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ABSTRACT ARTICLE INFO

Long, human-generated passwords pose significant chal-
lenges to both classical and quantum attacks due to
their irregular structure and large search space. In this
work, we propose an enhanced classical–quantum hy-
brid attack specifically designed for this scenario. Our
approach constructs rainbow tables using dictionary-
based password generation augmented with transforma-
tion rules that better capture real-world user behavior.
These tables are organized into buckets, enabling faster
lookup and reduced space complexity. For the search
within each bucket, we employ a distributed exact vari-
ant of Grover’s algorithm. This method provides de-
terministic success and significantly lower circuit depth,
enhancing robustness against noise—particularly depo-
larizing errors common in near-term quantum devices.
Overall, our hybrid framework improves the efficiency
and practicality of password recovery for long, human-
readable passwords in realistic adversarial settings.
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1 Introduction

The growing use of lengthy, user-created passwords has weakened the effectiveness of con-
ventional password-cracking techniques. Such passwords, typically built from recognizable
words or easy-to-remember sequences, often evade detection by traditional brute-force
methods and standard rainbow table attacks.
In addition, the anticipated rise of quantum computing introduces new challenges and op-
portunities in password recovery. Although Grover’s algorithm offers a quadratic speedup
for unstructured search, its direct application remains impractical in many real-world
scenarios due to its high circuit depth and probabilistic nature.
To address these challenges, we revisit and extend the use of structured rainbow tables
for human-generated passwords. Building on prior work that introduces a “smart dic-
tionary” using dictionary generators and transformation rules [6], we adopt a structured
approach. Passwords are broken down into components governed by composition patterns.
This modeling captures human tendencies and enables compact, realistic coverage of the
password space. As a result, precomputation becomes feasible even for long passwords.
Based on this foundation, we propose a hybrid classical–quantum password cracking
framework with two key innovations:

• We partition the smart dictionary-derived rainbow table into buckets based on struc-
tural similarity or indexing heuristics. This reduces space complexity and enables
fast, targeted lookups—particularly suitable for quantum memory access.

• We use a distributed exact Grover variant [7] to perform quantum search within
each bucket. This method offers deterministic success and lower quantum circuit
depth, making it more robust to depolarizing noise.

This paper is organized as follows: Section 2 covers fundamentals, Section 3 presents
our hybrid quantum-classical approach, Section 4 shows experimental outcomes, with
implementation details and conclusions following in Sections 5 and 6.

2 Background

This section covers the rainbow table attack method, human password pattern analysis,
and a modified Grover quantum search approach.

2.1 Review of Rainbow Table Attack

Rainbow tables are a time–memory trade-off technique used to invert cryptographic hash
functions, particularly for password recovery. Originally introduced by Oechslin [4], they
allow attackers to precompute chains of hash outputs while storing only the first and last
elements of each chain. This approach significantly reduces memory usage while enabling
efficient lookups during the attack phase.



136 MA. Khajeian/ JAC 57 issue 1, August 2025, PP. 134–145

2.1.1 Rainbow Table Structure

A rainbow table is composed of multiple chains, where each chain represents a sequence
of alternating hash and reduction operations. The construction begins with a starting
plaintext x0, which is hashed to produce y0 = H(x0). This hash is then reduced using a
reduction function R1 to obtain the next plaintext x1 = R1(y0). The process continues
for t steps, alternating between hash and reduction functions:

x0
H−→ y0

R1−→ x1
H−→ y1

R2−→ · · · Rt−→ xt

Only the starting plaintext x0 and the final output xt are stored, forming the (x0, xt) pair
that represents the chain. To minimize chain collisions—where distinct inputs lead to the
same endpoint—each reduction step uses a different function Ri.

2.1.2 Table Generation and Parameters

The effectiveness of rainbow tables depends on several key parameters. The chain length
t determines how many reduction steps are applied per chain. Longer chains reduce the
number of required chains but increase lookup time. The number of chains m affects the
table’s coverage—more chains improve success rates but require more storage.
Reduction functions R1, R2, . . . , Rt convert hash outputs back into candidate plaintexts.
The generation process is illustrated in Algorithm 1.

