

journal homepage: http://jac.ut.ac.ir

Group $\{1, -1, i, -i\}$ Cordial Labeling of sum of C_n and K_m for some m

M.K.Karthik Chidambaram
*1, S.Athisayanathan^{†2} and R.Ponraj^{‡3}

¹Department of Mathematics, St.Xavier's College ,Palayamkottai 627 002, Tamil Nadu, India. ²Department of Mathematics, St.Xavier's College ,Palayamkottai 627 002, Tamil Nadu, India.

³Department of Mathematics, Sri Paramakalyani College, Alwarkurichi–627 412, India.

ABSTRACT

Let G be a (p,q) graph and A be a group. We denote the order of an element $a \in A$ by o(a). Let $f: V(G) \to A$ be a function. For each edge uv assign the label 1 if (o(f(u)), o(f(v))) = 1 or 0 otherwise. f is called a group A Cordial labeling if $|v_f(a) - v_f(b)| \leq 1$ and $|e_f(0) - e_f(1)| \leq 1$, where $v_f(x)$ and $e_f(n)$ respectively denote the number of vertices labelled with an element x and number of edges labelled with n(n = 0, 1). A graph which admits a group A Cordial labeling is called a group A Cordial graph. In this paper we define group $\{1, -1, i, -i\}$ Cordial graphs and characterize the graphs $C_n + K_m (2 \leq m \leq 5)$ that are group $\{1, -1, i, -i\}$ Cordial.

ARTICLE INFO

Article history: Received 08, December 2016 Received in revised form 12, September 2017 Accepted 03, November 2017 Available online 01, December 2017

Keyword: Cordial labeling, group A Cordial labeling, group $\{1,-1,i,-i\}$ Cordial labeling.

AMS subject Classification: 05C78.

^{*}Corresponding author: M.K.Karthik Chidambaram. Email: karthikmat
5 @gmail.com $^\dagger a thisxc$ @gmail.com

[‡]ponrajmath@gmail.com

1 Introduction

Graphs considered here are finite, undirected and simple. Let A be a group. The order of $a \in A$ is the least positive integer n such that $a^n = e$. We denote the order of a by o(a). Cahit [3] introduced the concept of Cordial labeling. Motivated by this, we defined group A cordial labeling and investigated some of its properties. We also defined group $\{1, -1, i, -i\}$ cordial labeling and discussed that labeling for some standard graphs [1] . In this paper we characterize $C_n + K_2, C_n + K_3, C_n + K_4$ and $C_n + K_5$ that are group $\{1, -1, i, -i\}$ Cordial. Terms not defined here are used in the sense of Harary[5] and Gallian [4].

The greatest common divisor of two integers m and n is denoted by (m, n) and m and n are said to be *relatively prime* if (m, n) = 1. For any real number x, we denote by $\lfloor x \rfloor$, the greatest integer smaller than or equal to x and by $\lceil x \rceil$, we mean the smallest integer greater than or equal to x.

Given two graphs G and H, G + H is the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H) \cup \{uv/u \in V(G), v \in V(H)\}$. We need the following theorem. **Theorem 1.1** [1]

The Complete graph K_n is group $\{1, -1, i, -i\}$ Cordial iff $n \in \{1, 2, 3, 4, 7, 14, 21\}$. Theorem 1.2 [2]

The Wheel W_n is group $\{1, -1, i, -i\}$ Cordial iff $3 \le n \le 6$.

2 Group $\{1, -1, i, -i\}$ Cordial labeling of sum of C_n and K_m

Definition 1. Let G be a (p,q)graph and consider the group

 $A = \{1, -1, i, -i\}$ with multiplication. Let $f: V(G) \to A$ be a function. For each edge uv assign the label 1 if (o(f(u)), o(f(v))) = 1 or 0 otherwise. f is called a group $\{1, -1, i, -i\}$ Cordial labeling if $|v_f(a) - v_f(b)| \leq 1$ and $|e_f(0) - e_f(1)| \leq 1$, where $v_f(x)$ and $e_f(n)$ respectively denote the number of vertices labelled with an element x and number of edges labelled with n(n = 0, 1). A graph which admits a group $\{1, -1, i, -i\}$ Cordial labeling is called a group $\{1, -1, i, -i\}$ Cordial graph.

