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Air pressure is an important criterion for weather fore-
casting, and is also widely used in some branches of sci-
ence. In this paper, we propose the ARIMA model for
modeling air pressure at the Isfahan Airport meteoro-
logical station. In the next step, the model assumptions
will be examined. Finally, we will show how well the
model describes the data. For convenience, all R code
used in the paper is included at the end of the paper in
the Appendix section.
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1 Introduction

Weather forecasts are made by collecting statistical data about the current conditions of
a given location using meteorology to predict how the weather will change in a given loca-
tion. Weather forecasts have many applications in protecting people’s lives and property,
agriculture, and economics. In numerical weather forecasting, the state of the fluid must
be sampled at a given time, and the future state of the fluid must be estimated using fluid
dynamics and thermodynamic equations.
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Air pressure is the force exerted per unit area by the weight of the air above the surface on
the Earth’s surface. Since atmospheric pressure on Earth is highly variable, these changes
are important in the study of weather and climate. Air pressure has a significant impact
on weather patterns.
Changes in air pressure indicate approaching weather systems, and understanding these
changes helps meteorologists predict future conditions. High-pressure systems are asso-
ciated with clear, calm, and still air, while low-pressure systems tend to produce cloudy,
windy, rainy, or snowy conditions. Because the flow of air from high-pressure areas to
low-pressure areas creates wind, and the accumulation of air in low-pressure systems can
lead to cloud formation and precipitation. Researchers use mathematical equations and
statistical models to describe how pressure, temperature, density, and volume are related,
and these equations are called the ideal gas laws.
Torricelli, following Galilei’s research, first recognized that decreasing air pressure led to
increasing clouds and precipitation, and increasing air pressure led to cloud dissolution
and more sunlight. Shortly thereafter, the french physicist Descartes developed the paper
scale so that longer series of observations could be recorded numerically.
Air pressure is an important measure for weather forecasting, and is also used in air
transport, agriculture, NRM (Natural Resource Management), astronomical observation,
geophysics, geodesy, etc.
Factors such as seasonality, economic fluctuations, unexpected events, and internal changes
also affect the forecast. Classic time series models such as SES (Simple Exponential
Smoothing), ARIMA (Autoregressive Integrated Moving Average), SARIMA (Seasonal
ARIMA) and ARIMAX (ARIMA with explanatory variables) perform well for short-
term forecasts, but are not recommended for long-term forecasts. Machine learning and
deep learning-based algorithms are emerging approaches to predicting time series models.
These approaches are based on artificial intelligence and move data analysis processes
towards data-driven rather than model-driven. The accuracy of hourly air temperature
forecasting is poor due to random variations and nonlinear relationships between temper-
ature and other meteorological elements, such as air pressure and wind speed. To increase
the accuracy, deep learning methods such as Support Vector Machines (SVM), Random
Forests (RF), ANN (Artificial Neural Network), CNN (Convolutional Neural Networks),
RNN (Recurrent Neural Networks), LSTM (Long Short-Term Memory) and BiLSTMs
(Bidirectional LSTMs) are used. For example, suppose x = (x1, . . . , xT ) represents a
sequence of length T , and ht represents RNN memory at time step t, and RNN model
updates its memory information using ht = σ(Wxxt +Whht−1 + bt) where σ is a nonlin-
ear function (e.g., logistic sigmoid, a hyperbolic tangent function, ...), Wx and Wh are
weight matrices that are used in deep learning model, and bt is a constant bias. In LSTM
models, the output of forget gate, i.e., ft is a value between 0 and 1, where 0 means com-
pletely removing the learned value and 1 means keeping the entire value, and is expressed
as follows ft = σ(Wfh [ht−1],Wfx [xt], bf ) where bf is a constant bias value. Input gate
consists of two layers: a sigmoid layer, i.e., it = σ(Wih [ht−1],Wix [xt], bi) (which decides
what values should be updated) and a “tanh” layer, i.e., c̃t = tanh(Wch [ht−1],Wcx [xt], bc)
(which creates a vector of new candidate values that will be added to the LSTM memory).
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The combination of these two layers is a suitable update for the LSTM memory, which
is calculated as ct = ft ∗ ct−1 + it ∗ c̃t. We also use the following formulas for the output
gate part:

ot = σ(Woh [ht−1],Wox [xt], bo),

ht = ot ∗ tanh(ct)

