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1 Introduction

High Dimensional Model Representation (HDMR) is a representation for functions as
sum of terms of increasing number of variables. HDMR has been adapted for the discrete
case to decompose multiway arrays. Therefore, there is HDMR for functions and also
HDMR for multiway arrays. Enhanced Multivariance Products Representation (EMPR)
is a generalization of HDMR where there are univariate supports (univariate functions for
representing functions and vectors for representing multiway arrays). Introducing these
parameters into the finite expansion provides the ability for the truncations to better
represent the original function or multiway array.
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Within this paper, we limit ourselves to the decomposition of multiway arrays. Therefore,
we use HDMR and EMPR to mean HDMR for multiway arrays, and EMPR for multiway
arrays respectively. A multiway array is an array and its number of indices can also be
called ways. A 2-way array is a matrix, a 1-way array with more than one element is a
vector and a 1-way array with one element is a scalar. As an alternative interpretation,
a scalar can also be considered as a 0-way array. 3-way arrays and 4-way arrays are also
widely used in applications. In general for an n-way array, n can be any natural number.
For an n-way array, n represents the number of ways (indices). The range of each index
should also be stated. The range of indices should be independent. Triangular indexing
where the range of one index depends on another is not within the scope of this paper.
Each index may go up to a different number, therefore any hyperprism geometry is allowed.
We do not limit ourselves to hypercube.

The motivation of decomposing multiway arrays with EMPR can be various. EMPR has
proven useful for machine learning applications to provide measurements to learn from.
Also, EMPR truncations are used for lossy compression of data. EMPR has also been used
with success to replace missing or corrupt data. In general, EMPR may be considered as
a replacement in many situations where other multiway array decomposition algorithms
are utilized.

1.1 Literature review

[69] focuses on computational complexity of HDMR for function interpolation. [59] com-
bines plain and logarithmic HDMR. [65] tries to better interpolate functions of multiplica-
tive nature from the data points of the function. [70] is about approximating differential
operators by HDMR for numerical solution of ODEs. [68] is important to show the link
between the continuous HDMR and discrete HDMR and how discrete HDMR may be
used effectively for interpolation problems. [67] combines HDMR and Lagrange inter-
polation. [15] focuses on fixing missing data. [34] details the decomposition of integral
kernels by an EMPR based representation. [20] focuses on decomposing three-way arrays
recursively by EMPR truncations. [35] is also on decomposition of integral operators.
[66] puts forward an implementation of Hybrid HDMR which is one of the early varieties
of HDMR for function representation. [21] proposes matrix supports instead of vector
supports for decomposing multiway arrays. [60] details how the support functions change
the quality of EMPR truncations. [38] shows how EMPR may be used recursively to
obtain a structure similar to singular value decomposition. [39] explains the importance
of weight matrices in such decompositions. [37] shows how HDMR for functions behave
in infinitely small intervals. [62] combines HDMR with fluctuationlessness theorem so
that HDMR components can be approximated easily. [63] approximates functions so that
both functions of additive and multiplicative nature are approximated well by their rep-
resentation truncations. [61] tries to make the truncation at the constancy level, a better
representative of the original function. [57] uses fluctuationlessness theorem for compo-
nent determination and also piecewise approach to better represent the original function
in expense of performing HDMR more than one time. [14] focuses on matrix represen-
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tation of functions. [2] shows how HDMR can used to solve initial value problems. [19]
uses Kronecker products and foldings, unfoldings in the representation. [5] is about how
functions can be decomposed using nonproduct type weight functions. [3] focuses on
weight, geometry and transformations in HDMR for functions: representing the image of
the original function may be preferred in certain situations. [58] proposes a method of
optimizing the weight functions. [71] shows how HDMR can be used for rational approx-
imation of functions. [64] shows an application of HDMR for digital image enhancement.
[9] is a very early survey of HDMR, based representations produced by the group of Metin
Demiralp. [4] shows how coordinate transformations can be utilized to easily compute
the integrals necessary for computing the HDMR components. [11] shows the rationale
behind logarithmic HDMR and how this is related to univariance. [10] shows certain
examples of logarithmic HDMR. [12] compares (plain) HDMR and logarithmic HDMR.
[13] is an early work focusing on weight optimization in HDMR for functions. [8] is one
of the first applications of HDMR to computer vision. [18] details TMEMPR (one of the
recursive applications of EMPR) application to vision and how the initial support vector
may be improved to get better representation by truncations. [23] is one of the works that
focus on application of HDMR to multispectral imaging. [56] uses HDMR and wavelet
transform for hyperspectral imaging. [36] is one of the works that lay the ground for
EMPR for multiway array decomposition. [24] focuses on image denoising by EMPR.
[26] proposes the use of random sampling for the generation of HDMR terms. [40] details
the rationale behind HDMR. [1] focuses on its efficient implementation. [28] proposes an
alternative relaxed formulation that improves the efficiency for computing the terms. [31]
explains why HDMR is important for experiment design. [32] shows the relation between
HDMR and Fourier series. [30] details the HDMR varieties formed by Rabitz group. [29]
provides a general framework for ranking the importance of system inputs by HDMR.
[27] details the application of HDMR for experiment design. [72] is about a software for
finding and visualizing the HDMR for functions. [22] proposes a modified method that is
parallelizable by MPI and CUDA.

