Group $\{1,-1, i,-i\}$ Cordial Labeling of sum of C_{n} and K_{m} for some m

M.K.Karthik Chidambaram*1, S.Athisayanathan ${ }^{\dagger 2}$ and R.Ponraj ${ }^{\ddagger 3}$
${ }^{1}$ Department of Mathematics, St.Xavier's College ,Palayamkottai 627 002, Tamil Nadu, India.
${ }^{2}$ Department of Mathematics, St.Xavier's College ,Palayamkottai 627 002, Tamil Nadu, India.
${ }^{3}$ Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627 412, India.

ABSTRACT

Let G be a (p, q) graph and A be a group. We denote the order of an element $a \in A$ by $o(a)$. Let $f: V(G) \rightarrow A$ be a function. For each edge $u v$ assign the label 1 if $(o(f(u)), o(f(v)))=1$ or 0 otherwise. f is called a group A Cordial labeling if $\left|v_{f}(a)-v_{f}(b)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$, where $v_{f}(x)$ and $e_{f}(n)$ respectively denote the number of vertices labelled with an element x and number of edges labelled with $n(n=0,1)$. A graph which admits a group A Cordial labeling is called a group A Cordial graph. In this paper we define group $\{1,-1, i,-i\}$ Cordial graphs and characterize the graphs $C_{n}+K_{m}(2 \leq m \leq 5)$ that are group $\{1,-1, i,-i\}$ Cordial.

Keyword: Cordial labeling, group A Cordial labeling, group $\{1,-1, i,-i\}$ Cordial labeling.

AMS subject Classification: 05C78.

[^0][^1]
1 Introduction

Graphs considered here are finite, undirected and simple. Let A be a group. The order of $a \in A$ is the least positive integer n such that $a^{n}=e$. We denote the order of a by $o(a)$. Cahit [3] introduced the concept of Cordial labeling. Motivated by this, we defined group A cordial labeling and investigated some of its properties. We also defined group $\{1,-1, i,-i\}$ cordial labeling and discussed that labeling for some standard graphs [1] .In this paper we characterize $C_{n}+K_{2}, C_{n}+K_{3}, C_{n}+K_{4}$ and $C_{n}+K_{5}$ that are group $\{1,-1, i,-i\}$ Cordial. Terms not defined here are used in the sense of Harary[5] and Gallian [4].

The greatest common divisor of two integers m and n is denoted by (m, n) and m and n are said to be relatively prime if $(m, n)=1$. For any real number x, we denote by $\lfloor x\rfloor$, the greatest integer smaller than or equal to x and by $\lceil x\rceil$, we mean the smallest integer greater than or equal to x.

Given two graphs G and $H, G+H$ is the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H) \cup\{u v / u \in V(G), v \in V(H)\}$. We need the following theorem. Theorem 1.1 [1]
The Complete graph K_{n} is group $\{1,-1, i,-i\}$ Cordial iff $n \in\{1,2,3,4,7,14,21\}$.
Theorem 1.2 [2]
The Wheel W_{n} is group $\{1,-1, i,-i\}$ Cordial iff $3 \leq n \leq 6$.

2 Group $\{1,-1, i,-i\}$ Cordial labeling of sum of C_{n} and K_{m}

Definition 1. Let G be a (p, q) graph and consider the group $A=\{1,-1, i,-i\}$ with multiplication. Let $f: V(G) \rightarrow A$ be a funtion. For each edge $u v$ assign the label 1 if $(o(f(u)), o(f(v)))=1$ or 0 otherwise. f is called a group $\{1,-1, i,-i\}$ Cordial labeling if $\left|v_{f}(a)-v_{f}(b)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$, where $v_{f}(x)$ and $e_{f}(n)$ respectively denote the number of vertices labelled with an element x and number of edges labelled with $n(n=0,1)$. A graph which admits a group $\{1,-1, i,-i\}$ Cordial labeling is called a group $\{1,-1, i,-i\}$ Cordial graph.

Example 2. A simple example of a group $\{1,-1, i,-i\}$ Cordial graph is given in Fig. 2.1.

We now investigate the group $\{1,-1, i,-i\}$ Cordial labeling of $C_{n}+K_{m}$ for $1 \leq m \leq 5$. $C_{n}+K_{1}$ is the Wheel and theorem 1.2 characterizes the Wheels that are group $\{1,-1, i,-i\}$ cordial.

Theorem 3. $C_{n}+K_{2}$ is group $\{1,-1, i,-i\}$ cordial iff $n \neq 3,9$.