where ot is the output value, and ht ∈ [−1.1].
In [12], ARIMA, SARIMA, and LSTM models are used to predict profits for a time series
model. The CNN method reduces the dimensionality of time series data, and the LSTM
method records the long-term memory of temperature time series data. In [7], hourly
air temperature prediction is performed based on the CNN-LSTM fusion method. In [8],
temperature time series forecasting for a weather station in Ankara, Türkiye from January
2010 to March 2023 was performed using ARIMA and LSTM seasonal models. In [1], the
models fitted with ARIMA and LSTM are compared in Mulkia Gulf real estate. In [2],
time series modeling and forecasting of meteorological parameters on the West African
coast are analyzed. In [9], using ARIMA time series models, forecasting air quality and
environmental data in the Salatiga region. In [10], using regression and ARIMA time
series models, the prediction of air quality index in Chennai has been analyzed.
In this paper, air pressure at the Isfahan Airport meteorological station modeled with
the ARIMA model. Observations were collected from 1402/1/1, 00:00:00 to 1402/12/29,
23:00 (from March 21, 2023 to March 19, 2024) at the Isfahan Airport meteorological
station. Statistical comparisons and statistical fit were calculated for prediction purposes.
The forecast was also reported in the next 24 hours. All model assumptions were controlled
and the model follows its assumptions.

2 Autoregressive Integrated Moving Average

Consider a situation where we observe a random variable at different times and want to
predict it in the future. For this purpose, we use a time series model like {Xt : t ≥ 0}.
Suppose Zt ∼ N(0, σ2) is the random component of the data. A random process {Zt},
which is a sequence of uncorrelated variables, is also called white noise [4].
Let B is a backshift operator defined as BXt = Xt−1. We define the first-order differencing
operator as follows ∇Xt = Xt−Xt−1 = (1−B)Xt. Also differences of order d are defined
as ∇d = (1−B)d.
One of the time series models is the ARIMA model. A stochastic processes {Xt : t ≥ 0}
is said to be ARIMA(p, d, q), if ∇dXt = (1−B)dXt is ARMA(p, q) model as

Xt = δ +
∑p

i=1
ϕiXt−i +

∑q

j=1
θjZt−j + Zt

where δ, ϕi’s and θj’s are model parameters [3].
For ARIMA model, ACF (Autocorrelation Function) and PACF (Partial Autocorrelation
Function) don’t have closed forms, but we can graph these functions after differentiating
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them d times. After d times of differentiation, the model is converted to ARMA(p, q) and
the ACF and PACF of the model can be plotted. After fitting the model, the ACF and
PACF of the data can be compared with the theoretical ACF and PACF of the model [4].

3 Time series modeling with air pressure data

The data are given in Table 1 (see Appendix 1).

id DATE Pressure (m bar)

1 1402/01/01 00:00:00 1009
2 1402/01/01 01:00:00 1008
3 1402/01/01 02:00:00 1008
4 1402/01/01 03:00:00 1007
5 1402/01/01 04:00:00 1008
...

...
...

8751 1402/12/29 23:00:00 1015

Table 1: Air pressure data

Our goal is to model this data based on the ARIMA time series model and then forecast
it. For this purpose, we need to answer the following two questions:

1. Is the variance of the data constant?

2. Is there a trend in the data?

We answer the first question about the stability of variance with the Box-Cox transfor-
mation [4]. The Box-Cox transformation is one of the most popular transformations for
variance stabilization. The Box-Cox transformation is given as follows:

X(λ) =

{
Xλ−1

λ
, if λ ̸= 0

logX, if λ = 0

We know that the variance is constant (λ = 1.24 and rounded to λ = 1, see Appendix
2), and answer the second question with the ADF (Augmented Dickey-Fuller) [5] and
Phillips–Perron tests [11]. The ADF test is designed to test the existence of a unit root in
a time series model under the null hypothesis. This statistic is a negative quantity, and the
more negative it is, the stronger the rejection of the unit root hypothesis. We reject the
null hypothesis, meaning that the mean of the data is constant [(ADF statistic = −4.3692,
order lag = 20, P-value < 0.01), (Phillips-Perron Unit Root Test: Dickey-Fuller Z(alpha)
= −139.98, Truncation lag parameter = 12, P-value < 0.01)] (see Appendix 2 for more
details). The Dickey–Fuller test involves fitting the regression model with ordinary least
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squares (OLS), say yt = α + ρyt−1 + δt + ut, but the Phillips-Perron test involves fitting
the regression yt = α+ ρyt−1 + εt.
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Figure 1: Time series graph of data before and after differencing
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Figure 2: ACF and PACF of data before and after differencing
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In Figure 1, (Figure 2), we see the time series graph (ACF and PACF of data) before
and after differencing (see Appendices 3 and 4) and these two figures show that after one
order of differentiation, the ARMA model is a good fit to the differentiated time series
data, and therefore the original time series data has ARIMA(p, 1, q) model.
To select a suitable model, AIC (Akaike Information Criterion) is used to evaluate its
performance and is equal to AIC(k) = 2k − 2 ln(L̂) where k represents the number of
model parameters and L̂ is the maximized value of the likelihood function of the model [3].
In the R software, we can find the appropriate model based on AIC, i.e., ARIMA(5, 1, 1).
A summary of the specifications of this model is presented in Table 2 by the R software
in Appendix 5.