Example 2. A simple example of a group $\{1, -1, i, -i\}$ Cordial graph is given in Fig. 2.1.

We now investigate the group $\{1, -1, i, -i\}$ Cordial labeling of $C_n + K_m$ for $1 \le m \le 5$. $C_n + K_1$ is the Wheel and theorem 1.2 characterizes the Wheels that are group $\{1, -1, i, -i\}$ cordial.

Theorem 3. $C_n + K_2$ is group $\{1, -1, i, -i\}$ cordial iff $n \neq 3, 9$.

Proof. Let the vertices of C_n be labelled as $u_1, u_2, ..., u_n$ and let the vertices of K_2 be labelled as v_1, v_2 . Number of vertices of $C_n + K_2$ is n + 2 and number of edges is 3n + 1. If n=3, $C_3 + K_2 \approx K_5$ and by Theorem 1.1, K_5 is not group $\{1, -1, i, -i\}$ Cordial. If n=9, $C_9 + K_2$ has 11 vertices and 28 edges. There is no choice of 2 or 3 vertices so that 14 edges get label 1. So, $C_9 + K_2$ is not group $\{1, -1, i, -i\}$ Cordial. Thus, $n \neq 3, 9$. Conversely, suppose that $n \neq 3, 9$.

Case(1): $n + 2 \equiv 0 \pmod{4}$.

Let $n + 2 = 4k (k \in \mathbb{Z}, k \ge 2)$. Now each vertex label should appear k times. As number of edges is 12k - 5, one edge label appears 6k - 3 times and another 6k - 2 times. Label the vertices $v_1, u_1, u_2, \dots, u_{k-1}$ by 1. Label the remaining vertices arbitrarily so that k of them get label -1, k of them get label i and k of them get label -i.

Case(2): $n + 2 \equiv 1 \pmod{4}$.

Let $n + 2 = 4k + 1 (k \in \mathbb{Z}, k \ge 2)$. Now one vertex label should appear k + 1 times and each of the other three labels should appear k times. Number of edges = 3n + 1 = 3(4k - 1) + 1 = 12k - 2 and so each edge label appears 6k - 1 times. Label the vertices $v_1, u_1, u_2, \dots, u_{k-1}$ by 1. Label the remaining vertices arbitrarily so that k of them get label -1, k of them get label i and k + 1 of them get label -i.

Case(3): $n + 2 \equiv 2 \pmod{4}$.

Let $n + 2 = 4k + 2(k \in \mathbb{Z}, k \ge 1)$. When k=1, a group $\{1, -1, i, -i\}$ Cordial labeling of $C_4 + K_2$ is given in Table 1. Suppose $k \ge 2$. Now 2 vertex labels appear k + 1 times and 2 vertex labels appear k times. Number of edges = 12k + 1. So one edge label appears 6k times and another 6k + 1 times $(k \ge 2)$. Label the vertices $v_1, u_1, u_2, \dots, u_{k-1}$ by 1. Label the remaining vertices arbitrarily so that k vertices get label 1, k + 1 vertices get label i and k + 1 vertices get label -i.

Case (4): $n + 2 \equiv 3 \pmod{4}$.

Let n + 2 = 4k + 3. If k = 1, a group $\{1, -1, i, -i\}$ Cordial labeling of $C_5 + K_2$ is given in Table 1. k = 2, is impossible by assumption. Suppose $k \ge 3$. In this case, 3

n	v_1	v_2	u_1	u_2	u_3	u_4	u_5				
4	i	-i	1	1	-1	-1					
5	i	-i	1	-1	1	-1	i				

n i	1		-1
1.0	h	\cap	- 1
Ta	U		- 1

vertex labels appear k + 1 times and 1 vertex label appears k times. Number of edges = 3(4k + 1) + 1 = 12k + 4 and so each edge label should appear 6k + 2 times. Label the vertices $v_1, u_1, u_3, u_4, \dots, u_k (k \ge 3)$ with label 1. Label the other vertices arbitrarily so that k + 1 vertices get label -1, k + 1 vertices get label i and k + 1 vertices get label -i. That $C_n + K_2$ is group $\{1, -1, i, -i\}$ Cordial for $n \ne 3, 9$ follows from Table 2.

