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ABSTRACT  ARTICLE INFO 
This study presents a personalized medicine model 
for glioblastoma multiforme (GBM) patients using 
deep learning on MRI images and clinical data. 
MRI scans from 23 patients were analyzed to 
classify them into four groups based on 
radiotherapy dosage. A CNN-based model was 
developed and tested in three scenarios: baseline 
(96% accuracy), with added Gaussian noise (72%), 
and after image denoising (94%). The results show 
that integrating Vision Transformer and Auto-
Encoder architectures can enhance radiotherapy 
planning by improving accuracy and reducing noise 
effects in medical imaging. 
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1 Introduction 

Glioblastoma multiforme (GBM) is the most prevalent and aggressive type of primary malignant 
brain tumor, accounting for approximately 60% of all adult brain tumors [1]. Its incidence is 
estimated at fewer than 10 cases per 100,000 individuals, with a notable increase reported over the 
past decade [2]. GBM carries a poor prognosis, with a median survival of only 12 to 16 months 
and a five-year survival rate of approximately 5% [3]. The disease occurs more frequently in males 
than in females and is more common among Caucasians than African Americans [4]. 

Current treatment modalities for glioblastoma multiforme (GBM) include surgical resection, 
radiotherapy, chemotherapy, and the administration of temozolomide [2]. While surgery remains 
the primary approach for tumor removal, radiotherapy and chemotherapy are commonly employed 
to manage tumors that cannot be entirely excised [5]. Globally, hundreds of thousands of patients 
receive radiotherapy each year for primary brain tumors and brain metastases originating from 
extracranial sites. This modality is essential for treating most brain tumors, and standard protocols 
combining surgery with chemoradiotherapy have significantly improved survival outcomes in 
GBM patients [6]. 

Radiotherapy techniques can be broadly categorized into whole brain radiotherapy (WBRT) and 
partial brain radiotherapy (PBRT). Stereotactic radiosurgery (SRS), in particular, employs precise 
three-dimensional imaging to deliver targeted radiation doses while minimizing exposure to 
surrounding healthy tissue. These methods serve various clinical purposes, including long-term 
tumor control, salvage therapy, and prophylactic treatment to prevent metastasis [6]. 

Magnetic resonance imaging (MRI) plays a pivotal role in diagnosing GBM by providing detailed 
brain images. However, its diagnostic accuracy can be compromised by image artifacts, often 
caused by patient movement, which introduce noise and hinder image interpretation  [7]. 
Consequently, denoising has become a critical step in medical image processing to enhance image 
quality and facilitate accurate analysis. Numerous methods have been developed to reduce noise 
while preserving key image features [8]. 

The integration of computer-aided diagnosis (CAD), machine learning (ML), and deep learning 
(DL) techniques has shown considerable promise in analyzing imaging and clinical data related to 
GBM. ML algorithms are especially effective for disease classification and prediction in high-
dimensional datasets. Moreover, generative models have emerged as powerful tools for supporting 
diagnosis and informing therapeutic decisions [9]. 

Our study contributes to the field of personalized medicine in GBM by introducing an innovative 
approach that combines advanced medical image analysis with generative and deep learning 
models. Using MRI scans and clinical data from 23 patients, we developed a robust convolutional 
neural network (CNN) capable of classifying patients based on prescribed radiotherapy doses, 
achieving an impressive accuracy of 96%. Additionally, we tackled the challenge of image noise 
through two analytical scenarios: one evaluated the impact of noise on model performance, and 
the other utilized a hybrid Vision Transformer (ViT) and autoencoder network to enhance image 
quality. Our findings demonstrate not only the model’s efficacy in optimizing radiotherapy 
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planning but also its potential in enabling personalized therapeutic strategies tailored to individual 
patient profiles, ultimately contributing to improved GBM outcomes. 

2 Background 

To provide a clearer understanding of the technical foundation supporting our medical 
application, we begin with an overview of Convolutional Neural Networks (CNNs). 

