

Journal of Algorithms and Computations

journal homepage: http://jac.ut.ac.ir

Metropolis-Hasting Idea for Approximating Matrix Inverse

N. Bagherpour*1, N. Mahdavi Amiri†2

1 School of Engineering Sciences, College of Engineering, University of Tehran

2 Department of Mathematics, Sharif University of Technology, Tehran, Iran

ABSTRACT ARTICLE INFO
Solving a linear system of equations is needed in
many different applications and there exist many
different techniques to solve such a system with no
need to compute inverse matrix, as a costly and not
stable computation. But the challenge is that in
some other applications such as 3D prints, the goal
is exactly computing the inverse of a matrix. In this
paper, an optimization model equivalent to inverse
matrix is introduced and an effective algorithm
based on steepest-descent and Barzilai-Borwein
step length is suggested. We also used conjugate
gradient instead, to provide better numerical results.
Finally, we used the Metropolis-Hastings algorithm
to accelerate the convergence rate. The probabilities
are chosen to have an inverse relation to remainder
norm. A key point is that even a random step length
is working for global convergence. Numerical
results look promising based on stability and
accuracy.

 Article history:
Research paper
Received 07, September 2024
Accepted 05, December 2024
Available online 20, December 2024

Keywords: Inverse matrix, Metropolis-Hastings,
conjugate gradient, Barzilai-Borwein step length.

AMS subject classification: 65F11

* Corresponding author: N. Bagherpour, Email: negin.bagherpour@ut.ac.ir
† nezamm@sharif.ir

Journal of Algorithms and Computation 56 issue 2, December 2024, PP. 151-161

152 N. Bagherpour/ JAC 56 issue 2, December 2024, PP. 151-161

1 Introduction
If the aim is to solve a linear system, computing the inverse matrix is not necessary. However, in
some applications such as geometric design computing the inverse is of interest. Moreover, in
usual algorithms for solving nonlinear matrix equations [5] a sequence converging to the inverse
matrix is needed. Since computing the exact inverse matrix is complicated specially for large
matrices, providing a reletively close approximation would be of high utility. Several algorithms
exist based on optimization and numerical linear algebra. The iterative formula’

𝑋௡ାଵ = 𝑋௡(2𝐼 − 𝐴𝑋௡), (1)

as Newton’s iteration, to converge to the solution 𝐴ିଵ of 𝐴 − 𝑋ିଵ = 0, is used to compute the
inverse matrix approximately; e.g., see [2, 3]. We note that finding a suitable starting point which
is relatively close to the inverse is not possible; hence, a global algorithm converging to the inverse
matrix from an arbitrary starting point is necessary. Here, we present a novel global algorithm to
approximate the inverse matrix.

The rest of our work is organized as follows. In Section 2, our newly defined optimization problem
and some necessary optimality conditions are presented. In Section 3, two global 𝑅-linear
algorithms converging to the inverse matrix are outlined. A randomized strategy based on the
Metropolis-Hastings algorithm is presented in Section 4 for computing a proper inverse
approximation without considerable sensitivity to starting point or extra computational cost for
step length. Section 5 includes numerical results obtained using both sequential and parallel
implementations of our presented algorithms. Comparisons with the existing methods confirm the
efficiency of our algorithm in computing more accurate solutions in less computing times.

2 New Optimization Problem
The iterative formula (1) has been used to solve some nonlinear matrix equations iteratively; see
[2, 3]. The Newton iteration (1) converges to the inverse matrix locally, meaning that a starting
point sufficiently close to the inverse matrix is necessary for convergence. Here, we develop a
globally convergent iterative algorithm to approximate the inverse matrix. The inverse of a non-
singular matrix 𝐴 ∈ ℝ௡×௡ is the solution of the following optimization problem:

min
1

2
∥ 𝐴𝑋 − 𝐼 ∥ி

ଶ ,
(2)

where 𝐼 is the 𝑛 × 𝑛 identity matrix and ∥⋅∥ி denotes the Frobenius norm. In the following two
theorems, we discuss some properties of the objective function of (2).

