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ABSTRACT  ARTICLE INFO 
Machine learning models for breast cancer 
diagnosis are often hindered by the high 
dimensionality of clinical datasets, where many 
features are redundant or irrelevant. To address this 
challenge, this paper proposes a novel hybrid 
feature selection method, the Relevance-Based 
Sailfish Optimizer Feature Selection (RBSOFS), 
designed to identify a minimal yet highly 
informative subset of features. The RBSOFS 
approach was implemented and evaluated on the 
Breast Cancer Wisconsin dataset, with the selected 
features being fed into five established classifiers: 
Naive Bayes (NB), Random Forest (RF), Support 
Vector Machine (SVM), Decision Tree (DT), and 
Logistic Regression (LR). Significantly, this 
algorithm was obtained using a subset of only 6-7 
features, a drastic reduction that leads to simpler 
and more computationally efficient models 
compared to competing methods. The findings 
indicate that RBSOFS is a robust and effective 
framework for enhancing breast cancer diagnosis. 
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1. Introduction 

The vast amount of data generated in the healthcare domain presents a significant opportunity for 
creating intelligent systems capable of diagnosing and treating various diseases [1]. In particular, 
machine learning techniques have gained substantial interest for developing diagnostic systems 
for the early detection of life-threatening diseases such as breast cancer. Early and accurate 
diagnosis is paramount for improving patient outcomes and reducing mortality rates. However, a 
critical challenge in building such systems is the high-dimensional nature of medical datasets, 
which often contain noisy and redundant features. The inclusion of these features can lead to issues 
like overfitting and ultimately degrade the performance of predictive models [2, 3]. 

To address this curse of dimensionality, feature selection (FS) serves as a crucial preprocessing 
step [4]. The primary goal of FS is to identify and select a subset of the most informative features, 
thereby improving learning efficiency, reducing computational costs, and enhancing model 
generalization [5]. An effective FS method seeks to find a feature subset with two key properties: 
maximum relevance to the target class (i.e., the diagnosis) and minimum redundancy among the 
selected features themselves [6]. While numerous FS algorithms exist, traditional or exhaustive 
methods are often computationally infeasible for complex, high-dimensional data. Consequently, 
metaheuristic optimization algorithms have been widely adopted as a powerful and efficient 
approach for tackling this complex search problem [1]. 

This paper proposes a novel method, Relevance-Based Sailfish Optimizer Feature Selection 
(RBSOFS), to improve the accuracy of breast cancer diagnosis by identifying an optimal feature 
subset from the Breast Cancer Wisconsin (Diagnostic) dataset. The key contributions and benefits 
of this work are: 

 Demonstrating Superior Diagnostic Accuracy: We show through extensive experiments 
that the proposed RBSOFS method achieves a higher and more robust classification 
accuracy compared to both a baseline model (using all features) and eight other state-of-
the-art metaheuristic algorithms across five different classifiers. 

 Achieving a Better Trade-off between Accuracy and Complexity: The primary benefit of 
our method is its ability to significantly reduce model complexity without sacrificing 
performance. RBSOFS identifies a minimal subset of highly relevant features (e.g., 6-7 
features), outperforming methods that rely on more than double that number. This results 
in diagnostic models that are simpler, computationally faster, and more easily interpretable 
for clinical use. 

 Introducing a Novel Hybrid FS Framework: We present a new two-stage hybrid feature 
selection model. This model first uses a relevance-based filter to efficiently discard 
irrelevant features and then leverages the exploration and exploitation capabilities of the 
Sailfish Optimizer to pinpoint the most effective feature combination from the remaining 
candidates. 

The remainder of this paper is organized as follows. Section 2 provides the necessary theoretical 
background on feature selection and metaheuristic algorithms. Section 3 reviews the relevant 
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literature on state-of-the-art methods and their applications in healthcare. Section 4 details the 
proposed RBSOFS methodology. Section 5 presents the experimental results, including the 
comparative analysis and discussion of the findings. Finally, Section 6 concludes the paper, 
summarizing the key achievements, limitations, and directions for future work. 