Ar1 Ar2 Ar3 Ar4 Ar5 Ma1

Coef 0.6137 0.1875 -0.0494 -0.1289 -0.1383 -0.4884
S.E. 0.0285 0.0133 0.0148 0.0124 0.0131 0.0275
Z-value 21.5311 14.0708 -3.3319 -10.3589 -10.5908 -17.7474
P-value 0.0000 0.0000 0.0009 0.0000 0.0000 0.0000
CI-lower 0.5579 ‌0.1614 -0.0785 -0.1533 -0.1639 -0.5424
CI-upper ‌0.6696 0.2136 -0.0204 -0.1045 -0.1127 -0.4345

Table 2: Summary of the specifications of ARIMA(5, 1, 1) model

‌ In Table 2, point estimates and interval estimates (95%) of the coefficients and their
standard errors, and the significance of the coefficients are also reported. To achieve
this, we use the Wald test (Z-value) and the test statistic for the Wald test is equal to
Coef
S.E

∼ AN(0, 1). The P-values in Table 2 for the Wald test indicate that all coefficients
in the model are significant separatly.
In time series analysis, the Wald test can be used to test the significance of model coeffi-
cients. This test is particularly useful in regression models such as ARIMA or dynamic
regression models. The purpose of this test is to check whether one or more coefficients
in a time series model are significant or not. The hypotheses are as follows:

H0 : The coefficient (or set of coefficients) is equal to zero (is insignificant)

H1 : The coefficient (or coefficients) is opposite to zero (is significant)

and the test statistic is as follows W = β̂−β0

SE(β̂)
∼ N(0, 1) where β̂ is the coefficient estimate,

SE(β̂) is the standard deviation of the coefficient and k is the number of constraints
(coefficients under test) [13]. On the other hand, for a set of parameters we can use
multivariate testing. We know that MLE tends towards normal distribution. The variance
of the MLE is calculated based on Fisher’s information. In the R software we can see the
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covariance matrix of the MLE estimators as follows (see Appendix 5):

AR1 AR2 AR3 AR4 AR5 MA1

AR1 8× 10−4 −2× 10−4 −2× 10−4 0.0000 2× 10−4 −7× 10−4

AR2 −2× 10−4 2× 10−4 0.0000 0.0000 0.0000 1× 10−4

AR3 −2× 10−4 0.0000 2× 10−4 −1× 10−4 −1× 10−4 2× 10−4

AR4 0.0000 0.0000 −1× 10−4 2× 10−4 −1× 10−4 0.0000
AR5 2× 10−4 0.0000 −1× 10−4 −1× 10−4 2× 10−4 −2× 10−4

MA1 −7× 10−4 1× 10−4 2× 10−4 0.0000 −2× 10−4 8× 10−4

Therefore, we can test the following hypotheses:

H0 : AR1 = AR2 = AR3 = AR4 = AR5 = MA1 = 0

H1 : there is a parameter that is not equal to 0

This test is similar to the F-test in regression analysis. To test this hypothesis, we use the

Wald test ([13]) as follows n
(
(β̂−β)T In(β̂)(β̂−β)

)
∼ χ2

(p) where β is set of parameters,

β̂ is a MLE for β, In(β) is a Fisher information matrix and p is the number of parameters.

Here, under the null hypothesis, β = 0, and so under the H0, we have nβ̂
T
In(β̂)β̂ ∼ χ2

(6).

Therefore, according to the codes provided in Appendix 5), the results of these tests are:
(test statistic is 4738.5, df = 6, P-value < 0.0000).

