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patterns of complex contagion by considering various factors
in network science and standard networks. Influential factors
in a network, such as the degree of nodes, network structures,
and hubs in scale-free networks, are being analyzed. The
novelty of this paper lies in the analysis of the mentioned
factors when a behavioral diffusion occurs, regardless of the
kind of behavior spreading, and using only the factors in the
network. The findings of this research demonstrate that the
behavior of each network during the diffusion, considering
the factors above, can be different. Random networks show a
disciplined behavior of the changes in the number of infected
nodes in each timeframe. However, scale-free networks
show this property with the number of infected neighbors of
each node at the time of infection of that node.

Article history:
Research paper
Received 21 May 2025
Accepted 11 August 2025
Available online 11 August 2025

Keyword: Complex Network, Complex Contagion, Spreading
Phenomena, Graph Theory, Information Diffusion.

AMS subject Classification: 68R10.
∗Email: p.ghanemipour@ut.ac.ir
†Corresponding author: A. Kamandi Email: kamandi@ut.ac.ir

Journal of Algorithms and Computation 57 issue 1, August 2025, PP. 15–29



16 P. Ghanemipour/ JAC 57 issue 1, August 2025, PP. 15–29

1 Introduction
In everyday human life, various forms of communication exist. These interactions can generally
be categorized into two main types: physical (real) and virtual. Each type of interaction can be
represented as a graph, which can be analyzed using the algorithms of network science. One of
the key phenomena observed in any social network is diffusion or spreading. Broadly speaking,
depending on the nature of what is propagating through the network and how it affects different
nodes, diffusion can be classified into two types: simple contagion and complex contagion. In
this context, a node with the potential to be affected is referred to as susceptible, while a node
that has already been influenced is called infected.
When nodes transition from the susceptible state to the infected state without requiring a high
number of infected neighbors-often triggered by contact with only a single infected neighbor-the
spreading phenomenon within the network is classified as simple contagion. One of the most
common examples of simple contagion is the spread of viruses, both in human populations and
through computer networks via the internet.
Various models have been developed to simulate the dynamics of simple contagion. One of the
most basic and widely used models is the SI1 model. In this model, individuals are divided
into two categories: susceptible and infected. Initially, all nodes are in the susceptible state.
Once a node becomes infected, it begins to spread the virus to its neighbors. Eventually, as all
individuals in the network become infected, no further state transitions occur, and the process
reaches a steady state. As observed in simple contagion, a node can become infected even after
contact with a single infected neighbor. However, this is not necessarily the case in complex
contagion. Complex contagion is about the spread of behavioral traits, norms, or habits across a
network. As such, the adoption of these behaviors involves greater challenges and complexities
compared to simple contagions. In this kind of diffusion, individuals typically do not adopt
the spreading behavior upon their first exposure to it. Instead, adoption in complex contagion
requires reinforcement through repeated exposure to the contagion from multiple sources.
Nevertheless, mere frequency of exposure may not be sufficient in complex contagion. Factors
such as the presence of communities, the degree of closeness between neighbors, the network
topology, and even the nature of the behavior being propagated can all significantly influence
the likelihood of adoption.
Complex contagion has been extensively studied across a wide range of applications. In the
context of public health, it relates to the diffusion of both healthy and unhealthy behaviors within
a network. Similarly, the spread of innovation is also a prominent topic within this domain. One
of the most significant applications of complex contagion lies in the analysis of interpersonal
networks on social media platforms.
The study of complex contagion in social networks is not limited to information dissemination.
With the rapid growth of the internet, many of the aforementioned applications are increasingly
relevant in online social environments. Specifically, the spread of information that is inherently
tied to these networks-such as news, hashtags, and socially driven discussions-is a key area of
investigation. Moreover, complex contagion plays a crucial role in advertising, where it can
significantly impact marketing strategies and the success of businesses and enterprises.

