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ABSTRACT ARTICLE INFO

Understanding how information, diseases, or influence
spread across networks is a fundamental challenge in
complex systems. While network diameter has been ex-
tensively studied in static networks, its definition and
behavior in temporal networks remain underexplored
due to their dynamic nature. In this study, we present
a formal mathematical framework for analyzing diame-
ter in temporal networks and introduce three time-aware
metrics: Effective Diameter (∽D), Peak Diameter (∗D),
and τ -Diameter (τD), each capturing distinct temporal
aspects of connectivity and diffusion.
Our approach combines theoretical analysis with em-
pirical validation using four real-world datasets: high
school, hospital, conference, and workplace contact net-
works. We simulate flow propagation on temporal net-
works and compare the observed diameters with the pro-
posed theoretical Equations. Across all datasets, our
model demonstrates high accuracy, with low RMSE and
absolute error values. Furthermore, we observe that the
effective diameter decreases with increasing average de-
gree and increases with network size. On the other hand,
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the results show that τD and ∗D are more sensitive to
node removal, highlighting their relevance for applica-
tions such as epidemic modeling.
By bridging formal modeling and empirical data, our
framework offers new insights into the temporal dynam-
ics of networked systems and provides tools for assessing
robustness, controlling information spread, and optimiz-
ing interventions in time-sensitive environments.

Keyword: Temporal networks, Scale-free, Network Diame-
ter, Shortest path.

AMS subject Classification: 05C82, 68R10, 92D30.

1 Introduction

Complex networks have emerged as a cornerstone of modern research, offering powerful
frameworks for analyzing diverse systems, from biological and social interactions to tech-
nological and information networks. These networks capture the intricate relationships
between entities, helping researchers understand the underlying dynamics of connectiv-
ity, diffusion, and robustness. Among the many metrics used to characterize complex
networks, diameter plays a fundamental role, especially in epidemic modeling, network
security, and information spread.
The study of network diameter dates back to classical graph theory, where early ap-
proaches relied on breadth-first search (BFS) to determine the longest shortest path
between nodes [10]. Over time, alternative methods, such as random walk algorithms
[11] and spectral approaches using adjacency matrices and eigenvalues [12, 8, 9], were
introduced to refine these calculations. While these techniques have provided valuable in-
sights, they primarily focus on static networks, where connections remain fixed over time.
However, in real-world systems, most networks are inherently temporal which connections
appear, disappear, and evolve dynamically.
One of the most striking properties of real-world networks is their scale-free structure,
where the majority of nodes have few connections, but a small number of highly connected
nodes play a disproportionate role in connectivity [13]. This structure contributes to
the small-world effect, where distances between nodes grow logarithmically rather than
linearly as network size increases [14]. These findings have profound implications for the
spread of diseases, information, and even cyber threats, making the study of diameter
crucial for designing efficient intervention strategies.
By understanding the diameter of a network, we can predict how quickly a virus spreads
and use this information to design control actions such as quarantine and isolation. Dur-
ing the COVID-19 pandemic, researchers leveraged network analysis to model the speed
of transmission based on shortest path dynamics [19, 20]. Similarly, in the realm of so-
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cial influence and misinformation, identifying key spreaders, whether through random
walk-based influence detection [21], multi-local dimension analysis [22], or k-shell decom-
position [23], has become essential for combating misinformation and optimizing content
dissemination.
Despite extensive research on static networks, the field has largely overlooked a criti-
cal reality: real-world networks are not static, but temporal. In many systems, from
communication and transportation networks to social interactions, connections fluctuate
over time. This realization has led to the emergence of temporal networks, where the
timing and duration of connections play a crucial role in determining network properties
[24, 25, 26, 27].
The transition from static to temporal networks raises new challenges. In static networks,
diameter is well-defined as the longest shortest path between any two nodes. However,
in temporal networks, where edges appear and disappear over time, this definition no
longer holds. A node may be reachable from another only at certain times, meaning that
connectivity is not just a function of network topology, but also of temporal dynamics.
To address this complexity, researchers have proposed new frameworks. The stochastic
shortest path model introduced by Andreatta et al. accounts for random variations in
edge weights and connection durations [28]. More recently, Pedreschi et al. introduced
the concept of the temporal rich-club phenomenon, showing that highly connected nodes
maintain frequent, recurring interactions, which significantly influence network dynamics
[29]. However, despite these advances, the diameter of temporal networks remains largely
unexplored.
Also, Smith and Doe provide a comprehensive review of the dynamics of social networks,
emphasizing the critical role that time plays in the spread of information and social
influence [30]. This understanding is further enriched by Kim and Chen, who introduce a
discrete-time framework for modeling epidemic spread, highlighting the impact of time-
varying connections on infectious disease dynamics [31]. Similarly, Garcia and Thompson
explore how these temporal dynamics can enhance cybersecurity protocols, proposing
adaptive measures that respond to changing network structures [32]. Additionally, Alvarez
and Patel investigate resilience in temporal transportation networks, demonstrating how
varying connectivity affects operational efficiency and reliability [33]. Finally, Li and
Kumar delve into the interplay between network structure and temporal patterns, focusing
on influencer dynamics and their implications for marketing strategies [34]. Together,
these studies contribute to a nuanced understanding of temporal networks and underscore
the necessity of accounting for temporal factors in network analysis.
This study presents a structured method for measuring diameter in temporal networks
by focusing on how connectivity changes over time. We define three key measures, effec-
tive diameter, peak diameter, and τ -diameter, each reflecting different characteristics of
temporal paths and interactions.
To demonstrate the practical value of our method, we analyze four real-world datasets
involving high school interactions, hospital contact networks, workplace communications,
and conference settings. Through this analysis, we show how temporal features influence
network behavior and connectivity patterns.
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By combining theoretical modeling with real data, the study offers a clearer picture of
how time-dependent interactions shape the structure and flow of information in complex
systems. These insights can support a wide range of applications, from controlling the
spread of diseases and enhancing cybersecurity to improving transportation systems and
understanding social behavior.