2.1 Convolutional Neural Networks (CNN) 

Convolutional neural networks (CNNs) have become a fundamental component of deep learning, 
particularly in image processing tasks. As a specialized class of deep learning algorithms, CNNs 
require significantly less pre-processing than traditional image classification techniques, 
eliminating the need for manual feature extraction, a process often prone to human bias [10]. This 
reduced dependency on prior knowledge and human intervention offers a significant advantage for 
the automated analysis of medical images. 

The superiority of CNNs over conventional neural networks in computer vision can be attributed 
to several key features: 

1. Weight Sharing: The weight-sharing mechanism inherent in CNNs reduces the number 
of trainable parameters, which not only enhances computational efficiency but also 
improves model performance. Mathematically, if W represents the weight matrix 
and x denotes the input feature map, the convolution operation can be expressed as: 

𝑦[𝑖, 𝑗] = ෍ ෍ 𝑊[𝑚, 𝑛]. 𝑥[𝑖 + 𝑚, 𝑗 + 𝑛]

ேିଵ

௡ୀ଴

ெିଵ

௠ୀ଴

 

where y[i,j] is the output feature map at position (i,j), and M and N are the dimensions of the filter. 

2. Simultaneous Learning: CNNs facilitate the concurrent learning of feature extraction 
layers and classification layers, resulting in outputs that are highly organized and closely 
tied to the extracted features. This dual learning approach enhances the model's ability to 
generalize across various datasets. 

3. Scalability: Implementing large-scale networks using CNNs is more manageable than with 
other neural network architectures, allowing for deeper networks that can capture complex 
patterns in data [11]. The stacking of multiple convolutional layers enables CNNs to 
construct deep network structures that effectively learn hierarchical representations from 
input images. 

Moreover, convolutional neural networks (CNNs) have demonstrated remarkable efficacy in 
medical imaging applications, including disease classification, localization of pathological 
regions, and image enhancement. These networks can autonomously learn features from images 
without manual intervention, thereby enhancing the quality and diversity of extracted 
representations [12]. The incorporation of pooling layers further increases robustness by 
introducing invariance to transformations such as translation and rotation, thus improving 
generalization capabilities [13]. As a result, CNNs have emerged as a transformative technology 

(1)  
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in healthcare, addressing challenges in image interpretation and diagnostic accuracy, and 
contributing significantly to the advancement of personalized medicine. 

2.2 Autoencoders 

Recent advancements in deep learning have led to its widespread application across various 
domains, demonstrating significant progress in both performance and versatility. Deep learning 
architectures can be tailored for specific tasks, with each architecture serving distinct purposes. 
For instance, autoencoders have gained prominence in unsupervised learning applications, 
particularly for dimensionality reduction of complex datasets. 

An autoencoder is a specialized type of deep neural network that operates in a self-supervised 
manner, effectively encoding input data into a lower-dimensional representation before 
reconstructing it back to its original form. Mathematically, this process can be represented as 
follows: 

 𝑋^ = 𝑓(𝑔(𝑋)) 

where X denotes the original input, g represents the encoder function that maps the input to a latent 
space, and f is the decoder function that reconstructs the input from this latent representation. The 
objective of training an autoencoder is to minimize the reconstruction error, typically quantified 
using a loss function such as mean squared error (MSE): 

𝐿𝑜𝑠𝑠 =  
1

𝑁
෍ห|𝑋௜ − 𝑋௜

^ |ห
ଶ

ே

௜ୀଵ

 

where N is the number of samples and ∣∣⋅∣∣2 denotes the L2 norm [14, 15].  

By learning efficient representations of data, autoencoders facilitate various applications, 
including data compression, denoising, and feature extraction, making them invaluable tools in the 
deep learning toolkit. Their ability to capture essential features while discarding noise underscores 
their effectiveness in preprocessing data for subsequent machine learning tasks. 