2. Background 

This section covers the fundamental concepts of feature selection, metaheuristic algorithms, and 
the learning algorithms used in this study. 

2.1. Feature Selection (FS) 

Feature selection is a crucial data preprocessing technique used to select an optimal subset of 
features from the original dataset without altering them. The general process, as illustrated in 
Figure 1, typically involves four main stages: generating a candidate feature subset [7], evaluating 
the subset's quality using a specific strategy [8], validating the subset against certain criteria, and 
applying a stopping condition to terminate the process. 

FS algorithms are broadly classified into three main categories based on how they interact with 
the machine learning model [9-11]: 

 Filter methods rank features based on their intrinsic statistical properties (e.g., correlation) 
without involving any learning algorithm. 

 Wrapper methods use the predictive performance of a specific learning algorithm to 
evaluate the quality of a feature subset. While often achieving high accuracy, they are 
computationally expensive because the learning algorithm must be trained repeatedly. 

 Embedded methods integrate the feature selection process directly into the construction of 
the learning model, offering a compromise between the filter and wrapper approaches [12, 
13]. 

The methodology in this paper incorporates a hybrid approach, leveraging the strengths of these 
different strategies. Table 1 provides a summary of the advantages and disadvantages of each 
approach. 

 

Figure 1. Feature selection process. 
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Table 1: Advantages and disadvantages of feature selection approaches. 

D
is

ad
va

n
ta

ge
s 

A
d

va
n

ta
ge

s 
 

M
et

ho
d

 

Lower Accuracy and Higher 
Error Probability 

Class-Independence, Cost-
Effective, Good 
Generalizability 

Filter 

Higher Computational Cost, 
Reduced Processing Speed, Risk 

of Overfitting 

Higher Accuracy, Classifier 
Interaction, Ability to 

Identify Feature 
Dependencies 

Wrapper 

Feature Selection Is Integrated 
with the Classification Process 

High Accuracy, Suitable 
Generalizability, Low 
Computational Cost 

Embedded 

 

2.2. Metaheuristic algorithms 

Finding the optimal feature subset is an NP-hard problem, making exhaustive search methods 
computationally impractical for most real-world datasets [14, 15]. For this reason, metaheuristic 
algorithms have become a popular and effective strategy [16, 17]. These are high-level 
optimization frameworks, often inspired by natural or biological processes, designed to find a near-
optimal solution in a reasonable time frame [18]. A key strength of metaheuristics is their ability 
to balance exploration (searching broadly across the solution space) and exploitation (focusing the 
search on promising areas), which is essential for navigating the complex FS landscape [19]. Their 
ability to handle non-analytical, black-box objective functions makes them a powerful choice for 
wrapper-based feature selection [20, 21]. 

2.3. Learning algorithms 

To assess the quality of the feature subsets selected by different methods, this study uses five well-
established classification algorithms: 

 Naive Bayes (NB): A simple probabilistic classifier based on Bayes' theorem with strong 
independence assumptions [22, 23]. 

 Support Vector Machine (SVM): A powerful classifier that finds an optimal hyperplane to 
separate data points into different classes [24, 25]. 

 Logistic Regression (LR): A statistical model used to predict a binary outcome, such as the 
presence or absence of a disease [26, 27]. 

 Decision Tree (DT): A non-parametric model that uses a tree-like structure of decisions 
and their possible consequences [28, 29, 30]. 
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 Random Forest (RF): An ensemble learning method that constructs a multitude of decision 
trees during training to improve predictive accuracy and control overfitting [31, 32]. 

3. Related Works 

This section reviews the relevant literature from two key perspectives. First, it examines recent 
advancements in the development of metaheuristic algorithms for the feature selection problem. 
Second, it explores the application of these techniques within the healthcare domain, with a 
particular focus on cancer diagnosis, to contextualize the contributions of this study. 