Nature of n	$v_f(1)$	$v_f(-1)$	$v_f(i)$	$v_f(-i)$	$e_f(1)$	$e_f(0)$
$n+2 \equiv 0 \pmod{4}$	k	k	k	k	6k - 2	6k - 3
$n+2 \equiv 1 \pmod{4}$	k	k	k	k+1	6k - 1	6k - 1
$n+2 \equiv 2(mod \ 4)$	k	k	k+1	k+1	6k	6k + 1
$n+2 \equiv 3(mod \ 4)$	k	k+1	k+1	k+1	6k + 2	6k + 2

Table	2
-------	---

Theorem 4. $C_n + K_3$ is group $\{1, -1, i, -i\}$ Cordial iff $n \neq 3$.

Proof. Let the vertices of C_n be labelled as $u_1, u_2, ..., u_n$ and let the vertices of K_3 be labelled as v_1, v_2, v_3 . Number of vertices of $C_n + K_3$ is n + 3 and number of edges is 4n + 3.

If n = 3, $C_3 + K_3 \approx K_6$ which is not group $\{1, -1, i, -i\}$ Cordial by Theorem 1.1. Conversely, assume $n \neq 3$. We need to prove that $C_n + K_3$ is group $\{1, -1, i, -i\}$ Cordial.

Case(1): $n + 3 \equiv 0 \pmod{4}$.

Let $n + 3 = 4k(k \in \mathbb{Z}, k \ge 2)$. Now each vertex label should appear k times. Number of edges = 4(4k - 3) + 3 = 16k - 9 and so one edge label appears 8k - 4 times and another 8k - 5 times. Label the vertices $v_1, u_1, u_3, u_5, \dots, u_{2k-3}$ by 1. Label the remaining vertices arbitrarily so that k of them get label -1, k of them get label i and k of them get label -i. Number of edges with label 1 = n + 2 + (k - 1)4 = 8k - 5.

Case(2):
$$n + 3 \equiv 1 \pmod{4}$$

Let $n + 3 = 4k + 1 (k \in \mathbb{Z}, k \ge 2)$. If k = 2, a group $\{1, -1, i, -i\}$ Cordial labeling of $C_6 + K_3$ is given in Table 3. Suppose $k \ge 3$. Now one vertex label should appear k+1 times and each of the other three labels should appear k times. Number of edges is 16k - 5

. Label the vertices $v_1, u_1, u_3, \dots, u_{2k-5}, u_{2k-4}, u_{2k-3} (k \ge 3)$ by 1. Label the remaining vertices arbitrarily so that k of them get label -1, k of them get label i and k of them

get label -i. Number of edges with label $1 = n + 2 + (k - 2)4 + 2 \times 3 = 8k - 2$. Case(3): $n + 3 \equiv 2 \pmod{4}$.

Let $n + 3 = 4k + 2(k \in \mathbb{Z}, k \ge 2)$. Now 2 vertex labels appear k + 1 times and 2 vertex labels appear k times. Number of edges = 16k - 1. So one edge label appears 8k times and another 8k - 1 times. Label the vertices $v_1, u_1, u_3, \dots, u_{2k-5}, u_{2k-3}, u_{2k-2}$ by 1. Label the remaining vertices arbitrarily so that k + 1 vertices get label -1, k vertices get label i and k vertices get label -i. Number of edges with label 1 = n + 2 + (2k - 2)2 + 3 = 8k. **Case (4):** $n + 3 \equiv 3 \pmod{4}$.

Let $n + 3 = 4k + 3(k \ge 1)$. If k = 1, n = 4. A group $\{1, -1, i, -i\}$ Cordial labeling of $C_4 + K_3$ is given in Table 3. Suppose $k \ge 2$. In this case, 3 vertex labels appear k + 1 times and 1 vertex label appears k times. Label the vertices $v_1, u_1, u_3, u_5, \dots, u_{2k-1}$ with label 1. Label the other vertices arbitrarily so that k + 1 vertices get label -1, k + 1 vertices get label i and k vertices get label -i. Number of edges with label 1 = 8k + 2.