Proof. Let the vertices of C_{n} be labelled as $u_{1}, u_{2}, \ldots, u_{n}$ and let the vertices of K_{2} be labelled as v_{1}, v_{2}. Number of vertices of $C_{n}+K_{2}$ is $n+2$ and number of edges is $3 n+1$. If $\mathrm{n}=3, C_{3}+K_{2} \approx K_{5}$ and by Theorem 1.1, K_{5} is not group $\{1,-1, i,-i\}$ Cordial. If $\mathrm{n}=9, C_{9}+K_{2}$ has 11 vertices and 28 edges. There is no choice of 2 or 3 vertices so that 14 edges get label 1. So, $C_{9}+K_{2}$ is not group $\{1,-1, i,-i\}$ Cordial. Thus, $n \neq 3,9$. Conversely, suppose that $n \neq 3,9$.
Case $(1): n+2 \equiv 0(\bmod 4)$.
Let $n+2=4 k(k \in \mathbb{Z}, k \geq 2)$. Now each vertex label should appear k times. As number of edges is $12 k-5$, one edge label appears $6 k-3$ times and another $6 k-2$ times. Label the vertices $v_{1}, u_{1}, u_{2}, \ldots, u_{k-1}$ by 1 . Label the remaining vertices arbitrarily so that k of them get label $-1, k$ of them get label i and k of them get label $-i$.
Case $(2): n+2 \equiv 1(\bmod 4)$.
Let $n+2=4 k+1(k \in \mathbb{Z}, k \geq 2)$. Now one vertex label should appear $k+1$ times and each of the other three labels should appear k times. Number of edges $=3 n+1=$ $3(4 k-1)+1=12 k-2$ and so each edge label appears $6 k-1$ times . Label the vertices $v_{1}, u_{1}, u_{2}, \ldots ., u_{k-1}$ by 1 . Label the remaining vertices arbitrarily so that k of them get label $-1, k$ of them get label i and $k+1$ of them get label $-i$.
Case $(3): n+2 \equiv 2(\bmod 4)$.
Let $n+2=4 k+2(k \in \mathbb{Z}, k \geq 1)$. When $\mathrm{k}=1$, a group $\{1,-1, i,-i\}$ Cordial labeling of $C_{4}+K_{2}$ is given in Table 1. Suppose $k \geq 2$. Now 2 vertex labels appear $k+1$ times and 2 vertex labels appear k times. Number of edges $=12 k+1$. So one edge label appears $6 k$ times and another $6 k+1$ times $(k \geq 2)$. Label the vertices $v_{1}, u_{1}, u_{2}, \ldots, u_{k-1}$ by 1 . Label the remaining vertices arbitrarily so that k vertices get label $1, k+1$ vertices get label i and $k+1$ vertices get label $-i$.
Case (4): $n+2 \equiv 3(\bmod 4)$.

Let $n+2=4 k+3$. If $k=1$, a group $\{1,-1, i,-i\}$ Cordial labeling of $C_{5}+K_{2}$ is given in Table 1. $k=2$, is impossible by assumption. Suppose $k \geq 3$. In this case, 3

n	v_{1}	v_{2}	u_{1}	u_{2}	u_{3}	u_{4}	u_{5}
4	i	$-i$	1	1	-1	-1	
5	i	$-i$	1	-1	1	-1	i

Table 1
vertex labels appear $k+1$ times and 1 vertex label appears k times. Number of edges $=3(4 k+1)+1=12 k+4$ and so each edge label should appear $6 k+2$ times. Label the vertices $v_{1}, u_{1}, u_{3}, u_{4}, \ldots . ., u_{k}(k \geq 3)$ with label 1 . Label the other vertices arbitrarily so that $k+1$ vertices get label $-1, k+1$ vertices get label i and $k+1$ vertices get label $-i$. That $C_{n}+K_{2}$ is group $\{1,-1, i,-i\}$ Cordial for $n \neq 3,9$ follows from Table 2.