Theorem 1. If 𝐴 ∈ R௡×௡ is non-singular, then problem (2) has the unique solution 𝑋∗ = 𝐴ିଵ.
Otherwise, for a singular 𝐴 ∈ R௡×௡, the general solution of (2) is 𝐴ା + 𝑍, where 𝑍 ∈ R௡×௡ is an
arbitrary matrix with its columns in the null space of 𝐴்𝐴. Moreover, the solution of (2) with
minimal Frobenius norm is 𝐴ା.

153 N. Bagherpour/ JAC 56 issue 2, December 2024, PP. 151-161

Proof. First, let 𝐴 be a nonsingular matrix. The objective function 𝑓(𝑋) =
ଵ

ଶ
∥ 𝐴𝑋 − 𝐼 ∥ி

ଶ is strictly

convex, because its Hessian, 𝐻 = 𝐴்𝐴, is positive definite. Hence, the staitionary point of 𝑓(𝑋) is
a global minimizer. We thus have:

∇𝑓 = 𝐴்𝐴𝑋 − 𝐴் = 0 → 𝐴𝑋 − 𝐼 = 0 → 𝑋∗ = 𝐴ିଵ.

Now, letting 𝐴 be an 𝑛 × 𝑛 singular matrix, it can be easily seen that the Hessian matrix is positive
semi-definite and any stationary point would be a local minimizer. Moreover, 𝑋∗ = 𝐴ା is a
solution of ∇𝑓 = 𝐴்𝐴𝑋 − 𝐴் = 0 and the general solution is 𝑋 = 𝐴ା + 𝑍, where 𝑍 ∈ R௡×௡ is an
arbitrary matrix with its columns lying in the null space of 𝐴்𝐴. Now, we aim to compute the
minimal norm solution of (2). Letting 𝐴 = 𝑈௥Σ𝑉௥

் be the singular value decomposition (SVD) of
𝐴 with rank 𝑟, we have

𝑚𝑖𝑛 ∥ 𝑉௥Σ𝑈௥
் + 𝑉௡ି௥𝑃 ∥ଶ, (3)

with 𝑃 being an arbitrary (𝑛 − 𝑟) × 𝑛 matrix. It is clear that 𝑃 = 0 is the global solution of (3);
hence, the solution of (2) with minimal norm is 𝐴ା. Now, we are ready to outline the new algorithm
for approximating the inverse matrix.

3 New Iterative Algorithm for Inverse

To solve the quadratic optimization problem (2), we first use the steepest descent algorithm.

Letting 𝑄(𝑋) =
ଵ

ଶ
∥ 𝐴𝑋 − 𝐼 ∥ி

ଶ , the steepest descent direction would be −∇𝑄(𝑋) = −𝐴୘(𝐴𝑋 − 𝐼).

Moreover, the Barzilai-Borwein (BB) step length [1] is used to guarantee the global convergence
of the algorithm. Hence, to compute the solution of (2), starting from an arbitrary matrix 𝑋଴ ∈

ℝ௡×௡, in each iteration 𝑘 ≥ 1, we set

𝑋௞ାଵ = 𝑋௞ − 𝛼௞𝐴୘(𝐴𝑋௞ − 𝐼), (4)

where 𝛼௞ is the BB step length. Letting 𝑆௞ = 𝑋௞ − 𝑋௞ିଵ, 𝑌௞ = ∇𝑄(𝑋௞) − ∇𝑄(𝑋௞ିଵ) and 𝑅௞ =

𝑆௞ − 𝛼௞ିଵ𝑌௞, the BB step length is computed by

𝛼௞ =

⎩
⎪
⎨

⎪
⎧

tr(𝑆௞
୘𝑅௞)

tr(𝑌௞
୘𝑅௞)

, tr(𝑌௞
୘𝑅௞) > 0,

tr(𝑆௞
୘𝑆௞)

tr(𝑌௞
୘𝑌௞)

, tr(𝑌௞
୘𝑅௞) ≤ 0.