That $C_n + K_2$ is group $\{1, -1, i, -i\}$ Cordial for $n \neq 3$ follows from Table 4.

n	v_1	v_2	v_3	u_1	u_2	u_3	u_4	u_5	u_6
4	-1	-1	i	1	i	1	-i		
6	-1	-1	i	1	i	1	1	-i	-i

Ta	ble	3
1a	bre	3

Nature of n	$v_f(1)$	$v_f(-1)$	$v_f(i)$	$v_f(-i)$	$e_f(1)$	$e_f(0)$
$n+3 \equiv 0 (mod \ 4)$	k	k	k	k	8k - 4	8k-5
$n+3 \equiv 1 (mod \ 4)$	k+1	k	k	k	8k - 3	8k-2
$n+3 \equiv 2(mod \ 4)$	k+1	k+1	k	k	8k - 1	8k
$n+3 \equiv 3(mod \ 4)$	k+1	k+1	k+1	k	8k + 1	8k+2

Table	4
-------	---

Theorem 5. $C_n + K_4$ is group $\{1, -1, i, -i\}$ Cordial iff $n \in \{3, 4, 5, 6, 7, 9, 10, 11, 13, 17\}.$

Proof. Let the vertices of C_n be labelled as $u_1, u_2, ..., u_n$ and let the vertices of K_4 be labelled as v_1, v_2, v_3, v_4 . Number of vertices of $C_n + K_4$ is n + 4. Number of edges is 5n + 6.

Case(1): $n + 4 \equiv 0 \pmod{4}$.

Let $n + 4 = 4k(k \ge 2)$. If 3 v_i 's are given label 1, we get (n + 3) + (n + 2) + (n + 1) = 3n + 6 = 12k - 6 edges with label 1. But we need only 10k - 7 edges with label 1. So at most 2 v_i 's are given label 1.

Subcase(i): $2 v_i$'s are given label 1.

If k=2, a group $\{1, -1, i, -i\}$ Cordial labeling of $C_4 + K_4$ is given in Table 5.

Suppose $k \geq 3$. Minimum number of edges that can get label 1 using k vertices is (8k - k)

3) + 4 + (k - 3)3 = 11k - 8. So , the necessary condition is , $10k - 7 \ge 11k - 8$ and so $k \le 1$ which is a contradiction.

Subcase(ii): One v_i is given label 1.

Maximum number of edges that can get label 1 now is (4k - 1) + (k - 1)5 = 9k - 6. To get a group $\{1, -1, i, -i\}$ Cordial labeling we need to have $9k - 6 \ge 10k - 7$ i.e. $k \le 1$, which is impossible.

Subcase(iii): No v_i is given label 1.

We need to have $k.6 \ge 10k - 7 \Longrightarrow 4k \le 7$ which is a contradiction. Thus in case 1 , we get n = 4.

Case(2): $n + 4 \equiv 1 \pmod{4}$.

Let $n + 4 = 4k + 1 (k \ge 2)$. If $3 v_i$'s are given label 1, we get (n + 3) + (n + 2) + (n + 1) = 3n + 6 = 12k - 3 edges with label 1. But we need only at most 10k - 4 edges with label 1. So at most $2 v_i$'s are given label 1.

Subcase(i): $2 v_i$'s are given label 1.

If k = 2, a group $\{1, -1, i, -i\}$ Cordial labeling of $C_5 + K_5$ is given in Table 5.

Suppose $k \ge 3$. Minimum number of edges that can get label 1 using k + 1 vertices is (8k - 1) + 4 + (k - 2)3 = 11k - 3. So the necessary condition is, $10k - 4 \ge 11k - 3$ or $10k - 5 \ge 11k - 3$ i.e. $k \le -1$ or $k \le -2$, both not possible. Minimum number of edges that can get label 1 using k vertices is, (8k - 1) + 4 + (k - 3)3 = 11k - 1 + 4 - 9 = 11k - 6. So the necessary condition is, $10k - 4 \ge 11k - 6$ or $10k - 5 \ge 11k - 6$ i.e. $k \le 2$ or $k \le 1$. Subcase(ii): One v_i is given label 1.