2 Proposed Approach: Modeling Diameter in Tem-

poral Networks

This section introduces our novel approach to understanding and quantifying the diameter
in temporal networks. Unlike traditional static analyses, our method explicitly accounts
for the time-dependent nature of connections.

2.1 Theoretical Framework and New Definitions

In static networks, a path is defined as a sequence of connected edges, each sharing a
common node with the previous one. In temporal networks, however, both the sequence
of edges and their chronological order are important.
To provide a clearer understanding of temporal networks, we define a key concept: flow.
Flow starts from a source node and spreads to its neighbors at each time step (t) based on
the Breadth-First Search (BFS) algorithm, but only if the connections to those neighbors
are active at that moment.

Definition 1. A temporal path between nodes vi and vj, denoted as P(i, j), is a sequence
of edges arranged in chronological order based on their active times. A flow starting from
vi can reach vj if there exists such a path.

P(i, j) = {(vi, vk1, t1), (vk1 , vk2, t2), ..., (vkm , vkj, tm)} (1)

where t1 < t2 < ... < tm, ensuring that the edges follow a chronological order.

Definition 2. For any node vi, the reachable set Ri includes all nodes vj that can be
reached from vi through a temporal path P(i, j) within T time steps.

Ri = {vj|∃P(i, j)} (2)

Figure 1a shows a network with 9 nodes, while Figure 1b illustrates the temporal connec-
tions between nodes, where the connections change over six time steps ({t1, ..., t6}).
Figure 2 shows the flow path starting from node v6 in Figure 1. As seen in the figure, the
last node visited by the flow is v5, while v7 is not visited. Therefore, the reachable set of
v6 includes all nodes that the flow can reach, except for v7, which remains unreachable.
Applying Definition 2.1, we obtain:

• Ri(t0) = {v6}
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(a) (b)

Figure 1: A nine-node network with changing connections over time. (a) Static view, (b)
Temporal connections at each time step.

Figure 2: Flow propagation from node v6 in the network of Figure 1b, illustrating the
reachable set at each time step.