3.1. Feature Selection with Metaheuristic Algorithms 

A robust learning model is built by identifying and eliminating irrelevant and redundant 
information. A feature selection method reduces computational and processing costs while 
improving model performance. Recent literature on metaheuristic-based feature selection 
demonstrates several key trends aimed at enhancing search efficiency and classification accuracy. 
One prominent approach involves improving or hybridizing well-established algorithms [33, 34]. 
For instance, researchers have enhanced the Whale Optimization Algorithm (WOA) by 
incorporating operators from Darwinian evolution to avoid local optima [35] and adapted the 
Firefly Algorithm (FA) for greater efficiency in practical applications [36]. Similarly, hybrid 
models have been proposed to leverage the strengths of multiple optimizers, such as combining 
the Grey Wolf Optimizer (GWO) with the Harris Hawks Optimizer (HHO) [37], or creating a 
hybrid method based on the Dynamic Butterfly Optimization Algorithm (DBOA) to specifically 
improve the balance between exploration and exploitation [38]. 

Another line of research focuses on developing novel algorithmic variants or applying them to 
specific FS contexts. This includes designing problem-specific genetic algorithms like PS-NSGA 
to handle multiple objectives effectively [39], creating multi-population versions of Particle 
Swarm Optimization (PSO) to improve solution diversity and initialization [40], and utilizing 
WOA within a multi-objective framework that simultaneously optimizes both filter and wrapper 
criteria [41]. 

A summary of these representative works, highlighting their core components and reported 
disadvantages, is presented in Table 2. 

 

Table 2: Related works on feature selection with metaheuristic algorithms. 
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3.2. Feature Selection in Healthcare 

The high dimensionality of medical data means that combining all available features with powerful 
classifiers can lead to overfitting and poor generalization. In a clinical context, using the wrong 
models can be disastrous, leading to incorrect diagnoses. Therefore, feature selection is a critical 
step in building reliable healthcare diagnostic systems. 

In the specific context of breast cancer (BC), various studies have utilized feature selection to 
improve diagnostic accuracy. These efforts range from applying general Knowledge Data 
Discovery (KDD) frameworks to identify key features for early BC identification [42], to 
proposing novel wrapper-based models using algorithms like the Grasshopper Optimization 
Algorithm (GOA) to reduce the number of features while maintaining high accuracy [43]. Other 
works have focused on developing Computer-Aided Diagnosis (CAD) systems for analyzing 
mammogram images, employing unique algorithms such as the intelligent water drop (IWD) to 
extract the most critical features from image data [44]. 

The application of these techniques extends to other areas of oncology as well. For example, 
feature selection has been crucial in improving the classification of dermoscopic images for early 
melanoma detection, where binary variants of the Harris Hawk Optimization (HHO) algorithm 
were used to select significant visual features [45]. Furthermore, in the domain of cancer 
classification using high-dimensional microarray data, the combination of Particle Swarm 
Optimization (PSO) with ensemble learning methods has proven to be an effective strategy [46]. 
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A review of the literature reveals that while significant progress has been made, several challenges 
remain. Some of the proposed methods suffer from high computational complexity [37] or a lack 
of generalization, making their performance dependent on the specific characteristics of the dataset 
[40]. A more critical gap, however, lies in the trade-off between classification accuracy and model 
simplicity. Many existing algorithms select a relatively large number of features to achieve high 
accuracy, which can result in models that are complex, slow, and difficult to interpret in a clinical 
setting. Therefore, a clear need exists for an efficient feature selection framework that can identify 
a minimal yet powerful subset of features to build a highly accurate and parsimonious diagnostic 
model. This study addresses this gap by proposing the RBSOFS method, specifically designed to 
maximize predictive accuracy while using the smallest possible number of features. 

4. Proposed Method 

This section details the components of our proposed methodology, including the relevance 
computation, the Sailfish Optimizer, the dataset used, and the overall framework. 

4.1. Relevance computation 

A feature can be relevant to a class label (C) either individually or in combination with other 
variables. Feature relevance is typically described as strongly relevant, weakly relevant, or 
irrelevant. A strongly relevant feature contains information that cannot be replaced by any other 
feature without a loss of predictive power. Weakly relevant features provide useful information 
but can be substituted by other features. Irrelevant features provide no useful information, and their 
removal can improve data quality without information loss [47-49]. The formal conditions for 
these relevance levels for a given feature fi are summarized in Table 3. 