Algorithm 1 Ordinary Rainbow Table Generation

Require: Dictionary of starting plaintexts, chain length t
Ensure: Rainbow table entries
1: for all Sstart in dictionary do
2: S ← Sstart

3: for i← 1 to t do
4: y ← H(S) ▷ Apply hash function
5: S ← Ri(y) ▷ Apply reduction function Ri

6: end for
7: Store pair (Sstart, Send) in table
8: end for

2.1.3 Rainbow Table Lookup Process

To look up a key in a rainbow table, the following procedure is used: First, apply the
reduction function Rn−1 to the ciphertext and check if the result matches any endpoint
in the table. If a match is found, the corresponding chain can be reconstructed using the
starting point. If no match is found, the process continues by applying Rn−2 followed
by fn−1 to check if the key appears in the second-to-last column of the table. This
process is repeated iteratively, applying Rn−3, fn−2, fn−1, and so on. The total number of
calculations required is t(t−1)

2
[4].
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2.2 Modeling Human Passwords

Zhang et al. [6] proposed an improved rainbow table attack targeting long, human-
readable passwords. Traditional rainbow tables use fixed dictionaries and uniform reduc-
tion functions, which fail to capture the irregular patterns found in real-world passwords.
To address this, the authors introduced a smart dictionary generated from high-frequency
words and substrings in leaked datasets, combined with human-like transformation rules.
These transformations include capitalizing letters, appending digits or years, using leets-
peak substitutions (e.g., “o” to “0”), and inserting symbols. The result is a compact yet
realistic password candidate set that reflects common user behavior without expanding
the search space excessively. In their evaluation, the improved method achieved a success
rate of 83% when recovering SHA1 hashes, demonstrating its effectiveness in cracking
long, human-structured passwords.

2.3 Distributed Exact Grover’s Algorithm

The Distributed Exact Grover’s Algorithm (DEGA) [7] partitions the original n-qubit

search problem into ⌊n/2⌋ subfunctions {gi}⌊n/2⌋−1
i=0 . Each subfunction gi is derived from

the target Boolean function f(x) by fixing selected groups of input bits.
For i ∈ {0, 1, . . . , ⌊n/2⌋−2}, the first 2i bits and the last (n−2(i+1)) bits of x are fixed.
This yields 2n−2 subfunctions fi,j : {0, 1}2 → {0, 1} defined as

fi,j(mi) = f(yj,0 · · · yj,2i−1mi yj,2i · · · yj,n−3),

where mi ∈ {0, 1}2 is the variable input and yj enumerates all (n− 2)-bit configurations.
Each gi is then constructed as

gi(mi) = OR (fi,0(mi), fi,1(mi), . . . , fi,2n−2−1(mi)) , (1)

with

OR(x) =

{
1, |x| ≥ 1

0, |x| = 0

and |x| denoting the Hamming weight.
For the final case i = ⌊n/2⌋ − 1, the first 2i bits of x are fixed, and the remaining n− 2i
bits constitute the variable input mi. The subfunction is given by

fi,j(mi) = f(yj,0 · · · yj,2i−1mi),

where the dimensionality of mi depends on the parity of n:

n− 2i =

{
2, if n is even

3, if n is odd
.

Then gi is defined as

gi(mi) = OR
(
fi,0(mi), fi,1(mi), . . . , fi,22i−1(mi)

)
. (2)



138 MA. Khajeian/ JAC 57 issue 1, August 2025, PP. 134–145

This partitioning guarantees that the global target state τ can be exactly reconstructed
from the solutions of the subfunctions {gi}, with each gi isolating a distinct segment of τ .
Consequently, we obtain ⌊n/2⌋ subfunctions gi(mi) based on f(x) and the parameter n, for
i ∈ {0, 1, . . . , ⌊n/2⌋ − 1}. We assume that each Oracle Ugi can be efficiently constructed.
For i ∈ {0, 1, . . . , ⌊n/2⌋ − 2}, the Oracle is defined as