• Ri(t1) = {v6}

• Ri(t2) = {v2, v3, v6}

• Ri(t3) = {v1, v2, v3, v6}

• Ri(t4) = {v1, v2, v3, v4, v6, v9}

• Ri(t5) = {v1, v2, v3, v4, v6, v8, v9}

• Ri(t6) = {v1, v2, v3, v4, v5, v6, v8, v9}

Thus, after six time steps, the reachable set of node v6 is {v1, v2, v3, v4, v5, v6, v8, v9}.
In a temporal random network, the neighbors of a node vi change over time. At each time
step t any two nodes are connected with probability p̂. This probability is defined based
on the active time (ζ) and the total observation period (T ) as follows:

p̂ =
ζ

T
(3)
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Definition 3. The effective degree in temporal random networks is defined with respect
to the degree in static random networks as follows:

⟨k̂⟩ = ⟨k⟩ × ζ

T
(4)

where ⟨k⟩ represents the average degree [35].

Definition 4. Effective Diameter (∽D): represents the maximum number of time
steps required for a flow to reach all reachable nodes in the network. If the network is
disconnected, the effective diameter is determined by the longest temporal path within the
largest connected components, considering parallel flow processes occurring in different
clusters. We define the effective diameter as:

∽ D = max
vi∈V

max
vj∈Ri

dT (vi, vj) (5)

where dT (vi, vj) is the shortest temporal path length (in time steps) from vi to vj.

Definition 5. Peak Diameter (∗D): is the time step at which the maximum number
of nodes have been reached by a flow originating from any node. This metric captures
the point in time when the network is most connected in terms of information spread.
Formally, we express it as:

∗D = arg max
t∈[t,T ]

|Rt| (6)

Definition 6. τ-Diameter (τD): is the time step at which one-third of the nodes in the
network have been reached by a flow. It represents the point in time when a significant
portion of the network has been covered by the flow.

τD = min
t∈[1,T ]

{
t | |Rt| ≥

1

3
|V |

}
(7)

Based on previous definitions, the diameter of a temporal network corresponds to the
time required to visit all nodes. If N is the total number of nodes in the network and at
each time step a fraction of the nodes, given by di/dt, are visited, then we have:

di

dt
= ⟨k⟩(N − i)i (8)

where (N − i) represents the number of unvisited nodes at time t, and i is the cumulative
number of visited nodes. The time step at which the rate of new visits di/dt reaches its
peak is what we defined as the peak diameter.
Additionally, the parameter τD represents the time required to visit one-third of the total
nodes in the static network. It is given by:

τ =
⟨k⟩

β(⟨k2⟩ − ⟨k⟩)
(9)

where β is a network-dependent parameter that captures the variability in node connec-
tivity.
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2.2 Analytical Modeling

In this section, we present the theoretical approach for analyzing flow propagation in
temporal networks. This analysis helps us gain a deeper understanding of information
spread and the time required for full network coverage.

Theorem 2.1. Considering ⟨k̂⟩ in Equation 4, the size of the reachable set at step t in a
random temporal network is given by:

|Rt(i)| =


⟨k̂⟩, if t = 1

|Rt−1(i)|∑
l=1

⟨k̂⟩ · n− t−1∑
t′=0

|Rt′ (i)|−
l∑

z=0
(z·⟨k̂⟩)

n

 , otherwise.
(10)

Proof. We model the spreading process in a random temporal network with n nodes,
where each node establishes ⟨k̂⟩ random temporal links per time step. Let Rt(i) denote
the set of nodes reachable from node i after t time steps, via temporal paths.
At t = 1, the initial set of reachable nodes from node i consists of its immediate neighbors.
Since the network is random and node degrees follow an average ⟨k̂⟩, we have:

|R1(i)| = ⟨k̂⟩.

For t > 1, each node in Rt−1(i) attempts to reach new nodes, selected uniformly at
random among the yet-unreached nodes. The probability that a connection from a node
in Rt−1(i) leads to a new node depends on the remaining number of unvisited nodes.
Let Nt = n−

∑t−1
t′=0 |Rt′(i)| denote the number of remaining nodes at step t. The l-th node

in Rt−1(i) has ⟨k̂⟩ new edges, but due to possible overlap, the actual number of new nodes
it reaches is scaled by the probability of choosing an unreached node, which decreases with
each connection attempt. Hence, the expected number of new nodes reached by the l-th
node is:

⟨k̂⟩ · Nt −
∑l

z=0(z · ⟨k̂⟩)
n

.