(5)

Now, we give the steps of a steepest descent algorithm for computing the inverse matrix as
Algorithm 1. We refer to this algorithm by SDBBI.

Algorithm 1: SDBBI.

(0) Choose an arbitrary matrix 𝑋଴ ∈ ℝ௡×௡ and set 𝑘 = 0. let 𝛿 be the tolerance for machine zero.

(1) While ∥ 𝐴 ∗ 𝑋௞ − 𝐼 ∥> 𝛿 Do

154 N. Bagherpour/ JAC 56 issue 2, December 2024, PP. 151-161

 Set 𝛼௞ =

⎩
⎪
⎨

⎪
⎧

୲୰(ௌೖ
౐ோೖ)

୲୰(௒ೖ
౐ோೖ)

, tr(𝑌௞
୘𝑅௞) > 0,

୲୰(ௌೖ
౐ௌೖ)

୲୰(௒ೖ
౐௒ೖ)

, tr(𝑌௞
୘𝑅௞) ≤ 0.

 Set 𝑋௞ାଵ = 𝑋௞ − 𝛼௞𝐴୘(𝐴𝑋௞ − 𝐼).
 Set 𝑘 = 𝑘 + 1.

Next, we cite a theorem to establish the 𝑅-linear convergence of Algorithm 1.

Theorem 2. The BB step length leads to an 𝑅-linear global convergence.

Proof. See [1].

We note that the steepest descent method may produce dependent directions. To avoid this, the
conjugate gradient method was introduced. Therefore, to achieve a more reliable performance, a
combination of the conjugate gradient mehod with the BB step length was recommended; see [4].
Here, we also suggest using the conjugate gradient method in conjunction with the BB step length
(CGBBI) for solving (2).

Algorithm 2: CGBBI.

(0) Choose an arbitrary matrix 𝑋଴ ∈ ℝ௡×௡, 𝜔 > 0, Ω > 0 and set 𝑑଴ = −𝐴்(𝐴𝑋଴ − 𝐼) and 𝑘 = 0.
Let 𝛿 be the tolerance for machine zero.

(1) While ∥ 𝐴 ∗ 𝑋௞ − 𝐼 ∥> 𝛿 Do

Set 𝛼௞ =

⎩
⎪
⎨

⎪
⎧

୲୰(ௌೖ
౐ோೖ)

୲୰(௒ೖ
౐ோೖ)

, tr(𝑌௞
୘𝑅௞) > 0,

୲୰(ௌೖ
౐ௌೖ)

୲୰(௒ೖ
౐௒ೖ)

, tr(𝑌௞
୘𝑅௞) ≤ 0.

 Set 𝑋௞ାଵ = 𝑋௞ + 𝛼௞𝑑௞,

 If 𝑌௞ = 0, then let 𝑡 =
ଶ

ஐ
,

 Elseif tr൫ 𝑌௞
୘𝑆௞൯ = 0, then let 𝑡 =

ଶ

ன
,

 Else let 𝑞ො =
୲୰൫௒ೖ

౐௒ೖ൯

୲୰൫ௌೖ
౐௒ೖ൯

 and 𝑞ത =
୲୰൫ௌೖ

౐௒ೖ൯

୲୰൫ௌೖ
౐ௌೖ൯

,

 If tr൫ 𝑌௞
୘𝑆௞൯ > 0, 𝑡 = 2𝑞ො

 Else let 𝑐௞ =
ଶ(௤തି௤ො)

‖ௌೖ‖ಷ
 and

𝑡 =
2𝑐௞‖∇𝑄(𝑋௞)‖ி

−𝑞ො௞ + ට𝑞ො௞
ଶ + 2𝑐௞‖∇𝑄(𝑋௞)‖ி

𝑡 = ቊ
𝜔 𝑡 < 𝜔
Ω 𝑡 > Ω
𝑡 otherwise

 ,

155 N. Bagherpour/ JAC 56 issue 2, December 2024, PP. 151-161

𝛽௞ = max ቆ
୲୰ቀ∇ொ(௑ೖశభ)೅(௒ೖି௧ௌೖ)ቁ

୲୰൫ௗೖ
౐௒ೖ൯

, 0ቇ

𝑑௞ାଵ = −∇𝑄(𝑋௞ାଵ) + 𝛽௞𝑑௞,

 Set 𝑘 = 𝑘 + 1.