4.2. Sailfish Optimizer (SO) 

Group hunting by arthropods, fish, birds, and mammals is a good example of social behavior. 
Group hunting requires less effort from predators than hunting alone. It is simplest to have 
predators attack prey without any coordination, whereas it is most complex to herd and catch prey 
using specific roles and strategies. 

 

 

 

Table 3: Relevance levels for feature fi. 
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It is based on an attack-alternation strategy for a group of hunting sailfish that hunt a school of 
sardines [50]. It saves energy for the hunters to use this hunting strategy. It examines two 
populations: sailfish and sardines. The variables of the problem are sailfish positions in the search 
space, which are the candidate solutions. Sailfish and sardine search agents are mostly randomized 
by the algorithm. While sailfishes are scattered in the search space, sardines help find the best 
solution based on their positions. Pi

SoBest gives the position of the elite sailfish after the i-th 
iteration. Pi

SdInjured determines the position of those "injured" sardines at iteration i. Sailfish and 
sardines are updated every iteration. According to Eq. (1), the new position Pi+1

So of a sailfish is 
determined at (i+1)-th iteration by using "elite" sailfish and "injured" sardines. 

1 1 ( )
2

i i
SoBest SdInjuredi i i

So SoBest i So

P P
P P rnd P  

    
      (1) 

The previous position of the sailfish is denoted by Pi
So, rnd is a random number between 0 and 1, 

and µi indicates a coefficient calculated using Eq. (2). 

2i rnd P D P Dr r              (2) 

PrD is the prey density, which indicates how many preys are encountered each time. As the number 
of prey decreases, PrD decreases with each iteration. 

1 So

So Sd

Num
PrD

Num Num
 

          (3) 

NumSo is the number of sailfish and NumSd is the number of sardines. 

So Sd tNum Num nPrc 
         (4) 

Where Prcnt indicates how many sardines make up the initial sailfish population. The number of 
sailfishes is always higher than the number of sardines at the beginning of any season. Sardine 
positions are updated in each iteration according to Eq. (5). 

1 (0,1) ( )i i i
Sd SoBest SdP rnd P P ATK             (5)  

(1 (2 ))ATK A itr k              (6)  

P i
Sd and P i+1

Sd  represent the previous and updated position of the sardine, and ATK represents 
the sailfish's attack power at iteration itr. Based on ATK, sardines update their positions and move 
a certain amount. Search agents are more likely to converge if the ATK is reduced. The number of 
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sardines (γ) and the number of variables (δ) that update their position are calculated using ATK as 
follows: 

SdNum ATK  
          (7) 

v ATK              (8) 

NumSd is the number of sardines and v is the number of variables. Sardines are eliminated from 
their population if one becomes fitter than any sailfish, causing the sailfish to update its position 
in relation to that sardine. A random selection of sailfish and sardines ensures exploration of the 
search space. Sardines are able to escape sailfish after every iteration because sailfish reduce their 
attack power after each iteration. The ATK parameter balances exploration and exploitation. 

4.3. Breast Cancer Wisconsin (Diagnostic) Dataset 

This study utilizes the Breast Cancer Wisconsin (Diagnostic) dataset from the UCI Machine 
Learning Repository [51]. The dataset consists of 569 instances, each belonging to one of two 
diagnostic classes: malignant or benign. It includes 30 real-valued features that are computed from 
a digitized image of a fine needle aspirate (FNA) of a breast mass. These features describe 
characteristics of the cell nuclei, such as radius, texture, perimeter, and area. 

4.4. Proposed Relevance-based Sailfish Feature Selection (RBSOFS) 

The proposed methodology in this study follows the Knowledge Discovery process, as illustrated 
in the flowchart in Figure 2. The process is organized into several distinct phases: 

1. Preprocessing and Data Splitting: The initial phase involves preparing the raw data. This 
includes handling outliers and normalizing the features. Following preprocessing, the 
dataset is split into a training set (60% of the data) and a testing set (40%) to ensure a robust 
evaluation and prevent model overfitting. 