[44] is the main article for HDMR. HDMR was put forward by Sobol. [48] makes a
connection between sensitivity indices and a derivative based measure. [45] discusses the
use of Monte Carlo and Quasi Monte Carlo methods for computing the multiple integrals
in HDMR. [46] discusses if HDMR truncations are representative of the original function
using certain theorems and examples. [42] suggest a rank based expansion. [49] focuses on
the relation between Monte Carlo integration and HDMR and uses HDMR for computing
an integral. [25] is a review on HDMR. [47] is on derivative based criteria for HDMR. Also,
[43, 50, 41, 53, 52, 51, 54] build upon HDMR, providing many examples and explaining
the basic philosophy.

[6, 7] are extensive articles on tensor network diagrams. Tensor network diagrams makes
diagrammatic representation of multiway array decompositions. [16] explain the ITensor
library which is a software that builds upon the idea of tensor network diagrams. [55, 33]
show certain applications of ITensor library.
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1.2 Novelty of the work

This work looks at Enhanced Multivariance Products Representation (certain general-
ization of HDMR) from tensor network perspective. The work provides the equalities
for computing the components and also the representation itself, using tensor network
diagram notation. Within this work, a computer program for Enhanced Multivariance
Products Representation (EMPR) for multiway arrays, is written in Julia using ITensor
library. This is the first publicly available code for EMPR for multiway arrays [17]. The
code is easy to understand and easy to change [17]. The EMPR components are stored
only through two indices. Such an approach has made it possible to put a general formula
for computing any component.

The algorithm is quite general and is able to compute all EMPR components, truncations,
remainders and quality measurers for any multiway array as long as the computational
resources allow it.

1.3 Structure of the article

The next section details EMPR from tensor network perspective. Tensor networks are
widely used to model decomposition algorithms. In this work, EMPR is explained by this
powerful tool. This is a novel look at EMPR. The third section provides implementation
details. The difficulties and how it was to possible overcome them are explained. The
paper wraps up with the fourth section which emphasizes the important points.

2 Enhanced multivariance products representation for
multiway arrays using tensor network diagram no-
tation

Tensor network diagrams provides a way to show multiway array operations in a compact
manner [6, 7]. In this work, tensor network diagram notation is combined with mathe-
matical notation to show EMPR. It is also possible to use the tensor network diagram
notation by itself, but the combination with mathematical notation becomes more un-
derstandable. In our explanation of EMPR, we have used sums. The sums can also be
shown within product of multiway arrays just like the fact that an eigendecomposition
can both be shown as sum of outer products and product of three matrices.

The operations on multiway arrays are defined on contraction operations. Sums over
matching indices determine the result. If there are no matching indices, an outer product
is under consideration. A multiway array is shown by a node with edges coming out of it.
A node without any edge is a scalar, a node with a single edge is a vector, a node with two
edges is a matrix, and so on. Contraction operations are shown by connecting the edges
of two multiway arrays. If the multiway arrays are shown next to each other without any
edge connected, it is an outer product. Each edge knows its direction, therefore, for a
matrix, one of them is for the rows, and the other one is for the columns. Similarly, in
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Figure 1: Tensor diagrammatic equalities for enhanced multivariance products represen-
tation
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the representation of an outer product, the order in which the multiway arrays is written
do not make a difference because each edge knows its direction.

The equalities of Enhanced Multivariance Products Representation is given in Figure 1.
The right hand side of the first equality of Figure 1 shows the multiplication of a scalar
with a vector. The scalar 1/n; is multiplied with the vector s;. This can also be viewed
as the outer product of a scalar with a vector. Here, within the framework of EMPR, s;
is the support vector with index 7. Also, n; is the number of elements of s;.