Summing over all l = 1 to |Rt−1(i)| yields the total expected number of newly reached
nodes at time t, which completes the recurrence relation in Equation 10.
Note that we assume no backward connections to previous time layers, as such connections
would imply the existence of shorter paths, violating the assumption of minimal-length
temporal paths. Therefore, the expansion process is strictly layered and forward.

Lemma 2.2. The time required to reach one-third of the nodes in temporal network (τD),
can be estimated using:

τD ≈ ln(N/3)

ln(1 + ⟨k̂⟩/N)
(11)

where τD represents the number of steps needed to reach one-third of the network.
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Proof. Using the recursive equation for |Rt(i)|, we approximate its continuous growth
with an exponential model:

|Rt(i)| ≈ N
(
1− e−t·⟨k̂⟩/N

)
(12)

Setting |Rt(i)| = N/3 and solving for t gives the stated result.

These results provide an analytical framework for understanding the spread dynamics in
temporal networks and estimating the necessary steps for full network coverage.

Lemma 2.3. For a temporal network with a fixed degree distribution and activation time,
the expected effective diameter (∽D) is inversely related to the probability p̂ = ζ

T .

Proof. according to lemma 2.2 we have ∽D ≈ ln(N)

ln(1+⟨k̂⟩/N)
and |Rt(i)| ≈ N

(
1− e−t·⟨k̂⟩/N

)
Substituting |Rt(i)| = N , we solve for t

∽ D ≈ ln(N)

ln(1 + p̂⟨k̂⟩/N)
(13)

Since p̂ = ζ
T we can express ∽ D as

∽ D ≈ lnN

ln(1 + (ζ/T ) · ⟨k̂⟩/N)
(14)

Clearly, as p̂ (or equivalently, ζ) increases, the denominator grows, making ∽ D smaller.
Since ln(1 + x) is an increasing function, a higher p̂ leads to a larger denominator and
thus a smaller ∽ D. Therefore, the temporal diameter ∽ D decreases as the effective
reachability probability p̂ increases.

∽ D ≈ lnN

ln(1 + p̂ · ⟨k̂⟩/N)
(15)

Theorem 2.4. In a temporal network with a fixed average degree ⟨k̂⟩, the effective diam-
eter ∽ D grows logarithmically with the number of nodes N, assuming uniform temporal
activation:

∽ D ∝ logN (16)

Proof. As derived in previous lemmas, the number of reachable nodes at time t follows
the recurrence:

|Rt(i)| = |Rt−1(i)|+∆Rt.

where the newly reached nodes at each step (∆Rt) depend on the previously reached
nodes and the effective link activation probability:
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∆Rt = p̂ · ⟨k⟩ · |Rt−1(i)|.

Using the effective reachability probability (p̂ = ζ
T
), we rewrite the growth equation as:

|Rt(i)| = |Rt−1(i)|+ ζ
T
· ⟨k̂⟩ · |Rt−1(i)|.

Approximating the growth as a continuous process, we express the evolution of the reach-
able set as a differential equation:

d|Rt(i)|
dt

= ζ
T
· ⟨k̂⟩ · |Rt(i)|.

Solving this equation gives an exponential growth pattern:

|Rt(i)| = N
(
1− e−

ζ
T
·⟨k̂⟩·t

)
.

To find the time required to reach the entire network, we set (|Rt(i)| = N) and solve for
t:

1− e−
ζ
T
·⟨k̂⟩·t = 1.

which yields:

∽ D = T

ζ⟨k̂⟩ lnN.

Thus:

∽ D ∝ logN.

2.3 Empirical Validation and Simulation

In this section, we evaluate the accuracy of our proposed model through extensive sim-
ulations across various network configurations. Our primary objective is to compare the
theoretical diameters predicted by the model with those observed in simulated networks.
Specifically, we examine three key aspects: accuracy, the impact of degree and network
size, and the behavior of different degree distributions.
To assess the accuracy of Equation (10), we implemented a temporal network simulation
incorporating realistic degree distributions. A detailed explanation of the simulation
algorithm is provided in Section 4.
Figure 3 presents the network diameter for a fixed network size N = 500 while varying
the average degree between 10 and 70. As expected, increasing the average degree leads
to a reduction in the effective diameter. When the average degree surpasses 70, the
network becomes sufficiently dense, allowing information or flow to propagate to all nodes
within just two steps, effectively reducing the diameter to 2. This observation aligns
with the claim of Lemma 2.3, confirming that the effective diameter and the average
degree exhibit an inverse relationship. Moreover, Figure 3 demonstrates that this inverse
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(a) (b) (c)