2. Hybrid Feature Selection (RBSOFS): Our proposed method, RBSOFS, employs a two-
stage hybrid approach. 

 Filter Stage: First, a relevance-based filter is applied to the training data. This step 
calculates the correlation between each feature and the target class, discarding any 
irrelevant or weakly correlated features to reduce the search space. 

 Wrapper Stage: The core of the method involves applying the Sailfish Optimizer 
(SO) to the filtered feature set. Since feature selection is a binary problem, a binary 
version of the SO algorithm is used. This requires a sigmoid transfer function, 
shown in Eq. (9) and Figure 3, to map the continuous position values of an agent to 
a probability. Then, as detailed in Eq. (10), this probability is used to update the 
agent's position to a discrete binary value (0 for non-selection, 1 for selection). The 
fitness of each feature subset generated by RBSOFS is evaluated using five 
renowned classifiers (NB, RF, SVM, LR, and DT) with a 10-fold cross-validation 
scheme. 
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3. Evaluation and Comparison: The final phase involves a comprehensive performance 
evaluation. The model equipped with RBSOFS is compared against two benchmarks: (1) 
a baseline model using all 30 features, and (2) the same five classifiers combined with eight 
other state-of-the-art metaheuristic algorithms. The performance is measured using 
multiple evaluation metrics, including Accuracy, Recall, Precision, and F1-score, based on 
the information from the confusion matrix [52]. 

 

Figure 2. Flowchart of the proposed method . 

1
( )

1 x
T x

e 
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Figure 3. Transfer function for converting continuous search space to binary. 

 

1 ( ( ))
( )

0 ( ( ))

d
d

d

if rnd T X t
X t

if rnd T X t

  
         (10) 

5. Results and Discussion on UCI BCWD 

This section presents and discusses the experimental results obtained from applying the proposed 
method to the UCI Breast Cancer Wisconsin (Diagnostic) dataset. 

5.1. Parameter tuning 

The performance of any metaheuristic algorithm is sensitive to its parameter settings. For the 
proposed RBSOFS algorithm, the key parameters are the population size (controlled by Prcnt) and 
the maximum number of iterations. The Prcnt parameter, as defined in Eq. (4), dictates the balance 
between the algorithm's exploration and exploitation capabilities. 

Our experiments indicated a clear trade-off: decreasing the Prcnt value leads to a larger search 
population (Num_sd), which enhances exploration and generally increases classification accuracy. 
However, this also significantly increases the computational time. 

To achieve an optimal balance between high accuracy and computational efficiency, a value of 
Prcnt = 0.1 was set for all subsequent experiments. The control parameters for the other compared 
algorithms and the classifiers, which were set based on common values from the literature, are 
detailed in Table 4. 

 

 

 

Table 4: Control parameters. 
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Constant Factor = 0.5 

FA 

Number of particles = 5 
Max-Iter = 30 
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SSA 
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Max-Iter = 30 
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C1, C2 = 2 

DT Classifier 
Random_state = 100 

Max_depth=3 

SVM Classifier 
C=2 

Kernel = 'linear' 
RF Classifier n_estimators = 300 

 

5.2. Evaluation metrics 

To evaluate the performance of the classification models, several standard metrics derived from 
the confusion matrix are used. The core components of the confusion matrix are True Positives 
(TP), False Positives (FP), True Negatives (TN), and False Negatives (FN). 

 Accuracy: This represents the proportion of all instances that were correctly classified. 
While a good general indicator, it can be misleading in datasets with imbalanced classes. 

T P T N
A ccuracy

T P T N F P F N




     (11) 
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 Recall (Sensitivity): This measures the proportion of actual positive instances (patients with 
cancer) that were correctly identified by the model. High recall is crucial in medical 
diagnosis to minimize the number of missed cases (False Negatives). 

T P
R eca ll

T P F N


      (12) 

 Precision: This measures the proportion of instances predicted as positive that were 
actually positive. It answers the question: "Of all the patients the model flagged as having 
cancer, what percentage actually did?".  

TP
Precision

TP FP


     (13) 

 F1-Score: This is the harmonic mean of Precision and Recall, providing a single metric 
that balances the two. It is particularly useful when dealing with imbalanced classes, as is 
common in medical datasets. 