2.3 variational autoencoders 

Variational autoencoders (VAEs) represent a significant advancement over traditional 
autoencoders by introducing a probabilistic approach to latent variable representation. In 
conventional autoencoders, the encoder generates a deterministic latent representation of the input 
data, meaning that the same input will always yield the same output. Conversely, VAEs aim to 
establish a mapping between input data and a probability distribution in the latent space, 
characterized by the mean (μ) and variance (σ2) of a Gaussian distribution. This probabilistic 
framework enables VAEs to sample from the latent space, facilitating the generation of new data 
points that resemble the training dataset [16, 17] 

The fundamental distinction of VAEs lies in their ability to learn continuous distributions for latent 
variables, which is particularly advantageous for generative modeling tasks. Instead of producing 
a single fixed vector as in traditional autoencoders, the VAE encoder outputs two vectors: one 
representing the mean (μ) and another representing the standard deviation (σ). This allows VAEs 

(2)  

(3)  
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to model the distribution of latent variables based on their statistical properties rather than relying 
on a deterministic mapping. The loss function for VAEs incorporates both reconstruction loss and 
Kullback-Leibler (KL) divergence, expressed mathematically as: 

𝐿𝑜𝑠𝑠 = 𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑠 + 𝐷𝐾𝐿(𝑞(𝑧 ∣ 𝑥) ∣∣ 𝑝(𝑧)) 

where DKL measures how closely the learned distribution q(z∣x) approximates the prior 
distribution p(z), typically assumed to be a standard normal distribution [18, 19]. 

This unique approach enhances VAEs' capabilities in various applications such as feature learning, 
dimensionality reduction, noise removal, and notably anomaly detection due to their ability to 
capture complex data distributions. By leveraging their probabilistic nature, VAEs can effectively 
generate diverse outputs that maintain meaningful characteristics akin to the original data, thus 
revolutionizing generative modeling in machine learning. 

2.4 GANs 

Generative adversarial networks (GANs) are a powerful class of generative models that utilize a 
unique framework of adversarial training to produce new images by leveraging both hidden and 
visible features of the data. In a GAN, two neural networks, the generator and the discriminator, 
are trained simultaneously in a competitive setting.The generator's role is to create synthetic 
samples that closely resemble real data, effectively capturing the underlying probability 
distribution of the training dataset. Conversely, the discriminator functions as a binary classifier 
tasked with distinguishing between genuine samples and those generated by the generator. This 
adversarial relationship can be framed as a minimax game, where the generator aims to minimize 
the discriminator's ability to correctly classify generated samples, while the discriminator seeks to 
maximize its accuracy in identifying real versus fake data [20]. Mathematically, the training 
process of GANs can be expressed through the following optimization problem: 

𝑚𝑖𝑛ீ𝑚𝑎𝑥஽𝑉(𝐷, 𝐺) = 𝐸௫~௣೏ೌ೟ೌ(௫)[𝑙𝑜𝑔𝐷(𝑥)] + 𝐸௭~௣೥(௭)[1 − log ቀ1 − 𝐷൫𝐺(𝑧)൯ቁ] 

where G represents the generator, D denotes the discriminator, pdata(x) is the distribution of real 
data, and pz(z) is the distribution of input noise (e.g., Gaussian noise). The generator attempts to 
produce outputs that maximize D(G(z)), while the discriminator aims to maximize its ability to 
differentiate between real and generated samples. 

Both components of GANs are typically constructed using conventional deep neural network 
architectures, enabling them to learn complex representations from high-dimensional data. The 
iterative feedback loop inherent in this setup allows for continuous improvement of both networks; 
as the generator becomes more adept at producing realistic images, the discriminator's task 
becomes increasingly challenging [21]. This dynamic ultimately leads to a Nash equilibrium where 
the generator successfully captures the sampling distribution of real data while maintaining high 
fidelity in generated outputs. GANs have revolutionized various domains, including image 
synthesis and data augmentation, by providing a robust framework for generating high-quality 
synthetic data that can be indistinguishable from real-world samples. 