Nature of n	$v_{f}(1)$	$v_{f}(-1)$	$v_{f}(i)$	$v_{f}(-i)$	$e_{f}(1)$	$e_{f}(0)$
$n+2 \equiv 0(\bmod 4)$	k	k	k	k	$6 k-2$	$6 k-3$
$n+2 \equiv 1(\bmod 4)$	k	k	k	$k+1$	$6 k-1$	$6 k-1$
$n+2 \equiv 2(\bmod 4)$	k	k	$k+1$	$k+1$	$6 k$	$6 k+1$
$n+2 \equiv 3(\bmod 4)$	k	$k+1$	$k+1$	$k+1$	$6 k+2$	$6 k+2$

Table 2

Theorem 4. $C_{n}+K_{3}$ is group $\{1,-1, i,-i\}$ Cordial iff $n \neq 3$.
Proof. Let the vertices of C_{n} be labelled as $u_{1}, u_{2}, \ldots, u_{n}$ and let the vertices of K_{3} be labelled as v_{1}, v_{2}, v_{3}. Number of vertices of $C_{n}+K_{3}$ is $n+3$ and number of edges is $4 n+3$.

If $\mathrm{n}=3, C_{3}+K_{3} \approx K_{6}$ which is not group $\{1,-1, i,-i\}$ Cordial by Theorem 1.1. Conversely, assume $n \neq 3$. We need to prove that $C_{n}+K_{3}$ is group $\{1,-1, i,-i\}$ Cordial.
Case(1): $n+3 \equiv 0(\bmod 4)$.
Let $n+3=4 k(k \in \mathbb{Z}, k \geq 2)$. Now each vertex label should appear k times. Number of edges $=4(4 k-3)+3=16 k-9$ and so one edge label appears $8 k-4$ times and another $8 k-5$ times. Label the vertices $v_{1}, u_{1}, u_{3}, u_{5}, \ldots, u_{2 k-3}$ by 1 . Label the remaining vertices arbitrarily so that k of them get label $-1, k$ of them get label i and k of them get label $-i$. Number of edges with label $1=n+2+(k-1) 4=8 k-5$.
Case(2): $n+3 \equiv 1(\bmod 4)$.
Let $n+3=4 k+1(k \in \mathbb{Z}, k \geq 2)$. If $k=2$, a group $\{1,-1, i,-i\}$ Cordial labeling of $C_{6}+K_{3}$ is given in Table 3. Suppose $k \geq 3$. Now one vertex label should appear $k+1$ times and each of the other three labels should appear k times. Number of edges is $16 k-5$. Label the vertices $v_{1}, u_{1}, u_{3}, \ldots, u_{2 k-5}, u_{2 k-4}, u_{2 k-3}(k \geq 3)$ by 1 . Label the remaining vertices arbitrarily so that k of them get label $-1, k$ of them get label i and k of them
get label $-i$. Number of edges with label $1=n+2+(k-2) 4+2 \times 3=8 k-2$.
Case(3): $n+3 \equiv 2(\bmod 4)$.
Let $n+3=4 k+2(k \in \mathbb{Z}, k \geq 2)$. Now 2 vertex labels appear $k+1$ times and 2 vertex labels appear k times. Number of edges $=16 k-1$. So one edge label appears $8 k$ times and another $8 k-1$ times . Label the vertices $v_{1}, u_{1}, u_{3}, \ldots, u_{2 k-5}, u_{2 k-3}, u_{2 k-2}$ by 1 . Label the remaining vertices arbitrarily so that $k+1$ vertices get label $-1, k$ vertices get label i and k vertices get label $-i$. Number of edges with label $1=n+2+(2 k-2) 2+3=8 k$. Case $(4): n+3 \equiv 3(\bmod 4)$.
Let $n+3=4 k+3(k \geq 1)$. If $k=1, n=4$. A group $\{1,-1, i,-i\}$ Cordial labeling of $C_{4}+K_{3}$ is given in Table 3. Suppose $k \geq 2$. In this case, 3 vertex labels appear $k+1$ times and 1 vertex label appears k times. Label the vertices $v_{1}, u_{1}, u_{3}, u_{5}, \ldots ., u_{2 k-1}$ with label 1 . Label the other vertices arbitrarily so that $k+1$ vertices get label $-1, k+1$ vertices get label i and k vertices get label $-i$. Number of edges with label $1=8 k+2$.
That $C_{n}+K_{2}$ is group $\{1,-1, i,-i\}$ Cordial for $n \neq 3$ follows from Table 4.

n	v_{1}	v_{2}	v_{3}	u_{1}	u_{2}	u_{3}	u_{4}	u_{5}	u_{6}
4	-1	-1	i	1	i	1	$-i$		
6	-1	-1	i	1	i	1	1	$-i$	$-i$