( )
1 2

Precision Recall
F score

Precision Recall


  

   (14) 

5.3. Preprocessing 

As outlined in the methodology, the dataset underwent a preprocessing phase to ensure data quality 
before model training. This process involved two primary steps: data normalization and outlier 
removal. First, all 30 features were normalized to scale them to a common range, preventing 
features with larger values from disproportionately influencing the model. Figure 4 displays the 
boxplot of the features before this step, illustrating their wide-ranging scales. In contrast, Figure 5 
shows the features after normalization, where they exhibit a more uniform distribution. Next, an 
outlier detection algorithm was applied to the normalized data to identify and remove anomalous 
instances that could negatively impact the training process. Figures 6 and 7 visualize this process 
for two sample features, where an outlier score is calculated for each data point. Data points whose 
scores exceeded a predefined threshold were flagged as outliers and subsequently removed from 
the dataset, as illustrated in Figure 8. This resulted in a cleaner, more robust dataset for the 
subsequent classification phases. 
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Figure 4. The boxplot of features before normalization. 

 

 

Figure 5. Boxplot of features after normalization. 
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Figure 6. Scatterplot of the BCWD. 

 

 

Figure 7. Outlier scores of the data points. 
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Figure 8. Outliers in the BCWD according to outlier scores . 

 

5.4. Feature Reduction Using Correlation Analysis 

This section presents the results of the initial filter phase, where features with low correlation to 
the target class were identified and removed. Figure 9 displays a heatmap of the correlation matrix 
for all 30 initial features, revealing that many features are highly correlated with each other, while 
some have a weak correlation with the target class.  To systematically reduce the feature set, 
different correlation thresholds were evaluated, as summarized in Table 5. This table shows how 
the number of remaining features decreases as the correlation threshold increases. Based on this 
analysis, a threshold of 0.5 was selected for this study. Features with a correlation value below this 
threshold were considered weakly relevant or irrelevant and were subsequently discarded.  This 
filtering process significantly reduced the feature space by half, from 30 initial features to 15 
remaining features. The correlation heatmap for this reduced and more relevant feature set is 
shown in Figure 10. 

Table 5: The effect of threshold value on features. 
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0.5 15 15 
0.6 10 20 
0.7 8 22 
0.8 0 30 

 

 

Figure 9. Correlation between features. 

 

5.5. Impact of Feature Selection on Model Performance 

To validate the effectiveness of the proposed RBSOFS method, this section compares the 
performance of the five classifiers under two scenarios: (1) using all 30 features (baseline "Without 
FS" model) and (2) using the optimal feature subset selected by RBSOFS.  The results, summarized 
in Table 6, demonstrate the significant and positive impact of our feature selection method. 
Applying RBSOFS led to a substantial improvement in the accuracy of all five classifiers. For 
instance, the Random Forest (RF) and Logistic Regression (LR) models achieved the peak 
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accuracy of 98.24% with the selected features, an increase of over 5% and 4% respectively 
compared to the baseline. The most dramatic improvement was observed with the Support Vector 
Machine (SVM) classifier, whose accuracy surged by 6.72% (from 91.22% to 97.94%) after 
feature selection.  These findings confirm that removing irrelevant and redundant features via 
RBSOFS not only simplifies the models but also consistently and significantly enhances their 
predictive accuracy. 

 

Figure 10. Correlation between feature with threshold 0.5. 

 

Table 6: Accuracies obtained by the proposed method and without FS method . 
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RBSOFS 98.24 97.07 97.94 97.13 98.24 
Without FS 94.15 93.56 91.22 91.22 92.98 
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5.6. Comparative Analysis and Discussion 

This section presents a comprehensive comparative analysis of the proposed RBSOFS method 
against eight other state-of-the-art feature selection algorithms. The discussion is structured to 
highlight the superiority, stability, and underlying reasons for the method's success. 

5.6.1. Superiority in Performance Metrics 

As detailed in Tables 7 through 11, the RBSOFS method consistently outperformed all competing 
algorithms when paired with each of the five classifiers (LR, DT, SVM, NB, and RF). In nearly 
all test cases, RBSOFS achieved the highest accuracy, Recall, Precision, and F1-score. 