1Susceptible-Infected
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2 Related Works
In 2014, a study was conducted in Philadelphia, USA, to examine attendance in fitness classes
[25]. Participants were randomly assigned to one of four experimental conditions, which varied
in terms of competition and social support, delivered either individually or in groups. The
findings revealed that attendance was significantly higher in the competitive and combined
conditions (competitive and supportive) compared to the supportive condition. A key takeaway
from this study is the critical role of the nature of a network’s interpersonal relationships in
enhancing behavioral diffusion.
The role of interpersonal relationships has also been investigated in another study focused on
the factors influencing weight loss through social networks [5]. This research examined how
social ties, such as network structure, network size, relationship types, and social support, affect
weight reduction. Contrary to expectations that stronger social ties would facilitate behavior
diffusion, the results indicated that individuals with fewer connections achieved greater weight
loss. However, participants who experienced high-quality social support within smaller networks
showed a positive impact on behavior diffusion. The study involved 387 participants enrolled in
a 16-week behavioral weight-loss program.
Another study investigated the diffusion of smoking behavior using a bi-threshold model [11].
This study also highlighted the critical role of hubs in complex contagion. Simulation results
demonstrated that when the state of hub nodes remains fixed, their influence can significantly
drive behavioral diffusion across the entire network. In another study, researchers examined how
the number and types of relationships within a network influence smoking behavior [13]. Social
ties in this research were categorized into three groups: family, friends, and virtual friends. One
of the key findings was the prominent role of close virtual friends in providing effective social
support and influence in smoking cessation.
A study addressing anti-vaccination behaviors during the COVID-19 pandemic issues aimed
to identify optimal network parameters that could enhance public trust in vaccination [4]. The
study’s key finding highlighted that maximizing the spread of pro-vaccination sentiment can be
achieved most effectively by utilizing hub nodes as central agents of diffusion. Furthermore, the
influence of opinion dynamics related to this topic has been investigated through exponential
random graph analysis in another study [21]. This research explored the emergence of the echo
chamber effect and its role in the dissemination of health-related misinformation. The authors
examined this phenomenon using a social media network formed around discussions on a viral
video concerning COVID-19 vaccination.
With the rapid growth of social media usage and the expansion of virtual communication,
behaviors and social norms are increasingly being disseminated through these networks. Users’
behaviors on platforms such as social networks, and their susceptibility to behavioral contagion,
are emerging as critical factors in understanding the dynamics of social diffusion. A study in
this context simulated user behavior on the social media platform X2 using both simple and
complex contagion models. The results showed that user adoption in such environments tends
to follow patterns of complex contagion [18].
Another study [7] investigated the diffusion of services, such as product or online service

2Formerly known as Twitter, rebranded as X in 2023
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advertisements, by analyzing mechanisms and network factors influencing adoption among
individuals. To study the adoption behavior, the authors examined the purchase of a paid
service over an 89-month period. Initially, they applied the Watts threshold model [24], and
subsequently proposed an extended version. This generalized model incorporates two new
features: the presence of immune nodes-individuals who will never adopt the service regardless
of exposure-and spontaneous adopters-susceptible individuals who may adopt independently at
the outset of the diffusion process.
In parallel to classical simple contagion models such as SI, SIS, and SIR, the work by [17]
introduces several complex contagion models tailored for social network applications. Among
them, the ISR model3 was developed to simulate information diffusion, while the Sethi model
was adapted for advertising dynamics. A key innovation is that interactions among spreaders
may lead them to collectively halt further dissemination.
Given the scale-free nature of many real-world networks, one of the most critical assumptions
in complex contagion is the influential role of hub nodes. A recent study [26] introduced an
algorithm to identify individuals with the greatest potential influence in the context of complex
contagion. The study introduces a set of relational functions to formalize the connection between
node influence and susceptibility within this diffusion-specific topology.
The study by [12] also examined social relationships and susceptibility in social networks
using simple contagion models. The methodology of this study consists of two main stages:
initially, each individual temporarily adopts the spreading information or decides to return to
their original state. Subsequently, in the second stage, individuals make a final and definitive
decision regarding acceptance or rejection of the information.
The study [14] analyzed the diffusion of information and its relationship with users exhibiting
higher-than-average activity during the 2019 Polish parliamentary elections. Although these
users showed increased responsiveness to political leaders and influential users in political
content, their overall activity level was not significantly higher than that of ordinary users.
To prevent and detect early propagation of offensive content, the study [22] examined the
diffusion of such content on social media by considering follower networks, structural features,
user interactions, and cognitive content characteristics. Their results were compared with tweet
diffusion patterns in other content domains. Notably, violent tweets tend to become popular
through large chains of users with relatively few followers, which differs from other domains and
complicates prediction. Moreover, the research [20] studied the spread of offensive content on
social networks by exploring four behavioral adoption mechanisms among users: generalized
reciprocity, direct reciprocity, leader-mimicry, and peer imitation.
Some studies have examined hybrid models that combine simple and complex contagion pro-
cesses. One such study, focusing on the spread of viruses and epidemics alongside information
diffusion, divided the network into two layers to separately analyze epidemic and informational
spread [3]. Additionally, in [15], a transmission model incorporating both simple and complex
contagion was introduced. In this model, individuals’ adoption states are categorized into simple
contagion, complex contagion, and a hybrid of the two. A parameter 𝜃 is defined to represent the
contagion threshold for each node, computed from a distribution𝑄(𝜃). If𝑄(𝜃) = 1, the node can