Ugi(x) : |x⟩ → (−1)gi(x)|x⟩, (3)

where x ∈ {0, 1}2, and τi is the unique input satisfying gi(τi) = 1.
For the final subfunction gi : {0, 1}n−2i → {0, 1}, we distinguish two cases. If n is even,
gi has a 2-bit input and the same Oracle form as in Eq. (3) applies. If n is odd, a phase
Oracle is used:

Rgi(x) : |x⟩ → eiϕ·gi(x)|x⟩, (4)

where x ∈ {0, 1}3, i = ⌊n/2⌋ − 1, and τi satisfies gi(τi) = 1. The phase ϕ is given by

ϕ = 2arcsin

(
sin
(

π
4J+6

)
sin θ

)
, J =

⌊
π/2− θ

2θ

⌋
, θ = arcsin

(√
1

23

)
. (5)

Algorithm 2 Distributed Exact Grover’s Algorithm

Require: The number of qubit n ≥ 2; Oracle function f : {0, 1}n → {0, 1} where
f(x) = 0 for all x ∈ {0, 1}n except τ , for which f(τ) = 1; ⌊n/2⌋ subfunctions gi(x) as in
Eq. (1) and Eq. (2), generated according to f(x) and n, where i ∈ {0, 1, · · · , ⌊n/2⌋−1}.

Ensure: Target state |τ⟩ with certainty

1: Apply H⊗n to obtain |ψ⟩ = 1√
2n

∑
x∈{0,1}n

|x⟩

2: for i = 0 to ⌊n/2⌋ − 2 do
3: Apply Gi = −H⊗2U0H

⊗2Ugi(x)

4: where U0 = I⊗2 − 2(|0⟩⟨0|)⊗2 and Ugi(x) = I⊗2 − 2|τi⟩⟨τi|
5: end for
6: Let i = ⌊n/2⌋ − 1
7: if n is even then
8: Apply Gi to final pair of qubits
9: else
10: Apply Li = −H⊗3R0H

⊗3Rgi(x) twice
11: where R0 = I⊗3 + (eiϕ − 1)(|0⟩⟨0|)⊗3 and Rgi(x) = I⊗3 + (eiϕ − 1)|τi⟩⟨τi| ▷ See

Eq. (5)
12: end if
13: Measure all qubits in the computational basis to obtain τ

The Distributed Exact Grover procedure is described in Algorithm 2. To verify the
correctness of the Distributed Exact Grover’s Algorithm (DEGA), it suffices to show that
Algorithm 2 yields the target index string τ ∈ {0, 1}n exactly [7].
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3 Methodology

Our methodology builds upon the approach developed by [6], which demonstrated that
human-chosen passwords exhibit predictable patterns regardless of length requirements.
Based on this foundation, we introduce our improved attack framework.

3.1 Dictionary Generators

Our implementation adopts the dictionary generator framework of [6] to construct opti-
mized rainbow tables for password recovery. This methodology enables efficient process-
ing of lengthy passwords while preserving human memorability patterns. To maximize
occurrence probability, we employ three systematic collection approaches: (1) statistical
analysis of compromised password datasets, (2) Markov model-generated strings that cap-
ture probabilistic character sequences, and (3) fundamental linguistic elements specific to
target demographics.
The structural organization follows identifiable composition patterns, where each pattern
component serves a distinct function. For example, the ”WNS” pattern comprises three
elements: a word component (W) such as ”pass”, a numeric segment (N) like ”1234”,
and special symbols (S) including ”$$”. This structured approach ensures comprehensive
coverage of common password constructions.

3.2 Transform Rules

The framework incorporates configurable transformation rules that systematically mod-
ify dictionary entries to match prevalent password variations. Common transformations
include case shifting operations (e.g., ”pass” to ”Pass”), special character substitutions
(e.g., ”E” to ”3”), and complete string reversals (e.g., ”well” to ”llew”). The system’s
modular design permits seamless integration of additional transformation rules, enabling
precise control over dictionary generation parameters while maintaining computational
efficiency.