σ2 0.3612 M.E. 0.0008
log likelihood -7955.86 RMSE 0.6007

AIC 15925.73 MAE 0.4643
BIC 15975.26 MPE 0.00006
ACF1 -0.0051 MAPE 0.04558

Table 3: Checking the accuracy of the ARIMA(5, 1, 1) model

According to the model coefficient estimates in Table 2, the ARIMA(5, 1, 1) time series
model is as follows:

∇Xt = 0.6137∇Xt−1 + 0.1875∇Xt−2 − 0.0494∇Xt−3 − 0.1289∇Xt−4

− 0.1383∇Xt−5 − 0.4884Zt−1 + Zt

equivalently

Xt = 1.6137Xt−1 − 0.4262Xt−2 − 0.2369Xt−3 − 0.0795Xt−4

− 0.0095Xt−5 + 0.1384Xt−6 − 0.4881Zt−1 + Zt.
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Figure 3: Checking model assumptions

The accuracy of the ARIMA(5, 1, 1) model was calculated in Table 3 and the details
of the codes are given in Appendix 5. In the Table 3, σ2, i.e., the estimated variance
of the residuals, M.E. (Mean Error), RMSE (Root Mean Square Error), MAE (Mean
Absolute Error), BIC (Bayesian Information Criterion), MPE (Mean Percentage Error),
MAPE (Mean Absolute Percentage Error) as well as the ACF1, i.e., the autocorrelation
of residuals at lag 1 are given. The formulas for these statistics are:

M.E. =
1

n

∑n

i=1
(xi − x̂i);

RMSE =

√
1

n

∑n

i=1
(xi − x̂i)2;

MAE =
1

n

∑n

i=1
|xi − x̂i|;

MPE =
1

n

∑n

i=1

xi − x̂i

xi

× 100;

MAPE =
1

n

∑n

i=1

∣∣∣∣xi − x̂i

xi

∣∣∣∣× 100



67 M. Shams and M. A. Mirzaie/ JAC 57 issue 1, August 2025, PP. 59-79

where xi is the observation and x̂i is the value fitted by the model. From these measures,
we see that the residuals are uncorrelated at the first lag (ACF1 ≃ 0), the model is good
for prediction (MPE and MAPE ≃ 0) and the variance of the residuals, i.e., σ2 is very
small.
From Figure 3 (see Appendix 6), we can see the model obeying its assumptions, that is
the residuals are uncorrelated (ACF of residuals), the residuals are normally distributed,
i.e., N(0, 0.3612) (histogram and Q-Q plot), variance is stable, the linearity assumption
holds (scatter plot of ressiduals and fitted value).
In Figure 4 (see Appendix 7), a comparison is made between the ACF and PACF of the
data after differencing with the theoretical ACF and PACF in the ARMA(5, 1) model.
In fact, we can see how close the fitted model and the observed data are to each other.
In Table 4, the prediction with model and standard errors in the next 24 hours is re-
ported. We can also calculate the confidence interval for the prediction based on the
Wald confidence interval [13] (see Appendix 8).
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hours 1 2 3 4 5 6
prediction 1014.667 1014.453 1014.397 1014.339 1014.347 1014.418

S.E 0.6010 0.9047 1.2313 1.5353 1.7878 1.9710

hours 7 8 9 10 11 12
prediction 1014.502 1014.581 1014.650 1014.692 1014.706 1014.698

S.E 2.1061 2.2010 2.2695 2.3231 2.3709 2.4188

hours 13 14 15 16 17 18
prediction 1014.673 1014.641 1014.609 1014.584 1014.569 1014.564

S.E 2.4711 2.5303 2.5965 2.6682 2.7429 2.8175

hours 19 20 21 22 23 24
prediction 1014.568 1014.577 1014.590 1014.602 1014.611 1014.617

S.E 2.8895 2.9575 3.0209 3.0801 3.1359 3.1893

Table 4: Prediction and standard error of forecasts in the next 24 hours

In Figure 5 (see Appendix 9), it can be seen how close the fitted value of model is to the
observed data.
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Figure 5: Time series plot of air pressure data and fitted value with ARIMA(5, 1, 1)

For the final assumptions on the proposed model, the stationarity of the AR part and the
invertibility of the MA part are checked. In Figure 6 (see Appendix 9) the inverse root
of AR and the inverse root of MA are plotted. All the roots are located in a circle with
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a unit radius, which means that the AR part is stationary and the MA part is invertible.
This result tells us that the prediction with this model is good. For more advantages of
this result, see [3].
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Figure 6: Inverse roots of AR and MA parts