Now, maximum number of edges that can get label 1 using k+1 vertices is, (n+3)+k.5 = 4k+5k = 9k. So the necessary condition to get a group $\{1, -1, i, -i\}$ Cordial labeling is $9k \ge 10k - 4$ or $9k \ge 10k - 5$ i.e. $k \le 5$. If $3 \le k \le 5$, a group $\{1, -1, i, -i\}$ Cordial labeling of $C_k + K_5$ is given in Tables 5 and 6.

n	v_1	v_2	v_3	v_4	u_1	u_2	u_3	u_4	u_5	u_6	u_7	u_8	u_9	u_{10}
4	1	1	-1	-1	i	i	-i	-i						
5	1	1	-1	-1	i	i	i	-i	-i					
9	1	-1	-1	-1	1	i	1	1	i	i	-i	-i	-i	
13	1	-1	-1	-1	1	-1	1	i	1	i	1	i	i	-i
17	1	-1	-1	-1	1	-1	1	-1	1	i	1	i	1	i

Table 5

n	u_{11}	u_{12}	u_{13}	u_{14}	u_{15}	u_{16}	u_{17}
13	-i	-i	-i				
17	i	i	-i	-i	-i	-i	-i

Table 6

Subcase(iii): No v_i is given label 1.

We need to have $6(k+1) \ge 10k - 5 \Longrightarrow 4k \le 11 \Longrightarrow k \le \frac{11}{4}$. Thus in Case 2, we have $n \in \{5, 9, 13, 17\}$.

Case(3): $n + 4 \equiv 2 \pmod{4}$.

Let $n + 4 = 4k + 2(k \ge 2)$. If 3 v_i 's are given label 1, we get 3n + 6 = 12k edges with label 1. But we need only at most 10k - 2 edges with label 1. So at most $2 v_i$'s are given label 1. Subcase(i): $2 v_i$'s are given label 1.

Thus at least 2n + 5 = 8k + 1 edges will have label 1. So $k \leq \frac{3}{2}$ which is impossible. Subcase(ii): One v_i is given label 1.

Maximum number of edges that can get label 1 using k + 1 vertices is (n + 3) + k.5 = (4k-2+3)+5k = 9k+1. So the necessary condition to get a group $\{1, -1, i, -i\}$ Cordial labeling is $9k + 1 \ge 10k - 2 \Longrightarrow k \le 3$. If k = 2, n = 6 and if k = 3, n = 10. A group $\{1, -1, i, -i\}$ Cordial labeling of $C_6 + K_4$ and $C_{10} + K_4$ are given in Table 7.

n	v_1	v_2	v_3	v_4	u_1	u_2	u_3	u_4	u_5	u_6	u_7	u_8	u_9	u_{10}
6	1	-1	-1	-1	1	1	i	i	-i	-i				
10	1	-1	-1	-1	1	-1	1	i	1	i	i	-i	-i	-i

Subcase(iii): No v_i is given label 1.

We need to have $6(k+1) \ge 10k - 2 => 4k \le 8 => k \le 2$. Thus in Case 3 , we have $n \in \{6, 10\}$.

Case(4): $n + 4 \equiv 3 \pmod{4}$.

Let $n + 4 = 4k + 3(k \ge 1)$. Number of edges = 5(4k - 1) + 6 = 20k + 1. If $3v_i$'s are given label 1, we get 3n + 6 = 12k + 3 edges with label 1. But we need only at most 10k + 1edges with label 1. So at most $2v_i$'s are given label 1. **Subcase(i):** $2v_i$'s are given label 1.

Minimum number of edges that can get label 1 using k vertices is (n+3) + (n+2) + 4 + (k-3)3 = 11k-2 and minimum number of edges that can get label 1 using k+1 vertices is 11k + 1. Thus $10k + 1 \ge 11k - 2 \Longrightarrow k \le 3$ or $10k + 1 \ge 11k + 1 \Longrightarrow k \le 0$, both impossible. If k = 1, a group $\{1, -1, i, -i\}$ Cordial labeling of $C_3 + K_4$ is given in Table 8.

