮಲ೉ഢ෪ ష಺ฮ

∑
భ

ฮಲ೉ണ෪ ష಺ฮ
ೖ
ೕసభ

 and let 𝑋 = ∑ 𝑃൫𝑋ఫ
෩ ൯𝑋ఫ

෩ௗ
௝ୀଵ . 

A more creative approach is to generate random matrices 𝑋௜s and the convex combination based 
on their residues forms the approximation for the inverse matrix. The point here is that 

- The computational cost for 𝑋௞ାଵ = 𝑋௞ − 𝛼௞𝐴୘(𝐴𝑋௞ − 𝐼) is not needed any more, 

- however, a larger number of iterations must be done based on the randomness of the 

original candidates. 

To summerize the steps of our work, we start with designing an optimization problem whose 
solution is the inverse matrix which is of interest. We then, search for a proper optimization 
algorithm to approximate the solution. Finally, to improve the approximation and accelerate 
convergence we made use of the Metropolis-Hasting idea. These main steps are shown in Figure 
2. 

 

Figure 2: The overal scheme 

Next, we present some numerical results to show the effectiveness of our proposed algorithm for 
computing the inverse matrix both in sequential and parallel implementations. According to the 
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numerical results, the Metropolis-Hasting idea outperforms the first approach in sparse matrices 
and other special structures. 

5 Numerical Results 
MATLAB 2024b in a Windows 11 machine with a 3.4 GHz CPU and a 16 GB RAM is used to 
implement the algorithms and compare the obtained results. We present the numerical results for 
the sequential and parallel implementations, respectively. We generate random 𝑛 × 𝑛 matrices of 
different sizes. These random matrices were produced using the rand command in MATLAB. The 
command rand(𝑛) generates an 𝑛 × 𝑛 non-singular matrix with uniformly distributed random 
entries in the interval [0, 1].  

Sequential Implementation 

In Table 1, the computing times for approximating the inverse matrix using implemntation of the 
SDBBI, CGBBI, HBBNI (sequential) algorithms, SVD and LU factorization are reported. Based 
on these results, the computing time of the sequential HBBNI algorithm is considerably less than 
those obtained by SVD and LU factorization. In tables below, 𝑛 is the matrix size, 𝛿ଵ and 𝛿ଶ are 
the first and second error bounds in the HBBNI algorithm. The error bounds in SDBBI and CGBBI 
are assumed to be 𝛿ଶ. 

According to numerical results reported in Table 1, in almost all of the test problems the HBBNI 
algoritthm, as compared to the SDBBI and CGBBI algorithms, shows the best performance in 
computing a relatively accurate inverse approximation. This is indeed reasonable considering the 
following points: 

- computational complexity is lower than exact matrix decompositions. 
- Newton’s method quadratic convergence is helpful to decrease the computing time. 
- The need of Newton’s algorithm for a proper starting point is fulfilled with the help of 

steepest descent method in early iterations. 

Table  1. Computing times for approximating the inverse matrix by sequential SDBBI, CGBBI, 
HBBNI algorithms, SVD and LU factorization.    

N 𝛿ଵ 𝛿ଶ CGBBI SDBBI HBBNI SVD LU 

50 𝐸 − 006 𝐸 − 010 2.418𝐸 − 006 1.032𝐸 − 006 3.981𝐸 − 007 2.091𝐸 − 006 3.873𝐸 − 006 

100 𝐸 − 006 𝐸 − 010 8.794E − 006 5.763𝐸 − 006 6.453𝐸 − 007 4.985𝐸 − 006 6.164𝐸 − 006 

200 𝐸 − 006 𝐸 − 010 3.118 − 005 1.172𝐸 − 005 9.783𝐸 − 006 1.093𝐸 − 005 3.274𝐸 − 005 

300 𝐸 − 006 𝐸 − 010 4.916E − 005 4.872𝐸 − 005 2.114𝐸 − 005 6.574𝐸 − 005 7.459𝐸 − 005 

500 
 

𝐸 − 006 𝐸 − 010 6.384E − 005 7.661𝐸 − 005 5.675𝐸 − 005 1.334𝐸 − 004 2.783𝐸 − 004 

 
Parallel Implementation 

The results obtained by parallel implementations are given in Table 2. We note that parallel 
HBBNI algorithm is faster than parallel implementation of SVD and LU factorization, on all the 
considered cases. 
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Based on the numerical results in tables 1 and 2, the hybrid algorithm is suggested in real 
applications for approximating the inverse matrix. We note that the most important benefit of 
matrix decompositions is that they provide the exact inverse matrix in case it is necessary.  

Note: For large test problems, the CGBBI algorithm outperforms the SDBBI algorithm; hence, to 
implement the hybrid algorithm for large problems, the combination of conjugate gradient and 
Newton’s methods is considered.  