4 Conclusions and Future Directions

Air pressure is an important measure for predicting rainfall and has many applications in
various branches of science. In this paper, we discussed the applications of air pressure.
One of our motivations for investigating air pressure is climate change. Isfahan is located
near a meteorological drought. Over-extraction of groundwater is one of the reasons
for the subsidence phenomenon. With air pressure, we can understand the duration of
the subsidence phenomenon. The ARIMA is one of the traditional time series models
that can model the behavior of such phenomena. We introduced some ARIMA symbols.
Before modeling the data, the stationarity of the variance was checked with Box-Cox
transformation and the stationarity of the mean was checked with ADF and Phillips-
Perron tests. The power of Box-Cox transformation suggests 1, so we know that the data
is stationary in variance. In the ADF and Phillips-Perron tests, the null hypothesis was
rejected, meaning that there is no trend in the data and the mean. Due to the presence
of noise in the data, we decided to derive from the observations. On the other hand,
the software R suggests ARIMA(5,1,1) for this data. We estimated the parameters using
the maximum likelihood method. For a set of parameters, we tested the Wald test for a
set of parameters and observed that none of the parameters are equal to 0. Finally, we
examined the assumptions of the ARIMA model. We found that the model follows its
assumptions well. In fact, the proposed model is stationary and invertible.
One of the advantages of LSTM to ARIMA is that it performs better in long-term fore-
casting than ARIMA. But model ARIMA works better for short-term forecasts. We have
some motivations to choose ARIMA model over modern models, for example LSTM. The
advantages of ARIMA model over LSTM are as follows:

1- LSTM model is a black box model. There is no explanation for the prediction or
parameter of black box model. Also, ARIMA model has simple explanation.
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2- ARIMA model performs better on linear data than LSTM. From Figure 1, we can
observe the linearity in the data trend. On the other hand, from Figure 3, we can
see that the linearity assumption of the model is valid, hence we can say that linear
model can obtain more information from the data.

3- In this paper, we used ARIMA model to show how the traditional model matches
and competes with the new model.

4- The estimation of ARIMA model parameters is very simple and has no hyperparam-
eters and there are only hyperparameters (p, d, q) in the model. The computations
are very simple and few. In deep model, there are many hyperparameters and the
initial values affect the result.

5- The noise range in the data is low. In such conditions, ARIMA model performs
better.

6- For short-term forecasting, ARIMA model is a suitable model and for long-term
forecasting, LSTM model is recommended.

7- The results of deep model are completely dependent on the architecture of the model
network and the risk of overfitting is high in such models.

8- Last but not least, as Einstein famously advised, ”A model should be as simple as
possible, but not simpler than that [6]”.

Appendices

This section provides suggested R codes and outputs. For each Appendix code, explana-
tions are listed as comments.

Appendix 1

We imported the data, converted it to a time series in R, and printed observations 1 to
5 and the last observation 8751 as follows:

> ### Time series data for one year

> air_pre = ts(presure, start = c(1402, 1, 1), frequency = 24*365)

> ### data view

> air_pre[1:5] ; air_pre[8751]

[1] 1009 1008 1008 1007 1008

[1] 1015
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Appendix 2

Before modeling with ARIMA, we need to check the stationarity of variance and sta-
tionarity of mean. For stationarity of variance, Box-Cox transformation is used, and for
stationarity of mean, ADF test and Phillips-Perron tests are used.

> ########## stationarity tests

> ### stationarity of variance with Box-Cox transform

> forecast::BoxCox.lambda(air_pre)

[1] 1

> ########## stationarity of mean

> ### ADF test

> tseries::adf.test(air_pre)

Augmented Dickey-Fuller Test

data: air_pre

Dickey-Fuller = -4.3692, Lag order = 20, p-value = 0.01

alternative hypothesis: stationary

Warning message:

In tseries::adf.test(air_pre) : p-value smaller than printed p-value

> ### Phillips-Perron test

> tseries::pp.test(air_pre)

Phillips-Perron Unit Root Test

data: air_pre

Dickey-Fuller Z(alpha) = -139.98, Truncation lag parameter = 12,

p-value = 0.01

alternative hypothesis: stationary

Warning message:

In tseries::pp.test(air_pre) : p-value smaller than printed p-value

4.1 Appendix 3

A time series graph of air pressure was drawn before and after differentiation.