(4)  

(5)  
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2.5 VIT 

Vision Transformers (ViTs) have rapidly emerged as a prominent architecture in computer vision, 
demonstrating outstanding performance in tasks such as object recognition, image classification, 
and segmentation. Unlike conventional convolutional neural networks (CNNs), which operate on 
pixel-level data, ViTs introduce a novel paradigm by treating images as sequences of patches. This 
approach, inspired by the transformer architecture originally developed for natural language 
processing (NLP), enables ViTs to utilize self-attention mechanisms to capture complex, long-
range dependencies within visual data [22]. 

In a ViT model, an input image is divided into fixed-size patches, each of which is flattened and 
linearly embedded. These embeddings function analogously to word tokens in NLP models and 
are fed into a transformer encoder. The use of positional encodings ensures that the spatial 
relationships among patches are preserved, allowing the model to effectively interpret the overall 
structure of the image. This architecture is particularly advantageous when trained on large 
datasets, where it has been shown to achieve superior accuracy across a wide range of computer 
vision tasks [23]. 

A core strength of ViTs lies in their capacity to model global context through self-attention, in 
contrast to the localized feature extraction typical of CNNs. This global perspective not only 
enhances classification performance but also benefits object detection and segmentation by 
enabling the model to understand relationships among distant regions in an image. Consequently, 
ViTs have gained traction in domains such as medical imaging, where high-resolution modalities 
like MRI and X-ray require precise and comprehensive visual analysis [24]. 

Overall, Vision Transformers mark a significant shift in computer vision methodologies, offering 
enhanced flexibility, scalability, and interpretability. Their effectiveness across diverse 
applications positions them as a transformative tool for advancing image analysis, particularly in 
data-intensive and high-stakes fields like healthcare and autonomous systems. 

3 Methodology 

In the following subsections, the main steps of the proposed method are explained. 

Ethics statement 

The acquisition and analysis of the data within this study was approved by ‘Research ethics 
committee of Tarbiat Modares University’ and they have rewarded the research ethics certificate 
with approval ID of IR.MODARES.REC.1402.153. 
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3.1 Dataset 

This study is a retrospective analysis of medical records and archived samples, conducted 
exclusively for research purposes. No identifiable information related to individual participants 
was accessible during or after the data collection process, ensuring full compliance with privacy 
and ethical standards. The clinical data and MRI images analyzed in this research were obtained 
from a diagnostic and treatment center located in Hamedan, Iran. We focused on 23 patients 
diagnosed with glioblastoma multiforme (GBM), who presented with symptoms such as headache, 
vertigo, sensory impairment, and memory deficits. 

To obtain comprehensive clinical and therapeutic data, we meticulously reviewed the patients’ 
medical records in consultation with a specialist physician. Key details, including clinical history, 
histopathological findings, and prescribed treatment plans, were extracted and documented. MRI 
images were retrieved from the center’s Picture Archiving and Communication System (PACS), 
each with a resolution of 512 × 512 pixels. Both T1-weighted and T2-weighted scans were 
available for each patient, encompassing three anatomical views: lateral (left), superior, and 
posterior. 

In total, we compiled 1,187 MRI images, classified into four GBM-related categories based on 
treatment modalities recommended by clinical specialists. A representative set of MRI images 
across the three views is shown in Figure 1. This dataset forms a robust foundation for subsequent 
analysis and model development, aimed at enhancing diagnostic precision and optimizing 
therapeutic strategies for GBM. 

 

 

 

 

 
 

Figure 1. An example of MRI images acquired from different anatomical views 

3.2 Pre-processing 

Pre-processing is a critical step in enhancing image quality, refining image characteristics, and 
minimizing noise in medical imaging, particularly in brain MRI analysis [25]. In this study, brain 
scans were initially obtained in DICOM format from an imaging center and subsequently 
converted to JPG format to ensure compatibility with standard processing tools. As an initial 
measure, identifiable patient information, such as names, ages, and scan details, was manually 
removed from the image corners using Adobe Photoshop to protect privacy. 