Additionally, the Newton iteration for approximating the inverse is faster than R-linear algorithms
but does not converge globally. To overcome this deficiency, a natural idea is to use the SDBBI
or the CGBBI algorithm in early iterations to compute a relatively good starting point for the
Newton method and use the Newton algorithm to converge to the inverse matrix faster. The hybrid
algorithm constructed from the SDBBI and Newton’s method, HBBNI, is presented as Algorithm
3 below.

Algorithm3: HBBNI.

(0) Choose an arbitrary matrix 𝑋଴ ∈ ℝ௡×௡ and set 𝑘 = 0. Let 𝛿ଵ be the tolerance for machine zero
and 𝛿ଵ > 𝛿ଶ be a sufficiently small number.
(1) While ∥ 𝐴 ∗ 𝑋௞ − 𝐼 ∥> 𝛿ଵ Do

 Set 𝛼௞ =

⎩
⎪
⎨

⎪
⎧

୲୰(ௌೖ
౐ோೖ)

୲୰(௒ೖ
౐ோೖ)

, tr(𝑌௞
୘𝑅௞) > 0,

୲୰(ௌೖ
౐ௌೖ)

୲୰(௒ೖ
౐௒ೖ)

, tr(𝑌௞
୘𝑅௞) ≤ 0.

 Set 𝑋௞ାଵ = 𝑋௞ − 𝛼௞𝐴୘(𝐴𝑋௞ − 𝐼).
 Set 𝑘 = 𝑘 + 1.
(2) Set 𝑋଴ = 𝑋௞ and 𝑘 = 0.
(3) While ∥ 𝐴 ∗ 𝑋௞ − 𝐼 ∥> 𝛿ଶ Do
 Set 𝑋௞ାଵ = 𝑋௞(2𝐼 − 𝐴𝑋௞).
 Set 𝑘 = 𝑘 + 1.

The most important challenge of the presented algorithms would be their computational
complexity, specially in case of large matrices. So, in Section 4 we make use of the brilliant idea
by Metropolis to discard with solutions and control the complexity.

4 Metropolis-Hastings Idea
In this section, a randomized approach will be defined to improve the computational cost and
convergence properties of the outlined algorithm for approximating inverse matrix. There are some
motivating issues to continue with randomized approach such as Metropolis-Hastings:

a) An extra cost is needed for computing the BB step length.
b) In first iterations, we do not necessarily see improvement in error function.
c) Performing a greater number of iterations although lead to a better result, increase the

computational cost.

To overcome these challenges, we make use of Metropolis approach. We compute k different
approximations 𝑋௜ , … 𝑖 = 1, … , 𝑘, each by performing t iterations with random step lengths. We

156 N. Bagherpour/ JAC 56 issue 2, December 2024, PP. 151-161

then generate a convex combination of 𝑋௜s as a proper inverse approximation. We note that these
k approximations might be computed in parallel. Moreover, a random step length is of more
interest in comparison with previously used step length BB. Before specifying the convex
combination, let review the Metropolis-Hastings algorithm.

To provide a guided sampling among a large number of samples, based on a desired probability
distribution, the Metropolis-Hastings algorithm [6] as a Markov chain Monte Carlo (MCMC)
method might be used. In this algorithm, new samples are added to the sequence in two steps: first
a new sample is proposed randomly, then the proposed sample is either added to the sequence or
rejected depending on the value of the probability distribution at that point. The resulting sequence
can be used to approximate the distribution. Moreover, to follow a target distribution, the
probability conditions for accepting a sample might be computed based on the target distribution.
In Figure 1 the Metropolis Hastings scheme is showed.