> ### ts plot

> ### plot 1

> par(mfrow = c(2, 1))

> plot.ts(air_pre, xlab = ’’, ylab = ’’, main = ’’)

> mtext(text = ’Time’, side = 1, line = 1.5)
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> mtext(text = ’pressure(m bar)’, side = 2, line = 1.5)

> mtext(text = ’Time Series graph of air pressure data from 1402/1/1

to 1402/12/29 before differencing’, side = 3, line = 0.25, font = 2)

> ### plot 2

> plot.ts(diff(air_pre), xlab = ’’, ylab = ’’, main = ’’)

> mtext(text = ’Time’, side = 1, line = 2)

> mtext(text = ’differencing’, side = 2, line = 2)

> mtext(text = ’Time Series graph of air pressure data from 1402/1/1

to 1402/12/29 after differencing’, side = 3, line = 0.25, font = 2)

Appendix 4

The ACF and PACF graph of air pressure was drawn before and after differentiation.

> ### acf pacf

> ### plot 1

> par(mfrow = c(2, 2))

> acf(air_pre, main = ’’, xlab = ’’, ylab = ’’)

> mtext(text = ’Lag’, side = 1, line = 2)

> mtext(text = ’ACF’, side = 2, line = 1.5)

> mtext(text = ’ACF of data before differencing’,

side = 3, line = 0.25, font = 2)

> ### plot 2

> acf(diff(air_pre), main = ’’, xlab = ’’, ylab = ’’)

> mtext(text = ’Lag’, side = 1, line = 2)

> mtext(text = ’ACF’, side = 2, line = 2)

> mtext(text = ’ACF of data after differencing’,

side = 3, line = 0.25, font = 2)

> ### plot 3

> pacf(air_pre, main = ’’, xlab = ’’, ylab = ’’)

> mtext(text = ’Lag’, side = 1, line = 2)

> mtext(text = ’PACF’, side = 2, line = 1.5)

> mtext(text = ’PACF of data before differencing’,

side = 3, line = 0.25, font = 2)

> ### plot 4

> pacf(diff(air_pre), main = ’’, xlab = ’’, ylab = ’’)

> mtext(text = ’Lag’, side = 1, line = 2)

> mtext(text = ’PACF’, side = 2, line = 2)

> mtext(text = ’PACF of data after differencing’,

side = 3, line = 0.25, font = 2)
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Appendix 5

The parameters of ARIMA model were estimated. Based on AIC, the R software selected
the ARIMA(5,1,1) and the accuracy of the model was reported. In the second step, two
tests were considered. In the first step, the set of parameters was tested. This test is
similar to the F-test in regression. In the second step, the confidence interval and Wald
test were reported.

> ### Time series model

> tmodel = forecast::auto.arima(air_pre, method = ’ML’)

> summary(tmodel)

Series: air_pre

ARIMA(5,1,1)

Coefficients:

ar1 ar2 ar3 ar4 ar5 ma1

0.6137 0.1875 -0.0494 -0.1289 -0.1383 -0.4884

s.e. 0.0285 0.0133 0.0148 0.0124 0.0131 0.0275

sigma^2 = 0.3612: log likelihood = -7955.86

AIC=15925.73 AICc=15925.74 BIC=15975.26

Training set error measures:

ME RMSE MAE MPE MAPE

Training set 0.0007634926 0.6007197 0.4642622 5.795284e-05 0.04558304

MASE ACF1

Training set NaN -0.005126946

> ### Confidence interval and testing hypothesis

> ### test for the set of parameters

> round(vcov(tmodel), 4)

ar1 ar2 ar3 ar4 ar5 ma1

ar1 8e-04 -2e-04 -2e-04 0e+00 2e-04 -7e-04

ar2 -2e-04 2e-04 0e+00 0e+00 0e+00 1e-04

ar3 -2e-04 0e+00 2e-04 -1e-04 -1e-04 2e-04

ar4 0e+00 0e+00 -1e-04 2e-04 -1e-04 0e+00

ar5 2e-04 0e+00 -1e-04 -1e-04 2e-04 -2e-04

ma1 -7e-04 1e-04 2e-04 0e+00 -2e-04 8e-04

> t(tmodel$coef) %*% solve(vcov(tmodel)) %*% tmodel$coef

[,1]

[1,] 4738.516

> car::linearHypothesis(tmodel, c("ar1 = 0", "ar2 = 0", "ar3 = 0",

"ar4 = 0", "ar5 = 0", "ma1 = 0"))

Linear hypothesis test:



74 M. Shams and M. A. Mirzaie/ JAC 57 issue 1, August 2025, PP. 59-79

ar1 = 0

ar2 = 0

ar3 = 0

ar4 = 0

ar5 = 0

ma1 = 0

Model 1: restricted model

Model 2: tmodel

Df Chisq Pr(>Chisq)

1 6 4738.5 < 2.2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> ### CI and Wald test