Due to the high volume of images, their resolution was reduced from 512×512 pixels to 128×128 
pixels, which significantly accelerated the processing time and computational efficiency. 
Subsequently, pixel intensity values in the range [0, 255] were normalized to a [0, 1] scale. This 
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normalization is essential for deep learning applications, as it improves model convergence, 
enhances numerical stability, and ensures consistency across datasets. 

In addition to these steps, several advanced pre-processing techniques can be employed to further 
improve image clarity and diagnostic utility. Techniques such as Gaussian smoothing, bilateral 
filtering, and K-means clustering are effective in reducing image noise while preserving critical 
anatomical details [26]. Furthermore, methods like gamma correction and window level 
adjustment can enhance contrast and highlight tumor regions [8]. Collectively, these pre-
processing strategies contribute to producing high-quality images that facilitate more accurate 
diagnosis, segmentation, and treatment planning in clinical practice. 

3.3 Define problem 

In this study, we aimed to classify patients with glioblastoma multiforme (GBM) based on their 
prescribed radiotherapy dosages. The dosage range for each patient was first determined and then 
categorized into four distinct classes: Class 1 for doses less than 5500 cGy, Class 2 for doses 
between 5501 and 6000 cGy, Class 3 for doses between 6001 and 6500 cGy, and Class 4 for doses 
exceeding 6500 cGy. To perform this classification, we developed a Convolutional Neural 
Network (CNN) model specifically designed to distinguish patients among these dosage groups. 

To improve the model’s robustness to image noise, which is a common issue in medical imaging, 
we defined and analyzed two separate scenarios. In Scenario 1, we constructed a classification 
model and evaluated how different levels of noise influenced its accuracy. This step was essential 
due to the inherent variability and artifacts often found in MRI data. 

Scenario 2 incorporated a hybrid architecture that combined a Vision Transformer (ViT) with an 
autoencoder to reduce the impact of noise and improve both image quality and classification 
accuracy. This design allowed us to explore the benefits of integrating advanced neural network 
components into the classification process. 

Accurate prediction of radiotherapy dosages plays a vital role in determining treatment 
effectiveness and improving patient survival. Previous studies have shown the potential of deep 
learning models, particularly CNNs, in predicting dose distributions with high accuracy (Porkodi 
et al., 2023). Building on this foundation, our research introduces new strategies to refine the 
classification process and enhance diagnostic precision in GBM treatment planning. 

3.3.1 Scenario 1 

In this scenario, we developed a Convolutional Neural Network (CNN) model that utilized two 
types of inputs: tabular data and image data. To effectively extract features from the MRI images, 
we implemented two convolutional layers with 32 and 64 filters, respectively, each using a kernel 
size of 3x3. Following these convolutional layers, a max pooling layer was applied to reduce the 
dimensionality of the feature maps, thereby improving computational efficiency and helping to 
mitigate overfitting. The output from the convolutional layers was then flattened using a Flatten 
layer to prepare it for integration with the tabular data. 

For the tabular data, two Dense layers with 64 and 32 neurons were designed to effectively process 
the structured clinical information. The outputs from both the Flatten layer (derived from image 
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data) and the Dense layers (from tabular data) were merged and fed into a subsequent Dense layer 
consisting of 128 neurons. To further prevent overfitting, a dropout layer with a dropout rate of 
0.5 was incorporated, randomly deactivating half of the neurons during training to promote 
generalization. 

The final output layer contained 4 neurons, corresponding to the four predefined dosage classes. 
For training, 80% of the dataset was allocated to training and the remaining 20% to testing, 
ensuring a robust evaluation of model performance. The CNN model was trained with a batch size 
of 32 over 50 epochs, optimizing the learning process. 

After training, noise was introduced into the MRI images to evaluate the model’s robustness and 
its ability to accurately classify noisy inputs. The detailed architecture and hyperparameters of the 
CNN model are summarized in Table 1 (a) and (b), respectively. 

