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ABSTRACT  ARTICLE INFO 
Airborne gravity gradient surveys yield 
comprehensive measurements of the Earth's gravity 
tensor, offering critical insights for geological 
structural analysis. These data facilitate the 
delineation of subsurface sources and the spatial 
extent of structures responsible for gravity 
anomalies through the integrated interpretation of 
each tensor component. Given the inherent gradient 
nature of the acquired data, their combined analysis 
serves as a robust tool for enhancing structural 
boundary detection. However, airborne gravity 
gradient measurements are often significantly 
contaminated by noise, necessitating the direct 
utilization of tensor components without further re-
derivative to ensure reliable identification of buried 
targets. In this study, we employ a novel sigmoid 
derivative function applied to the normalized 
components of the directional analytical signal of 
the gradient tensor to improve the resolution of 
buried target boundaries. 
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1   Introduction 

Edge enhancement in potential field data (gravity and magnetic) is a critical technique for 
interpreting subsurface geological features, such as faults, lithological boundaries, and mineral 
deposits. These methods enhance discontinuities in geophysical signals, facilitating more precise 
geological mapping and resource exploration [1,2]. However, the inherent non-uniqueness and 
noise susceptibility of potential field data pose significant challenges in accurately delineating 
edges. While first-order derivative-based approaches (e.g., horizontal gradient, tilt angle, and theta 
map) are commonly employed for edge detection, second-order derivatives have also been utilized 
[3]. Conventional techniques, such as derivative-based filters, often amplify high-frequency noise, 
whereas upward continuation tends to attenuate shallow structural features [4]. Recent 
advancements in edge detection algorithms (e.g., tilt angle, theta map, and normalized total 
horizontal derivative) and machine learning applications (e.g., convolutional neural networks) seek 
to optimize the trade-off between sensitivity and robustness [5-7]. Traditional derivative-based 
methods remain foundational; for instance, the horizontal gradient magnitude (HGM) [8] locates 
edges by identifying maxima in the first horizontal derivative, while the tilt derivative (TDR) [9] 
normalizes the vertical gradient by the total horizontal gradient to enhance edge resolution. 
Nevertheless, these approaches are inherently noise-sensitive and may generate artifacts in low 
signal-to-noise-ratio (SNR) environments [4].  

To overcome these limitations, advanced enhancement techniques have been developed. The 
analytic signal amplitude method integrates horizontal and vertical derivatives, generating 
amplitude maxima that coincide with source boundaries [10,11]. Recent innovations include 
hyperbolic edge detectors, such as the total horizontal derivative of the tilt angle [12] and its 
normalized variants [5], which exhibit enhanced edge resolution while preserving robustness 
against noise. These methods exploit higher-order derivatives to sharpen edge delineation and 
mitigate spurious artifacts of non-geological origin. 

Multiscale approaches have emerged to address the inherent depth ambiguity in potential field 
data. Wavelet transform methods analyze field anomalies at multiple scales, enabling simultaneous 
detection of both shallow and deep-seated structures [13]. Similarly, Euler deconvolution, when 
applied with appropriate structural indices, can simultaneously estimate edge locations and source 
depths [14,15]. These methods have proven particularly valuable in complex geological settings 
where structures occur at multiple depth levels [16]. 

The advent of machine learning has opened new frontiers in edge detection. Deep learning 
frameworks, especially those employing U-Net architectures, have demonstrated exceptional 
capability in automated edge identification while exhibiting significant noise resilience [17]. These 
data-driven methods possess the capacity to extract intricate patterns from extensive training 
datasets, offering potential solutions to certain constraints inherent in conventional physics-based 
methods. However, their implementation necessitates substantial quantities of high-fidelity 
training data and often suffers from reduced interpretability compared to traditional approaches. 
Notwithstanding these technological advancements, several critical challenges persist in edge 
detection applications: (1) achieving optimal trade-offs between sensitivity to near-surface features 
and deeper structural resolution, (2) developing noise suppression techniques capable of 
preserving authentic geological boundaries, and (3) enhancing computational performance to 
accommodate increasingly large-scale geophysical surveys.  
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Conventional gravity surveys have traditionally depended on scalar measurements of the vertical 
gravitational field component [1]. In contrast, modern technological developments, particularly 
full tensor gravity gradiometry (FTG), now enable multi-component acquisition of the complete 
gravity gradient tensor, yielding superior resolution and enhanced sensitivity to subsurface density 
variations. Edge detection techniques are crucial in interpreting potential field data, as they help 
identify geological boundaries, such as faults, intrusions, and basin margins. However, the 
application of these techniques to FTG data remains an area of active research due to the increased 
dimensionality and information content of tensor measurements. The gravity gradient tensor 
provides additional constraints on subsurface structures, as each component responds differently 
to lateral density variations. Edge detection methods adapted for FTG data, such as the symmetric 
eigenvalue analysis [18,19], the modulus of full tensor gravity gradient [20] or the invariants-based 
approach [21], offer improved localization of geological boundaries compared to conventional 
scalar-based methods.  