3.3 Improved Rainbow Table Generation

To achieve high success rates, password recovery typically requires extremely large dic-
tionaries, which presents significant storage challenges. While adopting rainbow table
concepts can optimize storage, this approach necessitates redefining the core rainbow
table computation functions to accommodate generator-set constraints.
A critical component is the reduction function R : H → P , which maps hash values
back to plaintext values. Practical implementations commonly decompose R(·) into two
sequential operations for improved efficiency:

1. HashToIndex(·): Transforms a hash value into an index or intermediate represen-
tation
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2. IndexToPlain(·): Converts the index into a valid plaintext within the target do-
main

The HashToIndex function implementation follows the design specified in Algorithm 3,
while IndexToPlain operates as detailed in Algorithm 4. Using these components, we
generate optimized rainbow tables through the process formalized in Algorithm 5.

Algorithm 3 HashToIndex

Require: Hash H, total plaintext candidates N = |G1| × |G2| × · · · × |Gk|
Ensure: Index i ∈ {0, 1, . . . , N − 1}
1: Hint ← BinaryToInteger(H) ▷ Convert hash to integer
2: i← Hint mod N ▷ Map to plaintext space size
3: return i

Algorithm 4 IndexToPlain

Require: Index i, generator set G = {G1, G2, . . . , Gk}, composition pattern P , transform
rules R

Ensure: Target plaintext T
1: Initialize empty plaintext T
2: for each generator type Gj ∈ P do ▷ Iterate by pattern order (e.g., ”WNS”)
3: Tspace ← |Gj| ▷ Size of generator subset (e.g., |Gwords| = 399)
4: n← ComputeExtensionRatio(R, Gj) ▷ e.g., n = 2 if R includes case shifting
5: Text ← Tspace × n
6: subindex← i mod Text ▷ Local index within extended generator space
7: gbase ← Gj[subindex mod Tspace] ▷ Select base generator
8: gtarget ← ApplyTransform(gbase,R) ▷ Apply rules (e.g., ”pass” → ”P@ss”)
9: T ← T ∥ gtarget ▷ Append to plaintext
10: end for
11: return T

3.4 Bucket Creation

Building on [5]’s bucket concept, we constrain Grover’s search space by hashing plaintext
to k-bit integers and distributing them into buckets, achieving both endpoint distinction
and tractable search complexity (Algorithm 6).



141 MA. Khajeian/ JAC 57 issue 1, August 2025, PP. 134–145

Algorithm 5 Rainbow Table Generation Using Smart Dictionary

Require: Hash function h, generator types G, composition pattern P , transform rules R
Ensure: Rainbow table T
1: for each chain do
2: S ← RandomStartIndex()
3: for t iterations do ▷ t = chain length
4: T ← IndexToPlain(S,G, P,R) ▷ Use Algorithm 4
5: H ← h(T )
6: S ← HashToIndex(H) ▷ Use Algorithm 3
7: end for
8: Store (Sstart, Send) in T
9: end for
10: return T

Algorithm 6 Bucket Creation

Require: Plaintext end, k-bit hash function k bit hash
Ensure: Updated buckets structure
1: end hashed← k bit hash(end)
2: bucket key ← ⌊end hashed/k⌋ ▷ Key ∈ {0, . . . , ⌈2k/k⌉ − 1}
3: if bucket key /∈ buckets then
4: buckets[bucket key]← empty list
5: end if
6: buckets[bucket key].append(end hashed mod k) ▷ Offset ∈ {0, . . . , k − 1}

3.5 Rainbow Table Search Using DEGA

In a classical rainbow table, the hash is reduced to a plaintext, and a linear search is
conducted over a list of plaintexts at the end of the rainbow table chains. In our approach,
we also reduce the hash to a plaintext using Algorithms 3 and 4, then proceed to search for
it within predefined buckets. First, a classical linear search checks whether the bucket key
of the target plaintext exists. If the bucket key is not found in the bucket list, the quantum
search is skipped entirely, and the process immediately moves to the previous chain,
saving time. If the bucket key exists, we invoke the Distributed Exact Grover’s Algorithm
(DEGA) to search within the bucket. When DEGA successfully identifies the target, a
linear search is performed to locate the corresponding hash, and the chain is reconstructed
to retrieve the original plaintext. If DEGA fails to find the result, the process continues
with the previous chain. This process repeats until all chains are examined. If no match
is found after all iterations, the algorithm concludes that the hash is not present in the
rainbow table. The complete rainbow table search using DEGA is outlined in Algorithm 7.
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Algorithm 7 Rainbow Table Search with Distributed Exact Grover Search