3Ignorant-Spreader-Recovered
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be influenced by a single infected neighbor, corresponding to simple contagion. If𝑄(𝜃) > 1, the
node requires multiple infected neighbors to become infected, representing complex contagion.
In the context of spreading various phenomena through social networks, the study [1] proposed a
hybrid model for the diffusion of beliefs. Simulations performed on different network structures
demonstrate that the spread of beliefs can be classified into simple or complex contagion
depending on the nature of the beliefs involved.
The branching process is a type of stochastic process widely used for modeling proliferation
phenomena. The study by [8] investigates complex contagion utilizing a multitype branching
process (MTBP). Their subsequent work extended the analysis to more general networks [9].
Given the binary nature and threshold-model dependency in analyzing complex contagion, [6]
introduced a newer, more general model independent of threshold constraints. Their model is
based on a leader-follower consensus (LFC) framework, analyzing system behavior according
to nodes’ adherence to the leader, influenced by network features such as clustering coefficient.
The network used in their study was a Watts–Strogatz model with 240 nodes.
Considering real-world networks’ tendency to exhibit scale-free properties, a potential issue
arises regarding diffusion. One stage in scale-free network growth is incremental attachment,
which can induce polarization by creating minority and majority nodes. Consequently, minority
nodes have reduced access to information, potentially limiting contagion among them. This
issue is addressed in [23], which examines different network growth methods and types of
contagion between groups. Their simulations are based on synthetic networks, initially modeled
as Erdős–Rényi random graphs, then transformed into various models by different growth
mechanisms. The main finding relates to how network properties and contagion type affect
equal information access across individuals-for example, equality is less in simple contagion
than in complex contagion. Given the structural importance of networks in contagion processes,
ensuring equitable information access could be beneficial for social network development,
enabling all individuals to access information fairly.
One well-known problem in contagion studies is Influence Maximization, introduced in 2003
[10]. The main goal is to identify and select 𝑘 nodes in a graph that maximize influence spread
among other nodes. The influence of a node set, such as 𝐴, is denoted 𝜎(𝐴). Although influence
maximization is NP-hard, approximation algorithms have been proposed. The approximation
factor achieved in the original study is (1−1/𝑒− 𝜖). Their approach uses a greedy hill-climbing
algorithm. This problem is relevant in any social network where diffusion occurs, including
applications like advertising, information dissemination, and simple contagion-related issues.
For example, it applies to epidemic control via mass vaccination. The study [16] introduced
an algorithm using multi-level optimization and parallelization to estimate this problem in
vaccination contexts. They defined EPICONTROL, derived from influence maximization, for
vaccination strategies. Utilizing the submodularity property, they extended the greedy algorithm.
It was proven in [10] that if the cost function 𝑓 , which measures selected nodes’ influence, is
submodular, a (1 − 1/𝑒) approximation is achievable. Furthermore, [16] demonstrated that if
the underlying graph is a rooted tree, the vaccinated nodes and consequently the saved nodes
form a submodular set. Their data included social relationship networks analyzed for public
health, as well as networks beyond epidemic applications. Their results showed about a 98%
reduction in infections at urban scales. The study [19] examined optimal initial node selection in
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random graph models, focusing on nonsubmodular models, unlike the Linear Threshold Model
and Independent Cascade Model. Their model utilized the Contagion r-Complex and Fixed
Threshold Models. Their findings indicate that if the network is not too dense, their strategy
identifies optimal nodes within a community.
Another NP-hard problem concerns simultaneous diffusion of two contagions in a social network.
In [2], the authors address minimizing the total number of new infections under a limited
vaccination budget. Their approach combines linear programming to find an optimal solution
and heuristic methods to generalize the set cover problem. They used datasets including Jazz,
FB-Politicians, Wiki, Astroph Emails Enron, Epinions, and 0811Slashdot. Initially, 20 nodes
were infected in one of three states, with the rest susceptible (state zero).
The summary of related works of complex contagion and behavior analysis with respect to their
application is demonstrated at table 1