Noise in potential field data—whether from instrumentation errors, terrain effects, or cultural 
interference—significantly degrades the performance of edge detection algorithms, often leading 
to false anomalies and reduced interpretability. High-frequency noise can artificially enhance 
gradient-based edge detectors. Conversely, low-frequency noise (e.g., regional trends or platform 
motion in airborne surveys) may suppress subtle discontinuities, particularly in tensor gravity 
gradiometry data, where small-amplitude signals are critical. Given the deleterious impact of noise 
on boundary detection methodologies and the inherent noise susceptibility of airborne gravity 
gradient tensor measurements, this study employs a novel approach combining normalized 
directional analytical signal functions with a sigmoid derivative operator. Our methodology 
directly utilizes the original measured gravity gradient tensor components as inputs to the sigmoid 
derivative, bypassing conventional approaches that require additional numerical differentiation of 
input data - a process known to amplify noise artifacts. This integrated framework enables robust 
boundary detection while maintaining the signal fidelity of the original measurements, thereby 
mitigating the noise propagation issues inherent in traditional derivative-based edge detection 
algorithms. 

 

2   Full tensor gravity data 
The FTG data acquisition system measures the complete Gravity Gradient Tensor (GGT), 
delivering a high-resolution characterization of subsurface density variations. In contrast to 
traditional gravity surveys, which are limited to recording only the vertical component of the 
gravitational field (𝐺௭), FTG captures all five independent components of the GGT. This 
comprehensive measurement enhances structural resolution and mitigates interpretational 
ambiguities in geophysical inversion [22]. Following Pedersen and Rasmussen (1990), we review 
key properties of the GGT. The gravitational potential 𝑈 generated by an anomalous density 
distribution 𝜌 within a volume 𝑉 is expressed as 

𝑈(𝒓) = −𝛾 ∫
ఘ(𝒓ᇲ)

|𝒓ି𝒓ᇲ|
𝑑𝑣ᇱ

௏
, 

Here, 𝒓 and 𝒓ᇱ represent the observation and integration points, respectively, and 𝛾 denotes the 
universal gravitational constant. The gravitational gradient tensor at location 𝒓, generated by a 
density distribution 𝜌(𝒓ᇱ), is given by [23]: 

Γ௜௝(𝒓) = −𝛾 ∫ 𝜌(𝒓ᇱ)
డమ

డ௫೔డ௫ೕ

ଵ

|𝒓ି𝒓ᇲ|
𝑑𝑣ᇱ

௏
, 
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where 𝑥௜ or 𝑥௝ correspond to the three orthogonal coordinate axes. Consequently, the gravity 
gradient tensor 𝚪 expressed as: 

𝚪 =
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The GGT can also be written as 

𝚪 =
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where the gravitational field vector 𝑮 = (𝐺௫,𝐺௬,𝐺௭) represents the three components of the 
gravity field [21]. In source-free regions (free space), the gravitational potential 𝑈 satisfies 
Laplace’s equation [1], 

𝑑𝑖𝑣 𝑮 = ∇. 𝐆 = ∇ଶ𝑈(𝒓) = 0 
Consequently, the trace of the tensor 𝑇𝑟𝑎𝑐𝑒(𝚪) = 𝐺௫௫ + 𝐺௬௬ + 𝐺௭௭ = 0. In addition, the curl of 𝑮 
field is zero 

𝑐𝑢𝑟𝑙 𝑮 = ∇ × 𝐆 = ተተ

𝑖        𝑗      𝑘
𝜕

𝜕𝑥
    

𝜕

𝜕𝑥
    

𝜕

𝜕𝑥
𝐺௫    𝐺௬    𝐺௭

ተተ = 0 

According to above Equation, the gravity gradient tensor 𝚪 is symmetric,  
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According to the above formulas, 𝚪 can be rewritten as, 

𝚪 = ቎

𝐺௫௫          𝐺௫௬        𝐺௫௭                 

𝐺௫௬          𝐺௬௬        𝐺௬௭                

𝐺௫௭          𝐺௬௭      − (𝐺௫௫ + 𝐺௬௬)
቏ 

Consequently, the preceding analysis demonstrates that the GGT can be fully characterized 
through measurement of just five independent components, as dictated by its inherent symmetry 
properties. 
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3   Sigmoid derivative mapping 

Beiki (2010) established the mathematical formulation for the directional analytical signal 
amplitude as follows [24]: 