The support vectors play an important role in EMPR. For the rest of the article, we call
the multiway array whose EMPR is to be found, as A. For each way of A, there is a
corresponding support vector. The number of elements of the support vector is equal to
the dimension of the corresponding way of A. For example, if A is a 2 X 3 matrix, there
are two support vectors: one with 2 elements and the other with 3 elements.

For each support vector, the sum of the squares of the elements should be 1. There
are two main approaches for computing the support vectors. One of them, is the High
Dimensional Model Representation based support vectors. In this choice, the support
vectors are found by normalizing vectors with all elements as 1. EMPR with HDMR
based support vectors is not the same representation as HDMR. In EMPR with HDMR
based support vectors, the support vectors are found by normalizing vectors with all
elements as 1. HDMR can be thought of as relaxation of the unit norm restriction of
EMPR and using support vectors with all elements as 1 (without normalizing).

The other approach is to use averaged directional support vectors. In this approach, the
way to compute s; is as follows. A is contracted in all directions except i, with vectors
whose elements are ni where n; is the number of elements of the vector. The resulting
vector is normalized to yield s;.

Equation 2 of Figure 1 shows the way to compute fy. fp is the O-index component of
EMPR. It is computed by contracting A with all of the w vectors. Contracting all the
ways of a multiway array gives a scalar value. If the multiway array to be decomposed is
the matrix A, then the way two compute fy would be in the form u” Av where u and v
are the corresponding w vectors.

Equation 3 of Figure 1 shows the way to compute f; vectors. f; are the 1-index components
of EMPR. fl(l) is computed by contracting A with all of the w vectors except w; and
subtracting the product of fy with w;.

Similarly, Equation 4 of Figure 1 shows the way to compute the Fy matrices. Fy are the
two-index components of EMPR. If all the representation is under consideration, the last
component would be the N-way component of EMPR, where N is the number of ways
of the original multiway array. In many applications, EMPR is truncated at 1-index or
2-index level.

Equation 5 of Figure 1 shows how to obtain the original multiway array from the com-
ponents. The right hand side of Equation 5 is the Enhanced Multivariance Products
Representation truncation of A. The terms up to and including the two-index compo-
nents are taken. The remainder multiway array is shown by R. It is also possible to
obtain all of the terms of the EMPR, therefore, not performing any kind of truncation.
If that is the case, the last term of the representation is simply the representation so far
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subtracted from the original multiway array.

3 Implementation details

Enhanced Multivariance Products Representation for multiway arrays is implemented in
Julia programming language using the I'Tensor library. The pseudocode of the algorithm
is given in Algorithm 1. In this section, the pseudocode is explained in detail.

The components of the representation is structured as an array of array of ITensors. The
outer array is the subscript of f, therefore, 0 is the scalar component, 1 are the vector
components and 2 are the matrix components, and so on. The outer array starts with
index 0. The inner array starts with index 1. The inner array orders the components
for a certain value of the outer array. For example, each matrix component is ordered.
The multi-index used for components is made into a single index by this ordering. The
multi-index that only uses increasing values of indices as shown in Figure 1, is put into a
single index. The increasing indices is shown in Equation 5 within Figure 1, by the lower
bounds of the sums.

The way to put the increasing multi-indices into a single index, is performed by the help
of the Combinatorics library of Julia. N stores the index information of the multiway
array. length(N) is the number of ways of the multiway array. The collectedCombinations
is filled by using combinations function from the Combinatorics library. It is an array of
arrays. collectedCombinations[i] shows all the ways to select ¢ elements from the array [1
... length(N)]. For example, if length(N) is 3, collectedCombinations[2] is an array with
elements as arrays with values [1,2],[1,3],2,3].

The array supportVectors stores the s vectors of Figure 1, whereas, the array supportVec-
torsDivided ByDim stores the w vectors of Figure 1. sup VecProd is a programmer-defined
function that finds the outer product of the s vectors whose indices are given in the vector
argument of the function.

Line 1 shows the computation of fy. It is found by the contraction of A with all the w.
On the right hand side of the assignment, within the array, the multiplication operation
for the contraction is used as a function. The first argument is the multiway array
to be decomposed. The ellipsis after the second argument shows that the elements of
the array that is before the ellipsis, are made into function arguments in their given
order. Therefore, the number of arguments of the multiplication function in Line 1 is
1+length(N). The result of the multiplication is put into an array and assigned to f[0].
Line 2 is a for header. The variable iter! is for the computing of each subindex of f.
For example, when iter! is 1, all the vector components are computed. When iter! is
2, all the matrix components are computed, and so on. Line 3 makes an assignment to
fliter1]. fliter1] is an array that holds the vector components. The right hand side of the
assignment in Line 3, uses the comprehension notation. Each iteration of the for loop
inside the comprehension, makes a new element for the array. Also, the InvertedIndices
library is used in order to exclude certain w vectors from the multiplication. When iter1
is 1, each v would be array with a single element from 1 to length(N). A is contracted
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Algorithm 1: Enhanced Multivariance Products Representation