Table 1: Studies on various applications of complex contagion

Contagion Topic Year Reference

Weight loss 2024 [5]

Smoking behavior 2011 [11]

Smoking behavior 2024 [13]

Medical information dissemination 2023 [4]

Medical information dissemination 2022 [21]

Service adoption 2018 [7]

Information and advertising diffusion 2019 [17]

Information dissemination 2021 [12]

Information dissemination 2023 [14]

Spread of offensive behaviors 2022 [22]

Spread of offensive behaviors 2022 [20]

Information spread concurrent with
epidemic

2022 [3]

Spread of beliefs 2024 [1]

3 Proposed Method
Based on the previous studies, most existing research has primarily focused on analyzing the
influential factors during the spread of complex contagion.
One of the most critical factors influencing contagion is the degree of each node. The number
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of individuals a person is connected to can have either a direct or inverse effect on the contagion
dynamics. In this regard, the number of infected neighbors of a given node also plays a significant
role in determining whether the node becomes infected.
Another fundamental factor in contagion dynamics is the transmission probability. In simple
contagion, this probability can often be defined based on the nature of the virus and environmental
conditions. However, in complex contagion, the mechanisms underlying diffusion cannot be
easily reduced to a fixed probabilistic parameter. Instead, this type of contagion is shaped by
more intricate dynamics and is more profoundly influenced by the underlying network structure
and the relational characteristics of individuals. Therefore, to conduct simulations and analyze
how contagion unfolds across different networks, we consider various forms of transmission
probability.

3.1 Transmition Probabilities
In the simplest form of transmission, we may assume that all nodes have equal and uniform
influence. In a network with 𝑁 nodes, the probability of transmission can be defined as shown
in Equation 1:

𝑝𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑖𝑜𝑛 =
1
𝑁

(1)

In the next case, one of the most important structural features of the network-node degree-is
incorporated into the contagion model. The number of neighbors a node has can have both
positive and negative effects on transmission. Various scenarios can be investigated under this
condition. Specifically, when the transmission probability varies proportionally with the node
degree, high-degree nodes contribute more significantly to the spread. This assumption is
particularly relevant in online social networks such as X, where users with a large number of
followers tend to have greater influence and acceptability. Assuming that node 𝑖 has degree 𝑘𝑖,
the probability of transmission is computed using Equation 2, where 𝐿 denotes the total number
of links in the network. In this case, a smaller 𝐿 results in a higher transmission probability for
individual nodes, since fewer connections imply a more concentrated influence per node. For
example, in a star topology, only one node acts as the central influencer and thus should carry
a much higher transmission potential. However, due to the inherent complexity of this type of
contagion, setting the probability of transmission to 1 is neither realistic nor desirable. Therefore,
we introduce a hyperparameter denoted as bias to prevent this issue. This hyperparameter can
be adjusted depending on the specific application.
An alternative scenario involves an inverse relationship between transmission probability and
node degree. This assumption can be more realistic in human social dynamics, as individuals
with numerous relationships must invest more time and resources to influence others, potentially
decreasing their effective transmission impact. The corresponding transmission probability for
this case is defined in Equation 3.