The most significant finding, however, is that RBSOFS achieved these superior results while using 
the fewest features. A prime example is the comparison with the Logistic Regression (LR) 
classifier (Table 7): RBSOFS achieved 98.24% accuracy and 99.08% F1-score with only 6 
features. In contrast, the next-best method (PSO) required 15 features to reach a lower accuracy of 
96.42%. This ability to create a highly accurate yet far more compact model is the primary 
advantage of the proposed method and was a consistent trend across all classifiers. The high Recall 
(e.g., 98.18% with LR) and perfect Precision (100% with LR) further underscore the model's 
reliability for medical diagnosis, minimizing missed cases while avoiding false alarms. 

Table 7: Comparison of the proposed method and competing metaheuristic methods based on evaluation 
criteria (LR Classifier). 
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DE + LR 92.40 15 91.08 91.57 91.32 
FA + LR 91.80 16 90.01 90.01 90.01 

FPA + LR 94.01 16 93.43 91.57 92.47 
GWO + LR 94.90 15 95.61 93.28 94.43 

JA + LR 93.73 14 95.28 94.69 95.11 
SCA + LR 94.27 14 95.00 95.00 95.00 
SSA + LR 94.73 16 93.25 92.98 93.11 
PSO + LR 96.42 15 96.77 93.75 95.23 

RBSOFS+ LR 98.24 6 100 98.18 99.08 

 

Table 8: Comparison of the proposed method and competing metaheuristic methods based on evaluation 
criteria (DT Classifier). 
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FA + DT 94.32 16 93.53 92.66 93.09 

FPA + DT 92.80 17 93.44 90.47 91.93 
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GWO + DT 93.82 15 89.08 90.17 89.62 
JA + DT 92.80 15 94.26 94.53 94.39 

SCA + DT 92.45 16 94.02 93.44 93.72 
SSA + DT 94.08 16 93.88 92.34 93.10 
PSO + DT 95.66 14 96.77 92.30 94.48 

RBSOFS + DT 97.07 6 100 98.36 99.17 

 

Table 9: Comparison of the proposed method and competing metaheuristic methods based on evaluation 
criteria (SVM Classifier). 
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DE + SVM 94.55 15 91.49 90.94 91.21 
FA + SVM 95.43 16 95.76 95.47 95.61 

FPA + SVM 94.50 14 92.75 92.19 92.46 
GWO + SVM 94.96 15 93.43 91.56 92.48 

JA + SVM 94.55 15 94.34 93.12 93.72 
SCA + SVM 95.08 16 92.98 90.78 91.86 
SSA + SVM 95.66 15 94.26 94.53 94.39 
PSO + SVM 97.65 14 96.72 95.45 96.08 

RBSOFS + SVM 97.94 7 96.92 100 98.43 

 

Table 10: Comparison of the proposed method and competing metaheuristic methods based on evaluation 
criteria (NB Classifier). 
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SCA + NB 92.80 17 90.74 90.47 90.60 
SSA + NB 93.44 16 92.53 90.00 91.24 
PSO + NB 95.37 12 95.58 89.85 92.62 

RBSOFS + NB 97.13 6 96.96 96.96 96.96 
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Table 11: Comparison of the proposed method and competing metaheuristic methods based on evaluation 
criteria (RF Classifier). 
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DE + RF 94.71 15 92.50 92.50 92.50 
FA + RF 94.90 13 94.51 94.37 94.43 

FPA + RF 94.49 18 93.88 92.34 93.10 
GWO + RF 94.32 15 93.02 93.29 93.15 

JA + RF 94.09 15 91.21 88.75 89.96 
SCA + RF 94.26 18 93.53 92.66 93.09 
SSA + RF 95.72 14 93.54 94.07 93.80 
PSO + RF 97.52 15 96.92 94.28 95.58 

RBSOFS + RF 98.24 7 98.41 100 99.19 

 

5.6.2. Stability and Consistency of Results 

The stability of the proposed algorithm is visualized in the boxplots shown in Figures 11-15. These 
figures illustrate the distribution of accuracy results over multiple runs for each classifier. The 
boxplot for RBSOFS consistently shows a higher median accuracy (the red line), a smaller 
interquartile range (a tighter box, indicating less dispersion), and fewer outliers compared to the 
other methods. This indicates that RBSOFS is not only more accurate but also provides more stable 
and reliable performance. While PSO also showed acceptable stability, RBSOFS remained 
superior across all five classifier scenarios. 