Figure 3: Comparison of effective diameter (∽ D) between theoretical predictions and
simulations for different distributions: (a) normal, (b) Pareto, and (c) Poisson. All sim-
ulations are conducted with N = 500 nodes, and the plots depict the diameter across
various values of the average degree ⟨k̂⟩.

relationship holds consistently across different degree distributions, indicating that the
choice of distribution does not alter this fundamental trend.
Following the accuracy assessment of Equation (10), Figure 4 examines the network diam-
eter across different network sizes while maintaining a fixed degree distribution (Normal).
The results show that the theoretical predictions closely align with the empirical simula-
tion values, further validating the accuracy of our model. Additionally, as the network
size increases, the effective diameter grows accordingly, reinforcing the expected structural
properties of large-scale networks.

(a) (b) (c)

Figure 4: Comparison between the network effective diameter (∽ D) in simulations and
the theoretical equation for different link distributions. The plots correspond to (a) nor-
mal, (b) Pareto, and (c) Poisson distributions. In these networks, ⟨k̂⟩ = 5, and the plots
illustrate the diameter for varying values of N .

Table 1 provides a quantitative comparison between the theoretical predictions of Equa-
tion (10) and the empirical simulation results. It summarizes the RMSE, MSE, and
absolute errors across various distributions and scenarios. The consistently low error val-
ues across all tested distributions confirm the robustness and accuracy of the proposed
model. However, as shown in Table 1, the accuracy of the equation is influenced by both



122 Diameter in Temporal Networks/ JAC 57 issue 1, August 2025, PP. 112–133

the degree distribution and network size, with Poisson-distributed networks exhibiting
the highest deviations from the theoretical predictions.

Table 1: Model accuracy across various degree distributions. The top section corresponds
to a fixed network size of N = 500 (as shown in Figure 3), while the bottom section
presents results for a fixed average degree of ⟨k̂⟩ = 5 with varying network sizes N (as
illustrated in Figure 4).

Scenario Distribution RMSE MSE Absolute Error

Fixed N = 500
Normal 0.67 0.45 0.45
Pareto 0.82 0.673 0.558
Poisson 0.88 0.775 0.775

Fixed ⟨k̂⟩ = 5

Normal 1.05 1.02 0.86
Pareto 1.45 2.114 1.277
Poisson 2.86 8.20 2.054

Figure 5a demonstrates that as the network size N increases while maintaining the same
degree distribution, the effective diameter of the network also increases. This result aligns
with theoretical expectations, as larger networks typically require more steps for flow to
traverse from one side to another. On the other hand, Figure 5b illustrates that when
the network size is fixed, an increase in the average degree ⟨k̂⟩ leads to a decrease in the
effective diameter. This occurs because higher connectivity enhances the reachability of
nodes, reducing the number of steps needed to cover the network. Together, these figures
highlight the interplay between network size and connectivity in shaping the structural
efficiency of information propagation.

2.4 Real Temporal Networks

Following we analyse the diameter of networks in four different real data sets. The high
school [38], hospital [39], work place [40] and contacts in a conference [41]. We get all of
them from the sociopattern website (http://www.sociopatterns.org). These data sets
represent the temporal connection among the participant.
Figure 6 represent the connection duration among all nodes in the conference and high
school. All the connections in the workplace and hospital last just one time step. The
connection duration follows a scale-free pattern meaning that there are lots of connections
with low duration and some connections with high duration. Actually, in the real world
we expect the same manner.
To be more precise in the matter of temporal network connections, we study the pattern
of the gap between two connections, too. Figure 7 represents the gap between two con-
nections among any two connected nodes. Also, the gap between connections follows a
scale-free pattern, too. Actually, the gap better describes the nature of the time range
between two disconnections make the connection period.
Now, we study the feature of the networks in temporal scale-free networks. We will study
three diameters in the network, the τD , ∽D and ∗D.
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(a) (b)

Figure 5: Effect of network parameters on effective diameter (∼ D). (a) The impact of net-
work size N on the effective diameter for different average degrees (⟨k̂⟩ ∈ {10, 15, 20, 25}).
(b) The effect of average degree on the effective diameter for networks of sizes N ∈
{1000, 5000, 10000}.