𝑝𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑖𝑜𝑛 =
𝑘𝑖

𝐿
∗ (1 − 𝑏𝑖𝑎𝑠) (2)
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𝑝𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑖𝑜𝑛 =
1
𝑘𝑖

∗ (1 − 𝑏𝑖𝑎𝑠) (3)

Another influential factor we incorporate into transmission probability is betweenness centrality.
This network feature captures the importance of a node in bridging separate components of the
graph. For example, a node that acts as a bridge between two disconnected modules can play
a pivotal role in facilitating cross-component contagion. The value of this probability ranges
from 0 to 1. To avoid the possibility of setting the transmission probability to 1, we again apply
the bias hyperparameter. The final probability model using betweenness centrality is provided
in Equation 4:

𝑝𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑖𝑜𝑛 = 𝐶𝐵 (𝑣) ∗ (1 − 𝑏𝑖𝑎𝑠) (4)

4 Results
The results observed in this study demonstrate the heterogeneous and multifaceted impact of
various network factors on complex contagion across different network structures and application
domains. The effects of the influcnece of network properties during contagion with respect to
the formulated transition probabilities on various networks are demonstrated in this chapter.

4.1 Node Degree Effects
One of the critical factors influencing complex contagion is the node degree and the infection
degree over time. Across different network structures-and even within the same model but on
different networks-node behavior varied significantly. Except for the Erdős–Rényi (ER) random
network which is shown in figure 1, node degree alone does not significantly influence the
contagion process. Temporal variations in infection degree showed no consistent pattern in most
networks, with the exception of the ER random network and the dense small-world network
(Figure 2), which exhibited an increasing trend.
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Figure 1: Contagion using direct effect with betweenness centrality
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Figure 2: Contagion on small world network with uniform distribution

In contrast, the number of infected neighbors of each node at the time of infection displayed a
more structured pattern. These changes are summarized in Table 2.

Network Type Infection Degree Trend

Dense and Sparse Erdős–Rényi Uniform

Small-world Uniform

Barabási–Albert Decreasing (In some cases Normal
Distribution)

Price Network Increasing

Real Networks (Erdos, Enron, Pol) Decreasing

Table 2: Summary of infection degree trends at the time of infection

4.2 Network Structure Effects
Network structure plays a pivotal role in determining the dynamics of contagion. In random
networks, contagion progresses with a lower growth rate compared to scale-free networks.
Small-world networks exhibit behavior similar to random networks; however, when transmission
is directly influenced by betweenness centrality, the rate of change in node states is higher than
that of random networks.
In scale-free networks, the impact of betweenness centrality on contagion is more pronounced
than in random networks. Additionally, introducing directionality into scale-free networks
significantly slows down the contagion process.
The trend of infection degree variation is more regular in random networks compared to scale-
free networks. Moreover, in small-world networks, increasing the average degree results in
infection degree trends resembling those of random networks. Random networks do not exhibit
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(a) Erdős–Rényi random network (b) Small-world network