Table 3

Nature of n	$v_{f}(1)$	$v_{f}(-1)$	$v_{f}(i)$	$v_{f}(-i)$	$e_{f}(1)$	$e_{f}(0)$
$n+3 \equiv 0(\bmod 4)$	k	k	k	k	$8 k-4$	$8 k-5$
$n+3 \equiv 1(\bmod 4)$	$k+1$	k	k	k	$8 k-3$	$8 k-2$
$n+3 \equiv 2(\bmod 4)$	$k+1$	$k+1$	k	k	$8 k-1$	$8 k$
$n+3 \equiv 3(\bmod 4)$	$k+1$	$k+1$	$k+1$	k	$8 k+1$	$8 k+2$

Table 4

Theorem 5. $C_{n}+K_{4}$ is group $\{1,-1, i,-i\}$ Cordial iff $n \in\{3,4,5,6,7,9,10,11,13,17\}$.

Proof. Let the vertices of C_{n} be labelled as $u_{1}, u_{2}, \ldots, u_{n}$ and let the vertices of K_{4} be labelled as $v_{1}, v_{2}, v_{3}, v_{4}$. Number of vertices of $C_{n}+K_{4}$ is $n+4$.
Number of edges is $5 n+6$.
Case $(1): n+4 \equiv 0(\bmod 4)$.
Let $n+4=4 k(k \geq 2)$. If $3 v_{i}$'s are given label 1 , we get $(n+3)+(n+2)+(n+1)=$ $3 n+6=12 k-6$ edges with label 1 . But we need only $10 k-7$ edges with label 1 . So at most $2 v_{i}$'s are given label 1 .
Subcase(i): $2 v_{i}$'s are given label 1 .
If $\mathrm{k}=2$, a group $\{1,-1, i,-i\}$ Cordial labeling of $C_{4}+K_{4}$ is given in Table 5.
Suppose $k \geq 3$. Minimum number of edges that can get label 1 using k vertices is ($8 k-$
3) $+4+(k-3) 3=11 k-8$. So , the necessary condition is, $10 k-7 \geq 11 k-8$ and so $k \leq 1$ which is a contradiction.
Subcase(ii): One v_{i} is given label 1 .
Maximum number of edges that can get label 1 now is $(4 k-1)+(k-1) 5=9 k-6$. To get a group $\{1,-1, i,-i\}$ Cordial labeling we need to have $9 k-6 \geq 10 k-7$ i.e. $k \leq 1$, which is impossible.
Subcase(iii): No v_{i} is given label 1 .
We need to have $k .6 \geq 10 k-7=>4 k \leq 7$ which is a contradiction. Thus in case 1 , we get $n=4$.
Case $(2): n+4 \equiv 1(\bmod 4)$.
Let $n+4=4 k+1(k \geq 2)$. If $3 v_{i}$'s are given label 1 , we get $(n+3)+(n+2)+(n+1)=$ $3 n+6=12 k-3$ edges with label 1 . But we need only at most $10 k-4$ edges with label 1. So at most $2 v_{i}$'s are given label 1 .

Subcase(i): $2 v_{i}$'s are given label 1 .
If $k=2$, a group $\{1,-1, i,-i\}$ Cordial labeling of $C_{5}+K_{5}$ is given in Table 5 .
Suppose $k \geq 3$. Minimum number of edges that can get label 1 using $k+1$ vertices is $(8 k-1)+4+(k-2) 3=11 k-3$. So the necessary condition is, $10 k-4 \geq 11 k-3$ or $10 k-5 \geq 11 k-3$ i.e. $k \leq-1$ or $k \leq-2$, both not possible. Minimum number of edges that can get label 1 using k vertices is, $(8 k-1)+4+(k-3) 3=11 k-1+4-9=11 k-6$. So the necessary condition is, $10 k-4 \geq 11 k-6$ or $10 k-5 \geq 11 k-6$ i.e. $k \leq 2$ or $k \leq 1$.
Subcase(ii): One v_{i} is given label 1 .
Now , maximum number of edges that can get label 1 using $\mathrm{k}+1$ vertices is, $(n+3)+k .5=$ $4 k+5 k=9 k$. So the necessary condition to get a group $\{1,-1, i,-i\}$ Cordial labeling is $9 k \geq 10 k-4$ or $9 k \geq 10 k-5$ i.e. $k \leq 5$. If $3 \leq k \leq 5$, a group $\{1,-1, i,-i\}$ Cordial labeling of $C_{k}+K_{5}$ is given in Tables 5 and 6 .