Table 1. (a) The architecture of our designed and developed CNN model, and (b) its hyper-parameters 

(a) 

Layer Type Configuration 

Convolution Layer 1 32 filters, kernel size 3x3 

Convolution Layer 2 64 filters, kernel size 3x3 

Max Pooling Layer Pool size 2x2 

Flatten Layer - 

Dense Layer 1 64 neurons 

Dense Layer 2 32 neurons 

Merged Layer - 

Dense Layer 3 128 neurons 

Dropout Layer Dropout rate = 0.5 

Output Layer 4 neurons (for classification) 

(b) 

Parameter Configuration 

Feature Extraction CNN 

Optimizer Adam 

Activation Functions ReLU (hidden layers) – Softmax (output layer) 

Loss Function Categorical Cross Entropy 

Metric Accuracy 
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This structured approach allowed us to evaluate the impact of image noise on classification 
accuracy while leveraging both image and tabular data effectively in our CNN model. 

3.3.2 Scenario 2 

In this scenario, we implemented a Vision Transformer (ViT) combined with an Auto Encoder 
model to enhance feature extraction and reduce noise in the classification task. The architecture 
began with the ViT-b16 model, which was used to extract features from all input images. The 
output from the ViT-b16 model was then passed through a Flatten layer to prepare the data for 
subsequent processing.  

After flattening, the output was fed into a Dense layer containing 64 neurons. The encoder part of 
the model included a convolutional layer with 64 filters and a kernel size of 3x3. The decoder 
consisted of a convolutional layer with 32 filters and a kernel size of 3x3, followed by another 
convolutional layer with 3 filters of the same size. To ensure the output dimensions matched those 
of the input, an Upsampling layer with a size of 2x2 was applied at the final stage of the Auto 
Encoder. 

The activation function for the decoder's output layer was sigmoid, while ReLU was applied in 
intermediate layers. The ViT-Auto Encoder model was designed to reduce noise in MRI images 
before classification, trained with a batch size of 16 over 50 epochs. The detailed configuration of 
the ViT-b16 model is summarized in Table 2. 

Table 2. (a) The architecture of VIT-b16 model, and (b) its hyper-parameters 

(a) 
Layer Type Configuration 
Feature Extraction VIT-b16 
Flatten Layer - 
Dense Layer 64 neurons 
Encoder Convolution Layer 64 filters, kernel size 3x3 
Decoder Convolution Layer 1 32 filters, kernel size 3x3 
Decoder Convolution Layer 2 3 filters, kernel size 3x3 
Upsampling Layer Size 2x2 
Activation Functions ReLU (hidden layers) – Sigmoid (output layer) 
Optimizer Adam 
Loss Function Binary Cross Entropy 

(b) 
Parameter Configuration 
Feature Extraction VIT-b16 
Optimizer Adam 
Activation Functions ReLU (hidden layers) – Sigmoid (output layer) 
Loss Function Binary Cross Entropy 
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After training, the output of the ViT-Auto Encoder model was fed into the pre-trained CNN model 
from Scenario 1. This integration aimed to effectively classify noisy data by leveraging the 
enhanced feature representations obtained through the combined architecture. By utilizing both 
ViT and Auto Encoder methodologies, we sought to improve classification accuracy and 
robustness against noise in medical imaging data. 

4 Result 

This section presents the outcomes of our experiments evaluating the performance of different 
neural network models for classifying glioblastoma multiforme patients based on their MRI 
images and prescribed radiotherapy dosages. 

4.1 Scenario 1 

The results of the model training are illustrated in Figures 2 and 3, showing the accuracy and loss 
function per epoch over 50 epochs. The model achieved an impressive accuracy of 96% when 
evaluated on noise-free images. However, the introduction of noise to the MRI images caused the 
accuracy to decrease to 72%, highlighting the significant impact of noise on model performance. 
These findings emphasize the critical importance of addressing image quality in medical imaging 
applications. 