(c) Barabási–Albert scale-free network (d) Price scale-free network

Figure 3: Infection progression curves across different network structures

a specific pattern of infection degree variation relative to the number of nodes, regardless of time
or overall contagion progression. In contrast, scale-free networks display decreasing, increasing,
or normally distributed patterns of infection degree.
To enable a more controlled comparison of how network structure affects the contagion process,
networks based on the Erdős–Rényi, Watts–Strogatz (small-world), Barabási–Albert, and Price
models have been generated-ensuring all networks have an equal number of links. Then their
contagion dynamics have been compared.
Figure 3 shows the infection progression over time for each of the four networks and across
different contagion models. The order of contagion modes leading to full infection (i.e., when all
nodes become infected) is consistent across all networks. However, the slopes of their infection
curves differ. The transition of nodes from susceptible to infected states in the Erdős–Rényi
random network occurs with a gentler slope, likely due to the more uniform distribution of
nodes. The small-world network also exhibits a mild infection curve, but when transmission
depends on betweenness centrality, its slope is steeper than that of the random network.
In contrast, the scale-free networks-Barabási–Albert and Price-exhibit steeper infection growth
in early stages, with a slowing slope in later stages. Moreover, betweenness centrality has a more
significant effect on contagion in the Barabási–Albert network than in the others, emphasizing
the role of central nodes in scale-free topologies. Finally, the Price network does not reach full
infection and demonstrates the lowest contagion speed among the four network types.
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4.3 Hub Effects
The final factor examined in this study is the role of hubs. We investigated the influence of
hubs using three different scenarios. Results indicate that, in the Barabási–Albert network, the
presence of hubs in the initial infected population does not significantly accelerate contagion.
This influence is minimized in the dense variant of the BA network.
However, when all initially infected individuals are hubs, the contagion spreads significantly
faster compared to the case with randomly selected initial infections. In contrast, hubs were
found to have negligible effect in the Price network, and no specific pattern was observed in
contagion dynamics as a result of their presence.
In this study, hubs are defined as the top 1% of nodes with the highest degree. The simulation
procedure follows the same setup as in previous sections, and the analyzed networks include
two scale-free structures: the Barabási–Albert and Price networks. The structural properties of
these networks remain unchanged throughout the analysis.
Initially, for each simulation, the number of hubs that also belong to the group of infectious
hubs4 have been identified. Since the total number of nodes in each network is fixed at 1000,
there are exactly 10 hubs and 10 infectious hubs in each case. The number of shared nodes
between these two groups across four simulated scale-free networks is reported in Table 3.
According to the results, hubs have the strongest influence in scenarios where the contagion
depends on betweenness centrality, and the least influence when there is an inverse relationship
between infection probability and node degree. In the Price networks, hubs had no impact on
the simulated contagion process, and the infectious hubs were entirely disjoint from the network
hubs.

5 Conclusion
The results of this study highlight the broad influence of network-related factors on complex
contagion dynamics. The number of infected neighbors for each node was examined in two
ways: (1) over time during the diffusion process, and (2) at the moment each node becomes
infected.
In random networks, the number of infected neighbors over time shows an increasing trend,
whereas in scale-free networks, the pattern becomes irregular and inconsistent. When examining
the number of infected neighbors at the point of infection for each node in scale-free networks,
the values change without displaying a distinct pattern. Furthermore, in these networks, the
changes of the number of infected neighbors with respect to all infected neighbors at the moment
of infection, exhibits various behaviors-such as decreasing trends or alignment with a normal
distribution. However, when tracked over time during the contagion process, these values
fluctuate erratically, without any clear trend.
Contagion spreads more slowly in random networks, while scale-free networks facilitate faster
propagation. However, in directed scale-free networks, the diffusion process is significantly
slower, and often fails to reach full infection of all nodes.

4Infectious hubs are defined as the top 1% of nodes that have infected the most other nodes.
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Network Type Contagion Mechanism Shared Nodes

Barabási–Albert (Dense)

Uniform Distribution 8

Direct Relation with Degree 9

Inverse Relation with Degree 4

Direct Relation with Be-
tweenness Centrality

10

Barabási–Albert (Sparse)

Uniform Distribution 6

Direct Relation with Degree 8

Inverse Relation with Degree 1

Direct Relation with Be-
tweenness Centrality

10

Price Network

Uniform Distribution 0

Direct Relation with Degree 0

Inverse Relation with Degree 0

Direct Relation with Be-
tweenness Centrality

0

Table 3: Number of shared nodes between structural hubs and infectious hubs in standard
complex contagion simulations
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The influence of hubs in scale-free networks also varies. In directed networks, hubs do not
significantly contribute to the contagion process. However, in undirected scale-free networks,
when all initially infected nodes are hubs, the spread is accelerated, indicating their potential
role in boosting the speed of contagion under specific conditions.

6 Future Works
To overcome the limitations of the current study and to improve the understanding of complex
contagion, additional factors can be considered. The factors influencing contagion may be
individual-specific, depending on each person’s prior information and experiences. Further-
more, the type and strength of interactions between individuals play a crucial role, which can be
incorporated by assigning weights to network edges. To achieve a more realistic simulation of
contagion dynamics, temporal networks may be employed, capturing the evolution of connec-
tions over time. Moreover, future studies can consider multi-state contagion processes, where
individuals may not be simply classified as susceptible or infected, but may simultaneously be
exposed to competing ideas or beliefs, such as the spread of two opposing opinions vying for
dominance within the same network.
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