> confint(tmodel) ; lmtest::coeftest(tmodel)

2.5 % 97.5 %

ar1 0.55785174 0.66958468

ar2 0.16140681 0.21364933

ar3 -0.07852634 -0.02035826

ar4 -0.15327702 -0.10450355

ar5 -0.16393457 -0.11273363

ma1 -0.54236313 -0.43448324

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)

ar1 0.613718 0.028504 21.5311 < 2.2e-16 ***

ar2 0.187528 0.013327 14.0708 < 2.2e-16 ***

ar3 -0.049442 0.014839 -3.3319 0.0008626 ***

ar4 -0.128890 0.012442 -10.3589 < 2.2e-16 ***

ar5 -0.138334 0.013062 -10.5908 < 2.2e-16 ***

ma1 -0.488423 0.027521 -17.7474 < 2.2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> ### accuracy of model

> forecast::accuracy(tmodel)

ME RMSE MAE MPE MAPE

Training set 0.0007634926 0.6007197 0.4642622 5.795284e-05 0.04558304

MASE ACF1

Training set NaN -0.005126946
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Appendix 6

In this appendix, the analysis of residuals and the assumptions of the model with residuals
were examined.

> ####### residuals analysis

> par(mfrow = c(2, 2))

> ### plot 1

> acf(tmodel$residuals, xlab = ’’, ylab = ’’, main = ’’)

> mtext(text = ’Lag’, side = 1, line = 2)

> mtext(text = ’ACF’, side = 2, line = 2)

> mtext(text = ’ACF of residuals’, side = 3, line = 0.25, font = 2)

> ### plot 2

> qqnorm(tmodel$residuals, xlab = ’’, ylab = ’’, main = ’’)

> qqline(tmodel$residuals, col = ’red’)

> mtext(text = ’Theoretical Quantiles’, side = 1, line = 2)

> mtext(text = ’Sample Quantiles’, side = 2, line = 2)

> mtext(text = ’Normal Q-Q Plot’, side = 3, line = 0.25, font = 2)

> ### plot 3

> hist(tmodel$residuals, col = ’lightgreen’, freq = F, ylim = c(0, 0.65),

xlab = ’’, ylab = ’’, main = ’’)

> curve(dnorm(x, 0, sd(tmodel$residuals)), add = T,

col = ’red’, lwd = 1.5)

> mtext(text = ’Residuals’, side = 1, line = 2)

> mtext(text = ’Density’,side = 2, line = 2)

> mtext(text = ’Histogram of Residuals’, side = 3, line = 0.25, font = 2)

> ### plot 4

> plot(tmodel$fitted, tmodel$residuals, xlab = ’’, ylab = ’’)

> mtext(text = ’Fitted value’, side = 1, line = 2)

> mtext(text = ’Residuals’, side = 2, line = 2)

Appendix 7

In this section, a comparison is made between the ACF and PACF of the data and the
model.

> ### comparission of acf and pacf between data and theoric ARMA

> par(mfrow=c(2, 1))

> ### plot 1

> acf(diff(air_pre), xlab = ’’, ylab = ’’, main = ’’)

> points(seq(0.000, 0.004, 0.0001), ARMAacf(ar = c(0.6137, 0.1875,

-0.0494, -0.1289, -0.1383), ma = c(-0.4884), lag.max = 40),

type = ’h’, col = ’red’, pch = 20)

> points(seq(0.000, 0.004, 0.0001), ARMAacf(ar = c(0.6137, 0.1875,
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-0.0494, -0.1289, -0.1383), ma = c(-0.4884), lag.max = 40),

col = ’red’, pch = 20)

> mtext(text = ’Lag’, side = 1, line = 2)

> mtext(text = ’ACF’, side = 2, line = 2)

> mtext(text = ’ACF of data after differencing and Theoretical

ACF (ARMA(5,1))’, side = 3, line = 0.25, font = 2)

> legend(’topright’, legend = ’Theoretical ACF’, col = ’red’,

pch = 20, bty = ’n’)

> ### plot 2

> pacf(diff(air_pre), xlab = ’’, ylab = ’’, main = ’’)

> points(seq(0.0001, 0.004, 0.0001), ARMAacf(ar = c(0.6137, 0.1875,

-0.0494, -0.1289, -0.1383), ma = c(-0.4884), lag.max = 40,

pacf = T), type = ’h’, col = ’red’, pch = 20)

> points(seq(0.0001, 0.004, 0.0001), ARMAacf(ar = c(0.6137, 0.1875,

-0.0494, -0.1289, -0.1383), ma = c(-0.4884), lag.max = 40,

pacf = T), col = ’red’, pch = 20)

> mtext(text = ’Lag’, side = 1, line = 2)

> mtext(text = ’PACF’, side = 2, line = 2)

> mtext(text = ’PACF of data after differencing and Theoretical

PACF (ARMA(5,1))’, side = 3, line = 0.25, font = 2)

> legend(’topright’, legend = ’Theoretical PACF’, col = ’red’,

pch = 20, bty = ’n’)

Appendix 8

In this appendix, the forecast for the next 24 hours or the next day and the prediction
confidence interval were reported.