𝐴௫ = ට𝐺௫௫
ଶ + 𝐺௫௬

ଶ + 𝐺௫௭
ଶ 

𝐴௬ = ට𝐺௬௫
ଶ + 𝐺௬௬

ଶ + 𝐺௬௭
ଶ 

𝐴௭ = ට𝐺௭௫
ଶ + 𝐺௭௬

ଶ + 𝐺௭௭
ଶ 

The subscripts x, y, and z correspond to the three orthogonal spatial directions. Maxima in 𝐴௫ 
delineate north-south oriented edges, while maxima in 𝐴௬ identify east-west oriented boundaries. 
The vertical component 𝐴௭ represents the conventional analytical signal as defined by [25]. To 
facilitate comparison between directional components, we employ a normalized ratio function 𝑅 
expressed as:  

𝑅 =
𝐴௭

ට𝐴௫
ଶ + 𝐴௬

ଶ

 

The sigmoid function (also called the logistic function) is an S-shaped, monotonically increasing 
function that maps real numbers to an (0,1) interval [26]. It is defined as: 

𝜎(𝑥, 𝑃) =
1

1 + 𝑒ି௫/௉
 

and its derivative equals to, 

𝜎ᇱ(𝑥, 𝑃) =
1

𝑃
𝜎(𝑥, 𝑃)[1 − 𝜎(𝑥, 𝑃)] 

Figure 1 illustrates the sigmoid function and its corresponding derivative across six distinct 
parameter values (𝑃). Subsequent analysis will employ this function to characterize the spatial 
variation of parameter 𝑅. 
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Figure 1: Sigmoid function and its derivative for different value of P 

4   Numerical experiment 

To assess the effectiveness of the proposed boundary detection algorithm, a comprehensive 
numerical simulation was conducted utilizing gravity gradient tensor data. This simulation was set 
within a defined area measuring 1000 meters in both length and width, where three distinct 
geological structures were modeled. These structures were assigned density contrasts of 0.8, 1, and 
0.9 𝑔𝑟/𝑐𝑚ଷ, respectively, in relation to the surrounding medium, arranged sequentially from left 
to right. The depths of these structures were specified at 50, 150, and 100 meters. An open source 
framework "SimPEG" was used to simulate data [27]. The simulated geological configuration is 
illustrated in two distinct sections—horizontal and depth—depicted in Figure 2. To enhance 
realism, the generated data incorporated noise, characterized by a standard deviation equivalent to 
one percent of the maximum data value, with a mean of zero. The three-component gravity field 
data are illustrated in Figure 3, with Figure 4 displaying the complete gravity gradient tensor 
representation. Accurate delineation of the three synthetic source bodies requires implementation 
of advanced boundary detection methodologies, highlighting the critical role of novel analytical 
approaches in modern geophysical interpretation. 
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Figure 2: The visualization density contrast of synthetic multi source model, (a) plan view at depth 200 m, 
and (b) cross section along profile AA’ 

Figure 3: Three directional components of gravity data for synthetic multi source model. Data have been 
corrupted with 1% random Gaussian noise 
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Figure 4: Full tensor gradients of gravity data for synthetic multi source model. Data have been corrupted 
with 1% random Gaussian noise 

 

Following the computation of the normalized 𝑅 value derived from the directional analytical 
signals, the sigmoid derivative function was evaluated across six distinct values of 𝑃, ranging from 
0.5 to 2. The resulting data was visually represented in Figure 5, specifically in the second and 
third rows. Additionally, this analysis was extended along the 𝐴𝐴′ profile illustrated in Figure 2, 
with the outcomes for varying 𝑃 values displayed in the first row of Figure 5. Notably, as the value 
of 𝑃 increases, the delineation of the three hypothesized targets becomes increasingly distinct, 
showcasing a remarkable separation between their boundaries. These delineations exhibit a strong 
correlation with the initially presented boundaries, which had proven challenging to extract from 
the gravity gradient tensor data. Furthermore, it is significant to highlight that along the 𝐴𝐴′ profile, 
the minimum points of the curves effectively indicate the centers of the three targets, reinforcing 
the accuracy of the analysis. 
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Figure 5: Sigmoid derivative mapping of full tensor gravity data for synthetic multi source model. The 
first row is derivative plot along profile AA’ for different value of P. The second and third rows are 

derivative plots for the whole area for different value of P 
 

5   Conclusions 

A principal challenge in subsurface boundary detection using gravity anomalies stems from the 
inherent noise contamination in field measurements. The efficacy of directional derivative-based 
methods deteriorates significantly with increasing noise-to-signal ratios, a phenomenon 
particularly acute in airborne gravity gradient tensor surveys due to their characteristically elevated 
noise levels. To overcome these limitations, our study implements a two-stage analytical 
framework. First, we generate a normalized directional analytical signal map directly from the 
acquired measurements. Subsequently, we apply a sigmoid derivative operator that successfully 
enhances the boundaries of synthetic targets, demonstrating significant improvements in both edge 
resolution and positional accuracy.. 
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