Figure 1: Metropolis Hastings Scheme

In inverse approximation, since our target is to minimize the norm ‖𝐴𝑋 − 𝐼‖, among k computed
approximations each 𝑋௜ with lower residue is a better approximation for inverse matrix and must
have a larger weight in the desired convex combination. To this end, we define a target probability
distribution

𝑃(𝑋௜) =

1
‖𝐴𝑋௜ − 𝐼‖

∑
1

ฮ𝐴𝑋௝ − 𝐼ฮ
௞
௝ୀଵ

so that a reasonable combination would be constructed. So, the first approach for approximating
inverse is

1) Compute 𝑋ప
෩ s in parallel for 𝑖 = 1, … , 𝑘 by performing the iteration below d times

𝑋௞ାଵ = 𝑋௞ − 𝛼௞𝐴୘(𝐴𝑋௞ − 𝐼)

157 N. Bagherpour/ JAC 56 issue 2, December 2024, PP. 151-161

with 𝛼௞ being a random positive number.

2) Compute 𝑃൫𝑋ప
෩ ൯ =

భ

ฮಲ೉ഢ෪ ష಺ฮ

∑
భ

ฮಲ೉ണ෪ ష಺ฮ
ೖ
ೕసభ

 and let 𝑋 = ∑ 𝑃൫𝑋ఫ
෩ ൯𝑋ఫ

෩ௗ
௝ୀଵ .

A more creative approach is to generate random matrices 𝑋௜s and the convex combination based
on their residues forms the approximation for the inverse matrix. The point here is that

- The computational cost for 𝑋௞ାଵ = 𝑋௞ − 𝛼௞𝐴୘(𝐴𝑋௞ − 𝐼) is not needed any more,

- however, a larger number of iterations must be done based on the randomness of the

original candidates.

To summerize the steps of our work, we start with designing an optimization problem whose
solution is the inverse matrix which is of interest. We then, search for a proper optimization
algorithm to approximate the solution. Finally, to improve the approximation and accelerate
convergence we made use of the Metropolis-Hasting idea. These main steps are shown in Figure
2.

Figure 2: The overal scheme

Next, we present some numerical results to show the effectiveness of our proposed algorithm for
computing the inverse matrix both in sequential and parallel implementations. According to the

158 N. Bagherpour/ JAC 56 issue 2, December 2024, PP. 151-161

numerical results, the Metropolis-Hasting idea outperforms the first approach in sparse matrices
and other special structures.

5 Numerical Results
MATLAB 2024b in a Windows 11 machine with a 3.4 GHz CPU and a 16 GB RAM is used to
implement the algorithms and compare the obtained results. We present the numerical results for
the sequential and parallel implementations, respectively. We generate random 𝑛 × 𝑛 matrices of
different sizes. These random matrices were produced using the rand command in MATLAB. The
command rand(𝑛) generates an 𝑛 × 𝑛 non-singular matrix with uniformly distributed random
entries in the interval [0, 1].

Sequential Implementation

In Table 1, the computing times for approximating the inverse matrix using implemntation of the
SDBBI, CGBBI, HBBNI (sequential) algorithms, SVD and LU factorization are reported. Based
on these results, the computing time of the sequential HBBNI algorithm is considerably less than
those obtained by SVD and LU factorization. In tables below, 𝑛 is the matrix size, 𝛿ଵ and 𝛿ଶ are
the first and second error bounds in the HBBNI algorithm. The error bounds in SDBBI and CGBBI
are assumed to be 𝛿ଶ.

According to numerical results reported in Table 1, in almost all of the test problems the HBBNI
algoritthm, as compared to the SDBBI and CGBBI algorithms, shows the best performance in
computing a relatively accurate inverse approximation. This is indeed reasonable considering the
following points:

- computational complexity is lower than exact matrix decompositions.
- Newton’s method quadratic convergence is helpful to decrease the computing time.
- The need of Newton’s algorithm for a proper starting point is fulfilled with the help of

steepest descent method in early iterations.

Table 1. Computing times for approximating the inverse matrix by sequential SDBBI, CGBBI,
HBBNI algorithms, SVD and LU factorization.