> #### prediction for next day

> ### output 1

> predict(tmodel, 24)

$pred

Time Series:

Start = c(1402, 8752)

End = c(1403, 15)

Frequency = 8760

[1] 1014.667 1014.453 1014.397 1014.339 1014.347 1014.418 1014.502

[8] 1014.581 1014.650 1014.692 1014.706 1014.698 1014.673 1014.641

[15] 1014.609 1014.584 1014.569 1014.564 1014.568 1014.577 1014.590

[22] 1014.602 1014.611 1014.617

$se

Time Series:

Start = c(1402, 8752)



77 M. Shams and M. A. Mirzaie/ JAC 57 issue 1, August 2025, PP. 59-79

End = c(1403, 15)

Frequency = 8760

[1] 0.6009601 0.9046972 1.2312509 1.5352679 1.7877651 1.9710397

[7] 2.1060982 2.2010398 2.2694667 2.3231239 2.3709345 2.4188069

[13] 2.4711381 2.5302600 2.5964710 2.6682449 2.7429095 2.8174824

[19] 2.8895058 2.9574750 3.0208968 3.0800876 3.1358672 3.1892574

> ### output 2

> p = forecast::forecast(tmodel, 24)

> p = as.data.frame(p) ; rownames(p) = c(1: 24) ; p

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95

1 1014.667 1013.897 1015.437 1013.489 1015.845

2 1014.453 1013.293 1015.612 1012.680 1016.226

3 1014.397 1012.819 1015.975 1011.984 1016.810

4 1014.339 1012.372 1016.307 1011.330 1017.349

5 1014.347 1012.056 1016.638 1010.843 1017.851

6 1014.418 1011.892 1016.943 1010.554 1018.281

7 1014.502 1011.803 1017.201 1010.374 1018.630

8 1014.581 1011.761 1017.402 1010.267 1018.895

9 1014.650 1011.741 1017.558 1010.201 1019.098

10 1014.692 1011.715 1017.669 1010.139 1019.245

11 1014.706 1011.668 1017.745 1010.059 1019.353

12 1014.698 1011.598 1017.798 1009.957 1019.439

13 1014.673 1011.506 1017.840 1009.830 1019.517

14 1014.641 1011.398 1017.884 1009.682 1019.600

15 1014.609 1011.282 1017.937 1009.520 1019.698

16 1014.584 1011.165 1018.004 1009.355 1019.814

17 1014.569 1011.054 1018.084 1009.193 1019.945

18 1014.564 1010.953 1018.175 1009.042 1020.086

19 1014.568 1010.865 1018.271 1008.904 1020.231

20 1014.577 1010.787 1018.367 1008.781 1020.374

21 1014.590 1010.718 1018.461 1008.669 1020.511

22 1014.602 1010.654 1018.549 1008.565 1020.639

23 1014.611 1010.592 1018.630 1008.465 1020.757

24 1014.617 1010.530 1018.704 1008.366 1020.868

Appendix 9

In this section, a comparison is made between the data and the fitted value of the model.

> ### plot 1

> par(mfrow=c(2, 1))

> plot(air_pre, xlab = ’’, ylab = ’’, main = ’’, type = ’l’)

> mtext(text = ’time’, side = 1, line = 1.5)
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> mtext(text = ’Pressure’, side = 2, line = 2)

> mtext(text = ’Air Pressure’, side = 3, line = 0.25, font = 2)

> ### plot 2

> plot(fitted(tmodel), col = ’green4’, xlab = ’’, ylab = ’’, main = ’’)

> mtext(text = ’time’, side = 1, line = 2)

> mtext(text = ’fitted value’, side = 2, line = 2)

> mtext(text = ’fitted value of ARIMA(5,1,1)’, side = 3, line = 0.25,

font = 2)

> ### Stationarity of AR part and invertibility of MA part

> plot(tmodel)
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