 

Table  2. Computing times for approximating the inverse matrix by parallel SDBBI, CGBBI, 
HBBNI algorithms, SVD and LU factorization. 

N 𝛿ଵ 𝛿ଶ CGBBI SDBBI HBBNI SVD LU 

1000 𝐸 − 004 𝐸 − 008 1.821E − 005 2.087𝐸 − 005 1.653𝐸 − 005 2.065𝐸 − 005 3.115𝐸 − 005 

3000 𝐸 − 004 𝐸 − 008 4.053E − 005 4.116𝐸 − 005 3.435𝐸 − 005 3.875𝐸 − 005 5.016𝐸 − 005 

5000 𝐸 − 004 𝐸 − 008 7.426E − 005 8.125𝐸 − 005 6.773𝐸 − 005 7.453𝐸 − 005 9.342𝐸 − 005 

7000 𝐸 − 004 𝐸 − 008 1.275E − 004 1.984𝐸 − 004 1.135𝐸 − 004 1.675𝐸 − 004 3.562𝐸 − 004 

10000 𝐸 − 004 𝐸 − 008 7.689E − 004 7.115𝐸 − 004 8.474𝐸 − 004 7.563𝐸 − 004 1.105𝐸 − 003 

 

Moreover, to provide a visual comparison of the computing times, we present the Dolan-More 
performance profiles. As shown in Figure 2, the time profile for the HBBNI algorithm appearing 
above the other profiles, the efficiency of the proposed algorithm is confirmed.  

 

Figure 2: The Dolan-More Time Profile 

Metropolis Hastings 

In this section, the efficiency of Metropolis Hastings based approach for inverse approximation is 
discussed. In Table 3, the residue bound, k and d are reported and the computing time is compared 
with SDBBI and CGBBI.  

Table 3: Metropolis Hasting approach based on steepest descent iteration 
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N 𝑘 𝑑 𝛿 CGBBI SDBBI Metropolis Hastings 

 1000 10 10 𝐸 − 008 2.087𝐸 − 003 1.653𝐸 − 003 ∗  1.281𝐸 − 003 

3000 20 15 𝐸 − 008 4.116𝐸 − 003 3.435𝐸 − 003 ∗  2.354𝐸 − 003 

5000 25 20 𝐸 − 008 8.125𝐸 − 003 6.773𝐸 − 003 ∗  4.327𝐸 − 003 

7000 25 20 𝐸 − 008 1.984𝐸 − 002 1.135𝐸 − 002 ∗  1.032𝐸 − 002 

10000 30 25 𝐸 − 008 7.115𝐸 − 002 8.474𝐸 − 002 ∗  5.463𝐸 − 002 

We note that, the Metropolis Hasting algorithm leads to same error bound in lower time and with 
no need to specific step length. These properties make the idea a proper one in real applications 
where inverse matrix is needed. In Table 4, the computing time and number of randomized 
iterations are reported in approximating inverse of diagonal, tridiagonal and sparse matrices using 
the second approach. 

Table 4: The randomized Metropolis Hasting approach for special structures 

N Structure 𝑛 Time 

 1000 diagonal 80 1.104𝐸 − 003 

3000 tridiagonal 200 1.435𝐸 − 003 

5000 diagonal 200 1.618𝐸 − 003 

7000 tridiagonal 300 6.253𝐸 − 003 

10000 diagonal 300 4.539𝐸 − 003 

10000 Sparse 500 6.472𝐸 − 002 

 

Finally, the average computing time for computing the inverse of tridiagonal large matrices, as a 
well-known case, with residue norm less than 𝐸 − 008 is plotted in Figure 3. 

 

Figure 3: time vs size, tridiagonal inverse matrix approximation using Metropolis Hastings 
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The red plot in Figure 3, is a proper regressor for the computing time which shows a controlled 
growth of computing time whit increasing matrix size. This makes the algorithm reliable for larger 
matrices. 

6 Concluding Remarks 
We first defined an optimization problem with its solution being an inverse matrix. To solve the 
otimization problem, we outlined an efficient global algorithm, steepest descent method with 
Barzilai-Borwein step length, named as SDBBI, conevrging to the inverse matrix. Instead of 
steepest-descent, conjugate gradient method was also considered in the CGBBI algorithm. On 
large test problems, the CGBBI algorithm performs better than the SDBBI algorithm. Based on 
the obtained numerical results, CGBBI turns to be more efficient than SDBBI method, while all 
both proposed algorithms are faster than conventional decomposition methods such as the LU 
factorization and SVD in approximating the inverse matrix. Moreover, we introduced two 
approaches based on Metropolis Hastings algorithm to make the computations more efficient 
specially for large matrices. The target probability distribution is formed based on residue norms 
which provides a mathematically reasonale combination. The numerical results shows to be 
promising in computing inverse matrix faster and more accurate than SDBBI and CGBBI. The test 
where conducted both in general structures and special structures such as tridiagonal matrices. 
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