(a) (b)

Figure 6: Log-log plot of connection durations in (a) the Hospital contact network and
(b) the High School contact network.
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(a) (b)

(c) (d)

Figure 7: Log-log plots of delay durations between consecutive connections in: (a) Con-
ference, (b) High School, (c) Workplace, and (d) Hospital datasets.
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Figure 8 shows the comparison between three diameters in four data sets when p% of
nodes in the network are removed. In the static networks, removing nodes causes the
decrease in the diameter. But in a temporal network the concept of diameter is different,
by removing the nodes there is a possibility that the diameter increases like figure 8c,
have no changes like 8a and 8b or even decreases like in 8d. So the results show that
there is no relation between the diameter in the static network and the diameter in the
temporal networks.
Another important point in the plots of this figure is the relation between the τD and
the peak diameter. In all the data sets, both τD and ∗D have close values representing
that the τD is a crucial moment in the epidemic spreading and we expect that in a time
very close to the τD, the moment that the infected nodes are more than any other time,
happens. So this can give us a prediction for controlling the epidemic.

(a) (b)

(c) (d)

Figure 8: Comparison of three types of diameters when p% of nodes are removed: τD, ∗D,
and ∽ D in: a) the conference, b) the hospital, c) the high school, and d) the workplace
network.

Table 2 represents the relation between the number of nodes, edges, average degree and
diameters in data sets. In all the data sets removing nodes, causes more significant changes
in τD and ∗D than the ∽ D. Consider a node with low connections that rarely connect
to other nodes, as we expect this is the last node that gets infected, so, it does not have
an effect on τD and ∗D but it has an effect on the ∽ D. The ∽ D lasts until the last
node connects to infected nodes. Since the probability of removing a specific node with a
specific feature (the least connections with rare connection time) among all nodes, is low,
thus the changes for the ∽ D are low.
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Table 2: Impact of node removal on network structure across four datasets. For each
proportion p, the table reports the number of nodes (N), edges (E), average degree (⟨k̂⟩),
and three types of diameters: ∼ D, τD and ∗D.

Data set p N E ⟨k⟩ ∼ D τD ∗D

High school

1 327 5818 17.79 2526 209 56
0.1 296 4751 16.05 2543 382 394
0.2 253 3519 13.90 3114 402 400
0.3 244 3179 13.2 5054 403 397
0.4 197 2203 11.18 5007 55 49
0.5 165 1529 9.26 2526 126 30
0.6 115 746 6.48 6163 764 1262
0.7 100 538 5.38 6119 1289 1252
0.8 67 221 3.29 4889 1273 1252
0.9 29 40 1.37 6152 6152 3484

Conference

1 403 9565 23.73 3408 421 410
0.1 365 7594 20.80 3408 1375 1364
0.2 312 5507 17.65 2507 442 429
0.3 277 4333 15.64 3163 1382 1383
0.4 241 3430 14.23 3408 451 450
0.5 207 2588 12.50 2819 1163 1353
0.6 146 1216 8.32 2596 970 1353
0.7 115 691 6.00 3197 1114 1353
0.8 80 353 4.41 2651 1025 1356
0.9 34 56 1.63 3197 3508 2234

Hospital

1 75 1139 15.18 331640 24700 20100
0.1 66 846 12.81 330460 16100 9160
0.2 60 696 11.6 346360 334340 331640
0.3 49 504 10.28 333740 274380 267720
0.4 47 464 9.87 331640 96700 95140
0.5 36 285 7.91 331640 25040 17800
0.6 33 170 5.15 336040 75960 34780
0.7 23 138 6.0 331440 173220 171920
0.8 11 20 1.81 336220 94980 94320
0.9 7 5 0.71 338020 173320 91620

workplace

1 217 4247 19.69 955980 18100 17240
0.1 197 3620 18.37 955980 13580 7960
0.2 165 2433 14.74 955980 96680 259180
0.3 152 1983 13.04 961120 5000 1620
0.4 135 1631 12.08 955980 277740 259180
0.5 121 1391 11.49 955980 99340 93860
0.6 87 654 7.51 966940 6660 1280
0.7 65 399 6.13 707520 21440 1340
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0.8 51 252 4.94 636060 117760 5680
0.9 23 59 2.56 704160 122180 2140