=

f[0]«—[*(A,supportVectorsDividedByDim...)]

for iteri<—1 to length(N)

3 | fliterl]«—[*(A, supportVectorsDividedByDim[Not(v)]...)-
*(f[0][1],supVecProd(v)) for v € collectedCombinationsfiter1] |
4 for iter2«1 to (iter1-1)

foreach templ1 € allCombs(iterl,iter2)

6 fliter1]<—fliterl] - [ f[iter2] linearizer(iter2, v[templ]) | *
supVecProd(v[excluder(iterl,templ)]) for v €
collectedCombinationsfiter1] |

N

7 end

8 end

9 end

10 t[0] < *(f[0][1],supportVectors...)
11 for ind«1 to length(N)

12 | tlind)«t[ind-1]

o

vecollectedCombinations|ind]

13 + D ( *(f[ind] [linearizer(ind,v)],

supportVectors(Not(v))...)

14 end
15 for i«—0 to length(N)

sum of squares of elements of t[i]
sum of squares of elements of A

rest|[ij«— A-t[i]
18 end

16 qmlij«—

1

3
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with w excluding the w with indices shown in v. For the situation when ster? is 1, the
contribution in a given f; produced by fj is computed by the outer product of fy and the
w whose index is in v and subtracted from the given f;.

For Line 3, consider the case when iter! is 2. Then, the computation of the matrix com-
ponents are under consideration. f[2] is an array that will hold all the matrix components.
Then, v is all the ways to select 2 items from [1 ... length(N)|. It will start with [1,2]. For
this case, A is contracted with all w vectors except w; and ws. From the result of the
contraction, the outer product of fy with w; and wy is subtracted. The result becomes
the first array within f[1].

Line 4 is a for header. Line 3 only has the subtraction of subspace contributions resulting
from fy. For F;, where i is also the number of indices of 7, it is necessary to subtract all
subspace contributions from 0 to (i-1). The for header in Line 4 is for subtracting the
subspace contributions from 1 to (i-1), since the contribution from 0 is already subtracted
in Line 3. When iter! is 1, the for body belonging to the header in Line 4 will not
execute. When iter? is 2, it will execute in order to subtract the contributions in each Fy
resulting from the corresponding f; vectors.

The foreach header in Line 5, includes a programmer-defined function allCombs. The
function takes two arguments in the form allCombs(n,k). It shows, in order, all the
ways to select k objects from n objects where the objects are numbered from 1 to n. For
example, if n is 3 and k£ is 2, then the result would be an array of arrays with [1,2],[1,3],[2,3].
In Line 6, indexing an array with an array gives an array where the inner array elements
become indices to extract elements from the outer array. To see Line 6 in action, assume
that the multiway array to be decomposed is a 4-way array. Assume iter! is 3 and iter
2 is 2. Then v are [1,2,3],[1,2,4],[1,3,4],[2,3,4]. f[3] is an array of ITensors. allCombs are
[1,2],[1,3],[2,3]. From f[3], an array of ITensors is subtracted.

The for loop from Line 10 to Line 14 shows the computation of the representation from
the components. The for loop from Line 15 to Line 18 shows the computation of quality
measurers and the remainders. The quality measurers form an ordered sequence of real
nonnegative numbers up to and including 1. The remainders shown by the array rest, are
found by subtracting EMPR truncations from the original multiway array.

4 Conclusion

A computer program is implemented for decomposing multiway arrays using Enhanced
Multivariance Products Representation. The program is written in Julia programming
language. The program uses the ITensor library. This is the first publicly available pro-
gram for Enhanced Multivariance Products Representation for multiway arrays. The use
of Julia with I'Tensor library has made the code easier to implement and more maintain-
able.

The function in the program is able to decompose any multiway array of floating point
numbers. The number of ways of the original array can be any positive integer. However,
large multiway arrays would cause problems related to the fact that the multiway arrays
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may not fit on computer’s memory.

The purpose here is not comparing the EMPR with other commonly used multiway array
decomposition algorithms. The purpose is to implement EMPR for multiway arrays as a
maintainable code so that its popularity can increase.

The code can also be used in order to test different support vector choices. In the future,
different decompositions which are based on EMPR for multiway arrays will also be
implemented.
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