Detailed results of the model’s performance, including accuracy and loss metrics, are presented in 
Table 3, alongside visual representations in Figures 4 and 5. This comprehensive analysis offers 
valuable insights into the model’s learning process and its sensitivity to noise in the input data. 

 

Table 3.Performance measures of CNN with denoised images (left) and noisy images (right) in scenario 1 

 f1-score recall precision  f1-score recall precision 

Class 1 0.93 0.97 0.95 Class 1 0.60 0.17 0.29 

Class 2 0.98 0.95 0.96 Class 2 0.47 0.80 0.64 

Class 3 0.94 0.96 0.95 Class 3 0.60 0.70 0.82 

Class 4 0.97 0.95 0.96 Class 4 0.97 0.99 0.98 

Accuracy 0.96 Accuracy 0.72 

macro avg 0.96 0.96 0.96 macro avg 0.86 0.72 0.68 

weighted avg 0.96 0.96 0.96 weighted avg 0.86 0.72 0.69 
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Figure 2. the diagram of accuracy per epoch for our designed CNN in Scenario 1 

 

Figure 3. the diagram of loss function per epoch for our designed CNN in Scenario 1 

 

Figure 4. ROC Curve of our designed CNN in scenario 1 
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Figure 5. Confusion Matrix of our designed CNN in scenario 1 

 

4.2 Scenario 2 

By incorporating noise correction capabilities into the model, it achieved an accuracy of 94%, 
approaching the performance observed in Scenario 1. Table 4 presents the performance metrics of 
our designed ViT-based neural network in Scenario 2. 

Table 4. Performance measures of our designed VIT-based Neural network in scenario 2 

 f1-score recall precision 

Class 1 0.96 0.94 0.95 

Class 2 0.97 0.95 0.96 

Class 3 0.87 0.96 0.92 

Class 4 0.99 0.94 0.95 

Accuracy 0.94 

macro avg 0.94 0.94 0.94 

weighted avg 0.94 0.94 0.94 

 

Also, the loss per epoch for MRI images before and after noise correction by the autoencoder is 
illustrated in Figure 6. Detailed model results for Scenario 2 are presented in Figures 7 and 8. 
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Figure 6. The diagram of loss function per epoch for our designed VIT-based Neural network in scenario 2 

 

Figure 7. ROC Curve for our designed VIT-based Neural network in scenario 2 

  

Figure 8. Confusion Matrix for our designed VIT-based Neural network in scenario 2 
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5 Conclusion 

In this research, we successfully predicted the optimal radiotherapy dosage for patients with 
glioblastoma multiforme (GBM) through the analysis of MRI images using various neural network 
models. In Scenario 1, we developed a Convolutional Neural Network (CNN) that effectively 
determined the optimal radiotherapy dose based on patients’ MRI images. The model achieved an 
accuracy of 96% when evaluated on noise-free images. However, when artificial noise was 
introduced to the MRI images using the OpenCV library, the model’s accuracy decreased to 72%. 
To mitigate this degradation, we employed an Autoencoder for noise reduction, which improved 
the accuracy to 94% when the denoised images were classified by the original CNN model. 

These results indicate that our model can serve as a valuable diagnostic aid for healthcare 
professionals treating GBM patients, even when handling noisy MRI data. This capability 
underscores the critical importance of robust image processing techniques in enhancing diagnostic 
accuracy and treatment planning. 

For future work, we propose exploring additional brain imaging modalities to further refine dosage 
predictions. Moreover, extending this model to predict optimal radiotherapy doses for other types 
of brain tumors could significantly advance personalized treatment strategies in oncology. The 
findings from this study contribute to the growing body of evidence supporting the integration of 
deep learning models in medical imaging and radiotherapy planning, consistent with recent 
literature on dose prediction models (e.g., 3D U-Nets), which have demonstrated promising results 
in similar applications. 
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