Figure 9 presents Pearson correlation heatmaps for four distinct datasets, highlighting the
relationships among key network parameters such as network size, edge count, average
degree, and various types of diameter.
Across all four datasets, a strong positive correlation is observed among the three types of
diameter, indicating that they tend to vary together. Additionally, the temporal average
degree shows a direct relationship with both the number of temporal edges and the number
of nodes — as the number of edges increases relative to the number of nodes, the average
degree also increases.
Most notably, an inverse correlation exists between the average degree and all three types
of diameter. This means that as the average degree decreases, the diameters increase,
reflecting the intuitive notion that sparser networks tend to have longer paths between
nodes.

3 Conclusions and Future Directions

In this study, we introduced a comprehensive mathematical framework to quantify the
concept of diameter in temporal networks. Unlike traditional static approaches, our model
incorporates time-dependent connectivity and captures the dynamic nature of real-world
interactions. Central to our framework are new definitions such as the Effective Diameter
(∽ D), Peak Diameter (∗D), and τ -Diameter (τD), which collectively offer a nuanced
understanding of temporal reachability and information flow.
We validated our model through extensive simulations across networks of varying sizes
and degree distributions. The results revealed consistent trends, specifically, a decrease in
effective diameter with increased average degree and an increase in diameter with larger
network sizes. These outcomes confirm our theoretical expectations and demonstrate the
applicability of our framework in modeling real-world dynamics.
To evaluate the accuracy of our model, we conducted quantitative comparisons using
RMSE, MSE, and absolute error metrics. The low error margins underscore the robustness
of our approach, though deviations in networks with Poisson-like degree distributions
suggest opportunities for refinement in such contexts.
We further applied our framework to four empirical temporal networks: high school, hos-
pital, workplace, and conference datasets, to investigate the effect of node removal on
different diameter metrics. The results showed that τD and peak diameter are more sen-
sitive to node removal than effective diameter, indicating the complex interplay between
temporal structure and network resilience.
Our findings lay the groundwork for several promising directions for future research. One
potential extension involves integrating more sophisticated temporal models that capture
bursty behavior and heterogeneous interaction patterns. Additionally, incorporating node
and edge attributes, such as roles or weights, could provide deeper insights into how
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structural properties influence temporal connectivity. Finally, applying this framework to
domain-specific problems, such as epidemic modeling, cybersecurity, or mobility networks,
could yield practical strategies for improving resilience and efficiency in time-sensitive
systems.
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4 Appendix

The algorithm for Dynamic simulation
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Algorithm 1 Simulation of procedure to find diameter in teporal networks

1: procedure FindDiameterDynamic
2: visited step: The step at which the flow reaches the node
3: step← 0: counter of steps
4: visited [ ] : an array of visited nodes
5: active steps [ , ] EdgeCount×MaximumSteps: 2d binary array defining the steps a link

is active. Each row is generated based on the main distribution.
6: diameter← 0
7: reachableSet[ ]: an array of nodes visited in each step. Reachable set of that

step
8: temp reachableSet[ ]: temporary array to keep the newly visited nodes
9: while legth(visited) < NodeCount do
10: diameter += 1
11: for vi in reachableSet do
12: for nej in vi.neighbors() do
13: edgeId = edge(vi,nej)
14: if active steps[edgeId,step] == 1 and vi.visitedStep < step and nej

not in visited then
15: visited.add(nej)
16: nej.visitedStep = step
17: temp reachableSet.add(nej)
18: end if
19: end for
20: end for
21: visited += reachableSet
22: reachableSet = temp reachableSet
23: step +=1
24: end while
25: return diameter
26: end procedure



133 Diameter in Temporal Networks/ JAC 57 issue 1, August 2025, PP. 112–133

(a) (b)

(c) (d)

Figure 9: Pearson correlation heatmaps illustrating the relationships between key pa-
rameters across four datasets: (a) High School, (b) Conference, (c) Hospital, and (d)
Workplace. The color scale ranges from -1 to 1, where red denotes strong positive corre-
lations and blue represents strong negative correlations.