N 𝛿ଵ 𝛿ଶ CGBBI SDBBI HBBNI SVD LU

50 𝐸 − 006 𝐸 − 010 2.418𝐸 − 006 1.032𝐸 − 006 3.981𝐸 − 007 2.091𝐸 − 006 3.873𝐸 − 006

100 𝐸 − 006 𝐸 − 010 8.794E − 006 5.763𝐸 − 006 6.453𝐸 − 007 4.985𝐸 − 006 6.164𝐸 − 006

200 𝐸 − 006 𝐸 − 010 3.118 − 005 1.172𝐸 − 005 9.783𝐸 − 006 1.093𝐸 − 005 3.274𝐸 − 005

300 𝐸 − 006 𝐸 − 010 4.916E − 005 4.872𝐸 − 005 2.114𝐸 − 005 6.574𝐸 − 005 7.459𝐸 − 005

500

𝐸 − 006 𝐸 − 010 6.384E − 005 7.661𝐸 − 005 5.675𝐸 − 005 1.334𝐸 − 004 2.783𝐸 − 004

Parallel Implementation

The results obtained by parallel implementations are given in Table 2. We note that parallel
HBBNI algorithm is faster than parallel implementation of SVD and LU factorization, on all the
considered cases.

159 N. Bagherpour/ JAC 56 issue 2, December 2024, PP. 151-161

Based on the numerical results in tables 1 and 2, the hybrid algorithm is suggested in real
applications for approximating the inverse matrix. We note that the most important benefit of
matrix decompositions is that they provide the exact inverse matrix in case it is necessary.

Note: For large test problems, the CGBBI algorithm outperforms the SDBBI algorithm; hence, to
implement the hybrid algorithm for large problems, the combination of conjugate gradient and
Newton’s methods is considered.

Table 2. Computing times for approximating the inverse matrix by parallel SDBBI, CGBBI,
HBBNI algorithms, SVD and LU factorization.

N 𝛿ଵ 𝛿ଶ CGBBI SDBBI HBBNI SVD LU

1000 𝐸 − 004 𝐸 − 008 1.821E − 005 2.087𝐸 − 005 1.653𝐸 − 005 2.065𝐸 − 005 3.115𝐸 − 005

3000 𝐸 − 004 𝐸 − 008 4.053E − 005 4.116𝐸 − 005 3.435𝐸 − 005 3.875𝐸 − 005 5.016𝐸 − 005

5000 𝐸 − 004 𝐸 − 008 7.426E − 005 8.125𝐸 − 005 6.773𝐸 − 005 7.453𝐸 − 005 9.342𝐸 − 005

7000 𝐸 − 004 𝐸 − 008 1.275E − 004 1.984𝐸 − 004 1.135𝐸 − 004 1.675𝐸 − 004 3.562𝐸 − 004

10000 𝐸 − 004 𝐸 − 008 7.689E − 004 7.115𝐸 − 004 8.474𝐸 − 004 7.563𝐸 − 004 1.105𝐸 − 003

Moreover, to provide a visual comparison of the computing times, we present the Dolan-More
performance profiles. As shown in Figure 2, the time profile for the HBBNI algorithm appearing
above the other profiles, the efficiency of the proposed algorithm is confirmed.

Figure 2: The Dolan-More Time Profile

Metropolis Hastings

In this section, the efficiency of Metropolis Hastings based approach for inverse approximation is
discussed. In Table 3, the residue bound, k and d are reported and the computing time is compared
with SDBBI and CGBBI.