 

Figure 11. The boxplot of methods (LR Classifier). 
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Figure 12. The boxplot of methods (DT Classifier). 

 

 

Figure 13. The boxplot of methods (SVM Classifier). 

 

 

Figure 14. The boxplot of methods (NB Classifier). 
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Figure 15. The boxplot of methods (RF Classifier). 

5.6.3. Discussion 

The consistent superiority of the RBSOFS method can be attributed to several key factors that 
create a synergistic and effective feature selection process.  First, the hybrid two-stage design is 
central to its success. The initial filter phase acts as an efficient and low-cost mechanism to prune 
the search space. By removing a significant number of features that have a low individual 
correlation with the target class, it provides a smaller, more manageable, and higher-quality set of 
candidate features. This step is crucial because it allows the more computationally intensive 
wrapper phase to focus its search on a region of the solution space that is already known to have 
high potential.  Second, this design creates an effective balance between exploration and 
exploitation, a critical aspect of any metaheuristic search. The filter stage can be viewed as a broad, 
high-level exploration that identifies the most promising area of the search space. The wrapper 
phase, driven by the sophisticated search mechanics of the Sailfish Optimizer, then performs a 
deep and focused exploitation within this refined area. This focused approach prevents the 
optimizer from wasting computational resources on unpromising regions and increases the 
probability of discovering a compact, globally near-optimal feature set.  Finally, from a practical 
machine learning perspective, the drastic reduction in feature dimensionality has significant 
benefits. The parsimonious models produced by RBSOFS, which use as few as 6 features, are less 
susceptible to overfitting and are to generalize better to new, unseen data. From a clinical 
viewpoint, these simpler models are highly desirable as they are not only more computationally 
efficient but are also more interpretable, potentially reducing the number of clinical tests required 
for a diagnosis and increasing trust in the model's predictions. 

6. Conclusion and future works 

This study addressed the critical challenge of feature selection for breast cancer diagnosis from 
high-dimensional data. We introduced a novel hybrid method, Relevance-Based Feature Selection 
using Sailfish Optimizer (RBSOFS), which effectively identifies small, yet highly discriminative, 
feature subsets.  The experimental results validated the superiority of the RBSOFS framework. For 
example, by applying the LR classifier to the Breast Cancer Wisconsin (Diagnostic) dataset, the 
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proposed method achieved a peak classification accuracy of 98.24% while utilizing a minimal 
subset of only 6 to 7 features.  This performance, which represents an optimal balance between 
accuracy and model complexity, consistently surpassed eight other state-of-the-art algorithms 
across five different classifiers. The success of this approach stems from its effective two-stage 
design, where a filter pre-processes the search space, allowing the optimizer to efficiently pinpoint 
the most potent feature combination. In conclusion, RBSOFS proves to be a robust and efficient 
tool for building simpler and more interpretable models for breast cancer diagnosis, offering 
significant potential for clinical application. 

While the proposed method has demonstrated strong performance, it is important to acknowledge 
its limitations, which in turn suggest clear avenues for future research. First, the initial filter stage 
relies on univariate correlation and might overlook features that are valuable only through complex 
interactions; future work could explore more sophisticated filtering techniques. Second, like all 
metaheuristics, RBSOFS is stochastic and does not guarantee finding the global optimum; 
therefore, further enhancements to the optimization algorithm itself present another research 
direction.  Finally, the method was validated on a single benchmark dataset. The most critical next 
steps involve applying the RBSOFS framework to other complex medical datasets to test its 
generalizability, perhaps by integrating it with deep learning models. Furthermore, a collaboration 
with medical experts to provide a deeper biological interpretation of the selected features would 
be invaluable for further validating the clinical applicability of the model and enhancing trust in 
its predictions. 
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