If k = 2, and if v_1 and v_2 are labelled with 1 then 19 edges get label 1. Thus, there is no choice of 2 or 3 vertices so that 20 or 21 edges get label 1.

If k = 3, a group $\{1, -1, i, -i\}$ Cordial labeling of $C_{11} + K_4$ is given in Table 8.

Subcase(ii): One v_i is given label 1. Maximum number of edges that can get label 1 using k vertices is (n + 3) + (k - 1)5 = (4k - 1 + 3) + 5k - 5 = 9k - 3. Maximum number of edges that can get label 1 using k + 1 vertices is (n + 3) + k.5 = (4k - 1) + 3 + 5k = 9k + 2. Thus $9k + 2 \ge 10k + 1$ or $2k + 2 \ge 10k + 1$ or 2k + 1 or

k + 1 vertices is (n + 3) + k.5 = (4k - 1) + 3 + 5k = 9k + 2. Thus $9k + 2 \ge 10k + 1$ or $9k + 2 \ge 10k$ so that $k \le 1$ or $k \le 2$. Also $9k - 3 \ge 10k + 1 => k \le -4$ which is a contradiction. When k = 2, a group $\{1, -1, i, -i\}$ Cordial labeling of $C_7 + K_4$ is given in table 8.

n	v_1	v_2	v_3	v_4	u_1	u_2	u_3	u_4	u_5	u_6	u_7	u_8	u_9	u_{10}	u_{11}
3	1	1	-1	-1	i	i	-i								
7	1	-1	-1	-1	1	i	1	i	i	-i	-i				
11	1	1	-1	-1	1	-1	-1	i	i	i	i	-i	-i	-i	-i

Subcase(iii): No v_i is given label 1.

Table 8

We need to have $6(k+1) \ge 10k+1$ or $6(k+1) \ge 10k$ so that $4k \le 5$ or $4k \le 6$. Otherwise we have, $6k \ge 10k+1$ or $6k \ge 10k$, both impossible. Thus in this Case, $n \in \{3, 7, 11\}$. The labelings given for $n \in \{3, 4, 5, 6, 7, 9, 10, 11, 13, 17\}$ are group $\{1, -1, i, -i\}$ Cordial is clear from Table 9.

n	$v_f(1)$	$v_f(-1)$	$v_f(i)$	$v_f(-i)$	$e_f(0)$	$e_f(1)$
3	2	2	2	1	10	11
4	2	2	2	2	13	13
5	2	2	3	2	16	15
6	3	3	2	2	18	18
7	3	3	3	2	21	20
9	4	3	3	3	25	26
10	4	4	3	3	28	28
11	3	4	4	4	30	31
13	5	4	4	4	35	36
17	6	5	5	5	46	45

Table 9

Theorem 6. $C_n + K_5$ is group $\{1, -1, i, -i\}$ Cordial iff n satisfies one of the following: (i) $n + 5 \equiv 0 \pmod{4}$ where $n \geq 7$.

(*ii*) $n + 5 \equiv 1 \pmod{4}$ where $n \ge 8$. (*iii*) $n + 5 \equiv 2 \pmod{4}$ where n > 17.

(iv) $n + 5 \equiv 3 \pmod{4}$ where $n \ge 22$.

Proof. Let the vertices of C_n be labelled as $u_1, u_2, ..., u_n$ and let the vertices of K_5 be labelled as v_1, v_2, v_3, v_4, v_5 . Number of vertices of $C_n + K_5$ is n + 5 and number of edges is 6n + 10.

Case(1): $n + 5 \equiv 0 \pmod{4}$.

Let $n + 5 = 4k(k \in \mathbb{Z}, k \ge 2)$. Now each vertex label should appear k times. Number of edges = 6n + 10 = 6(4k - 5) + 10 = 24k - 20 and so each edge label appears 12k - 10 times.