Table 3: Metropolis Hasting approach based on steepest descent iteration

160 N. Bagherpour/ JAC 56 issue 2, December 2024, PP. 151-161

N 𝑘 𝑑 𝛿 CGBBI SDBBI Metropolis Hastings

 1000 10 10 𝐸 − 008 2.087𝐸 − 003 1.653𝐸 − 003 ∗ 1.281𝐸 − 003

3000 20 15 𝐸 − 008 4.116𝐸 − 003 3.435𝐸 − 003 ∗ 2.354𝐸 − 003

5000 25 20 𝐸 − 008 8.125𝐸 − 003 6.773𝐸 − 003 ∗ 4.327𝐸 − 003

7000 25 20 𝐸 − 008 1.984𝐸 − 002 1.135𝐸 − 002 ∗ 1.032𝐸 − 002

10000 30 25 𝐸 − 008 7.115𝐸 − 002 8.474𝐸 − 002 ∗ 5.463𝐸 − 002

We note that, the Metropolis Hasting algorithm leads to same error bound in lower time and with
no need to specific step length. These properties make the idea a proper one in real applications
where inverse matrix is needed. In Table 4, the computing time and number of randomized
iterations are reported in approximating inverse of diagonal, tridiagonal and sparse matrices using
the second approach.

Table 4: The randomized Metropolis Hasting approach for special structures

N Structure 𝑛 Time

 1000 diagonal 80 1.104𝐸 − 003

3000 tridiagonal 200 1.435𝐸 − 003

5000 diagonal 200 1.618𝐸 − 003

7000 tridiagonal 300 6.253𝐸 − 003

10000 diagonal 300 4.539𝐸 − 003

10000 Sparse 500 6.472𝐸 − 002

Finally, the average computing time for computing the inverse of tridiagonal large matrices, as a
well-known case, with residue norm less than 𝐸 − 008 is plotted in Figure 3.

Figure 3: time vs size, tridiagonal inverse matrix approximation using Metropolis Hastings

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

161 N. Bagherpour/ JAC 56 issue 2, December 2024, PP. 151-161

The red plot in Figure 3, is a proper regressor for the computing time which shows a controlled
growth of computing time whit increasing matrix size. This makes the algorithm reliable for larger
matrices.

6 Concluding Remarks
We first defined an optimization problem with its solution being an inverse matrix. To solve the
otimization problem, we outlined an efficient global algorithm, steepest descent method with
Barzilai-Borwein step length, named as SDBBI, conevrging to the inverse matrix. Instead of
steepest-descent, conjugate gradient method was also considered in the CGBBI algorithm. On
large test problems, the CGBBI algorithm performs better than the SDBBI algorithm. Based on
the obtained numerical results, CGBBI turns to be more efficient than SDBBI method, while all
both proposed algorithms are faster than conventional decomposition methods such as the LU
factorization and SVD in approximating the inverse matrix. Moreover, we introduced two
approaches based on Metropolis Hastings algorithm to make the computations more efficient
specially for large matrices. The target probability distribution is formed based on residue norms
which provides a mathematically reasonale combination. The numerical results shows to be
promising in computing inverse matrix faster and more accurate than SDBBI and CGBBI. The test
where conducted both in general structures and special structures such as tridiagonal matrices.

Acknowledgement

The author would like to thank Professor Ali Moeini for his valuable comments to improve the
randomized version of the algorithm.

References

[1] Barzilai J., Borwein J. M.: Two-point Step Size Gradient Method, IMA J. Numer. Anal., Vol.
8, No.1, 1988, pp. 141-148.

[2] Ben-Israel A.: An iterative method for computing the generalized inverse of an arbitrary matrix,
Math. Comp., Vol. 19, 1965, pp. 452-455.

[3] Ben-Israel A., Cohen D.: On iterative computation of generalized inverses and associated
projections, SIAM J. Numer. Anal., Vol. 3, 1966, pp. 410-419.

[4] Momeni M., Peyghami M. R.: A new conjugate gradient algorithm with cubic
Barzilaiâ€“Borwein stepsize for unconstrained optimization, Optimization Methods and
Software, Vol. 34, No. 3, 2019, pp. 650-664.

[5] Zhou B., Cai G. B., Lam J.: Positive definite solutions of the nonlinear matrix equation 𝑋 +

𝐴்𝑋തିଵ𝐴 = 𝐼, Appl. Math. Comput., Vol. 219, No. 14, 2013, pp.7377-7391.

[6] Brown A., Jones G. L.: Convergence rates of Metropolis–Hastings algorithms, WIREs
Computational Statistics, Advanced Review, 2024, DOI: 10.1002/wics.70002.