Require:
Htarget: Target hash value to recover
T : Rainbow table with:
Tstart: Start points [P1, . . . , Pn]
Tend: End hashes [h1, . . . , hn] (precomputed k-bit hashes)
B: Bucket structure (from Algorithm 6)
k bit hash: k-bit hash function
hash: Full cryptographic hash function

Ensure:
Recovered plaintext P or None if not found

1: H ← Htarget

2: for i← 1 to max chain length do ▷ Iterate over possible chain positions
3: h← H
4: for j ← 0 to i− 1 do
5: P ← IndexToPlain(HashToIndex(h),G, Ppattern,R)
6: if j < i− 1 then
7: h← hash(P )
8: end if
9: end for
10: hk ← k bit hash(P )
11: bucket key← hk ÷ k
12: if bucket key /∈ B then
13: continue
14: end if
15: lookup← hk mod k
16: result← DistributedExactGroverSearch(B[bucket key], lookup)
17: if result = True then
18: idx← index of hk in Tend hashed

19: if P ̸= Tend[idx] then
20: continue
21: end if
22: Pcandidate ← Tstart[idx]
23: hcandidate ← hash(Pcandidate)
24: for m← 1 to max chain length− i do ▷ Rebuild chain
25: Pcandidate ← IndexToPlain(HashToIndex(hcandidate),G, Ppattern,R)
26: hcandidate ← hash(Pcandidate)
27: if hcandidate = Htarget then
28: return Pcandidate

29: end if
30: end for
31: end if
32: end for
33: return None
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4 Results

This section analyzes our attack’s quantum search phase, comparing noise resilience and
success rates across Grover’s algorithm variants.

4.1 Noise Impact on Grover Variants

To assess the robustness of Grover-based search methods under quantum noise, we eval-
uate their performance using a depolarizing channel model. Figure 1 compares three
approaches: the original Grover’s algorithm, a modified variant, and the Distributed Ex-
act Grover’s Algorithm (DEGA), testing their performance on bucket searches of size
16.
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Figure 1: Probability of measuring the target state τ = 0011 for the original Grover’s
algorithm, modified Grover’s algorithm, and DEGA under depolarizing noise.

4.2 Success Probability

Figure 2 compares the success probabilities of the original Grover’s algorithm, modified
Grover’s algorithm, and DEGA across 2–5 qubit systems.
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Figure 2: Probability of measuring target states τ ∈ {11, 001, 1100, 01011} across Grover
variants. Both DEGA and the modified Grover’s algorithm demonstrate improved exact-
match performance compared to the original algorithm.

5 Code Availability

We provide an implementation of the Distributed Exact Grover’s Algorithm (DEGA)
for our quantum search phase, developed using the PennyLane framework [1]. The
implementation includes simulations under both ideal and noisy conditions to evaluate
performance impacts on success probability. The complete source code is available at:
https://github.com/w0h4w4d4li/distributed-exact-grover-algorithm

6 Conclusion

In this work, we introduced a classical-quantum hybrid approach to password recovery
that effectively addresses the challenges posed by long, human-generated passwords. By
constructing structured rainbow tables using dictionary-based generation and transfor-
mation rules, we more accurately capture real-world password patterns. These tables are
efficiently organized into buckets, enabling faster and more scalable search operations. To
enhance quantum search within each bucket, we employed a distributed, exact variant of
Grover’s algorithm, which provides deterministic success and reduced circuit depth. This
design not only lowers overall quantum resource requirements but also improves resilience

https://github.com/w0h4w4d4li/distributed-exact-grover-algorithm
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to noise in near-term quantum devices. Our results demonstrate that integrating struc-
tured rainbow tables with optimized quantum search significantly improves the efficiency
and practicality of password recovery in both classical and quantum settings.
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