If k = 2, there is no choice of 2 vertices so that 14 edges get label 1. Suppose $k \ge 3$. Label the k vertices $v_1, v_2, u_1, u_2, u_3, \dots, u_{k-2}$ by 1. Label the remaining vertices arbitrarily so that k of them get label -1, k of them get label i and k of them get label -i. Number of edges with label 1 = (n + 4) + (n + 3) + 5 + (k - 3)4 = 12k - 10. That this labeling is a group $\{1, -1, i, -i\}$ Cordial labeling of $C_n + K_5 (n \ge 7)$ is evident from Table 10. **Case(2):** $n + 5 \equiv 1 \pmod{4}$.

Let $n + 5 = 4k + 1 (k \in \mathbb{Z}, k \ge 2)$. Number of edges = 6n + 10 = 6(4k - 4) + 10 = 24k - 14and so each edge label appears 12k - 7 times.

If k = 2, there is no choice of 2 or 3 vertices so that 17 edges get label 1. For k = 3, a group $\{1, -1, i, -i\}$ Cordial labeling of $C_8 + K_5$ is given in table 10. Suppose $k \ge 4$. Label the k vertices $v_1, v_2, u_1, u_3, u_4, u_5, \dots, u_{k-1}$ by 1. Label the remaining vertices arbitrarily so that k + 1 of them get label -1, k of them get label i and k of them get label -i. Number of edges with label 1 = (n + 4) + (n + 3) + 2.5 + (k - 4)4 = 12k - 7. That this labeling is a group $\{1, -1, i, -i\}$ Cordial labeling of $C_n + K_5(n \ge 8)$ is evident from Table 10.

n+5	$v_f(1)$	$v_f(-1)$	$v_f(i)$	$v_f(-i)$	$e_f(1)$	$e_f(0)$
$4k(k \ge 3)$	k	k	k	k	12k - 10	12k - 10
$4k + 1(k \ge 3)$	k	k+1	k	k	12k - 7	12k - 7
$4k + 2(k \ge 5)$	k	k	k+1	k+1	12k - 4	12k - 4
$4k + 3(k \ge 6)$	k	k+1	k+1	k+1	12k - 1	12k - 1

Tabl	le	10

Case(3): $n + 5 \equiv 2 \pmod{4}$.

Let $n+5 = 4k + 2(k \in \mathbb{Z}, k \ge 2)$. Number of edges is 24k-8. So each edge label appears 12k-4 times. If $3 v_i$'s are given label 1, we get (n+4) + (n+3) + (n+2) = 3n+9 = 12k edges with label 1. But we need only 12k-4 edges with label 1. So at most 2 v_i 's are given label 1.

Subcase(i): $2 v_i$'s are given label 1.

Maximum number of edges that can get label 1 using k vertices is (n+4) + (n+3) + (k-2)5 = 2(4k-3)+7+5k-10 = 13k-9. So a necessary condition to get a group $\{1, -1, i, -i\}$ Cordial labeling is $13k - 9 \ge 12k - 4 => k \ge 5$. Maximum number of edges that can get label 1 using k + 1 vertices is (2n+7) + (k-1)5 = 2(4k-3) + 7 + 5k - 5 = 13k - 4. So a necessary condition to get a group $\{1, -1, i, -i\}$ Cordial labeling is $13k - 4 \ge 12k - 4 => k \ge 0$. For $k \le 4$, it is easy to observe that there is no group $\{1, -1, i, -i\}$ Cordial labeling. For $k \ge 5$, label the k vertices $v_1, v_2, u_1, u_3, u_5, u_6, u_7, \dots, u_k$ by 1. Label the remaining vertices arbitrarily so that k of them get label -1, k + 1 of them get label i and k + 1 of them get label -i. Number of edges with label 1 = (n+4)+(n+3)+15+(k-5)4 = 12k-4. That this labeling is a group $\{1, -1, i, -i\}$ Cordial labeling of $C_n + K_5 (n \ge 8)$ is evident from Table 10.

Subcase(ii): One v_i is given label 1.

Maximum number of edges that can get label 1 using k vertices is (n + 3) + (k - 1)6 = 10k - 6. So a necessary condition to get a group $\{1, -1, i, -i\}$ Cordial labeling is $10k - 6 \ge 12k - 4 => k \le -1$, which is a contradiction. Maximum number of edges that can get label 1 using k + 1 vertices is (n + 3) + 6k = 10k. So a necessary condition to get a group

 $\{1, -1, i, -i\}$ Cordial labeling is $10k \ge 12k - 4 \Longrightarrow k \le 2$. If k = 2, n = 5, and a group $\{1, -1, i, -i\}$ Cordial labeling of $C_5 + K_5$ is given in table 11.

Case(4): $n + 5 \equiv 3 \pmod{4}$.

Let $n + 5 = 4k + 3(k \in \mathbb{Z}, k \ge 2)$. Number of edges = 6n + 10 = 6(4k - 2) + 10 = 24k - 2. So each edge label appears 12k - 1 times. If $3 v_i$'s are given label 1, we get (n + 4) + (n + 3) + (n + 2) = 3n + 9 = 12k + 3 edges with label 1. But we need only 12k - 1 edges with label 1. So at most $2 v_i$'s are given label 1.

Subcase(i): $2 v_i$'s are given label 1.

Maximum number of edges that can get label 1 using k vertices is (n+4) + (n+3) + (k-2)5 = 2(4k-2)+7+5k-10 = 13k-7. So a necessary condition to get a group $\{1, -1, i, -i\}$ Cordial labeling is $13k - 7 \ge 12k - 1 => k \ge 6$. Maximum number of edges that can get label 1 using k+1 vertices is (2n+7)+(k-1)5 = 2(4k-2)+7+5k-5 = 13k-2. So a necessary condition to get a group $\{1, -1, i, -i\}$ Cordial labeling is $13k - 2 \ge 12k - 1 => k \ge 1$. But for $1 \le k \le 5$, we observe that there is no group $\{1, -1, i, -i\}$ Cordial labeling . For $k \ge 6$, label the k vertices $v_1, v_2, u_1, u_3, u_5, u_7, u_8, u_9, \dots, u_{k+1}$ by 1. Label the remaining vertices arbitrarily so that k+1 of them get label -1, k+1 of them get label i and k+1 of them get label -i. Number of edges with label 1 = 2n + 7 + 20 + (k - 6)4 = 12k - 1. That this labeling is a group $\{1, -1, i, -i\}$ Cordial labeling of $C_n + K_5 (n \ge 8)$ is evident from Table 10.

Subcase(ii): One v_i is given label 1.

Maximum number of edges that can get label 1 using k vertices is (n + 3) + (k - 1)6 = 10k - 5. So a necessary condition to get a group $\{1, -1, i, -i\}$ Cordial labeling is $10k - 5 \ge 12k - 1 => k \le -2$, which is a contradiction. Maximum number of edges that can get label 1 using k+1 vertices is (n+3)+6k = 10k+1. So a necessary condition to get a group $\{1, -1, i, -i\}$ Cordial labeling is $10k + 1 \ge 12k - 1 => k \le 1$, which is a contradiction.

n	v_1	v_2	v_3	v_4	v_5	u_1	u_2	u_3	u_4	u_5	u_6	u_7	u_8
5	-1	-1	-1	i	i	1	-i	1	1	-i			
8	1	-1	-1	-1	i	1	i	1	1	i	-i	-i	-i

Table 11

References

- Athisayanathan, S., Ponraj, R. and Karthik Chidambaram, M., K., Group A Cordial labeling of Graphs, Preprint submitted to the Journal of Discrete Mathematical Sciences and Cryptography.
- [2] Athisayanathan, S., Ponraj, R. and Karthik Chidambaram, M., K., Group $\{1, -1, i, -i\}$ Cordial Labeling of Some Graphs, Preprint submitted to the Journal of Prime Research in Mathematics.

- 139 M.K.Karthik Chidambaram / JAC 49 issue 2, December 2017 PP. 129 139
 - [3] Cahit, I., Cordial graphs: a weaker version of graceful and harmonious graphs, Ars Combin. 23(1987) 201-207.
 - [4] Gallian, J. A, A Dynamic survey of Graph Labeling, The Electronic Journal of Combinatorics Dec 7(2015), No.D56.
 - [5] Harary, F., Graph Theory, Addison Wesley, Reading Mass, 1972.