n	v_{1}	v_{2}	v_{3}	v_{4}	u_{1}	u_{2}	u_{3}	u_{4}	u_{5}	u_{6}	u_{7}	u_{8}	u_{9}	u_{10}
4	1	1	-1	-1	i	i	$-i$	$-i$						
5	1	1	-1	-1	i	i	i	$-i$	$-i$					
9	1	-1	-1	-1	1	i	1	1	i	i	$-i$	$-i$	$-i$	
13	1	-1	-1	-1	1	-1	1	i	1	i	1	i	i	$-i$
17	1	-1	-1	-1	1	-1	1	-1	1	i	1	i	1	i

Table 5

n	u_{11}	u_{12}	u_{13}	u_{14}	u_{15}	u_{16}	u_{17}
13	$-i$	$-i$	$-i$				
17	i	i	$-i$	$-i$	$-i$	$-i$	$-i$

Table 6

Subcase(iii): No v_{i} is given label 1 .
We need to have $6(k+1) \geq 10 k-5=>4 k \leq 11=>k \leq \frac{11}{4}$. Thus in Case 2, we have $n \in\{5,9,13,17\}$.

Case(3): $n+4 \equiv 2(\bmod 4)$.
Let $n+4=4 k+2(k \geq 2)$. If $3 v_{i}$'s are given label 1 , we get $3 n+6=12 k$ edges with label 1. But we need only at most $10 k-2$ edges with label 1 . So at most $2 v_{i}$'s are given label 1. Subcase(i): $2 v_{i}$'s are given label 1.
Thus at least $2 n+5=8 k+1$ edges will have label 1 . So $k \leq \frac{3}{2}$ which is impossible.
Subcase(ii): One v_{i} is given label 1 .
Maximum number of edges that can get label 1 using $k+1$ vertices is $(n+3)+k .5=$ $(4 k-2+3)+5 k=9 k+1$. So the necessary condition to get a group $\{1,-1, i,-i\}$ Cordial labeling is $9 k+1 \geq 10 k-2=>k \leq 3$. If $k=2, n=6$ and if $k=3, n=10$. A group $\{1,-1, i,-i\}$ Cordial labeling of $C_{6}+K_{4}$ and $C_{10}+K_{4}$ are given in Table 7.

n	v_{1}	v_{2}	v_{3}	v_{4}	u_{1}	u_{2}	u_{3}	u_{4}	u_{5}	u_{6}	u_{7}	u_{8}	u_{9}	u_{10}
6	1	-1	-1	-1	1	1	i	i	$-i$	$-i$				
10	1	-1	-1	-1	1	-1	1	i	1	i	i	$-i$	$-i$	$-i$

Table 7
Subcase(iii): No v_{i} is given label 1 .
We need to have $6(k+1) \geq 10 k-2=>4 k \leq 8=>k \leq 2$. Thus in Case 3, we have $n \in\{6,10\}$.
Case $(4): n+4 \equiv 3(\bmod 4)$.
Let $n+4=4 k+3(k \geq 1)$. Number of edges $=5(4 k-1)+6=20 k+1$. If $3 v_{i}$'s are given label 1 , we get $3 n+6=12 k+3$ edges with label 1 . But we need only at most $10 k+1$ edges with label 1. So at most $2 v_{i}$'s are given label 1 . Subcase(i): $2 v_{i}$'s are given label 1.

Minimum number of edges that can get label 1 using k vertices is $(n+3)+(n+2)+4+$ $(k-3) 3=11 k-2$ and minimum number of edges that can get label 1 using $k+1$ vertices is $11 k+1$. Thus $10 k+1 \geq 11 k-2=>k \leq 3$ or $10 k+1 \geq 11 k+1=>k \leq 0$, both impossible. If $k=1$, a group $\{1,-1, i,-i\}$ Cordial labeling of $C_{3}+K_{4}$ is given in Table 8.

If $k=2$, and if v_{1} and v_{2} are labelled with 1 then 19 edges get label 1 . Thus, there is no choice of 2 or 3 vertices so that 20 or 21 edges get label 1 .
If $\mathrm{k}=3$, a group $\{1,-1, i,-i\}$ Cordial labeling of $C_{11}+K_{4}$ is given in Table 8.
Subcase(ii): One v_{i} is given label 1 .
Maximum number of edges that can get label 1 using k vertices is $(n+3)+(k-1) 5=$ $(4 k-1+3)+5 k-5=9 k-3$. Maximum number of edges that can get label 1 using $k+1$ vertices is $(n+3)+k .5=(4 k-1)+3+5 k=9 k+2$. Thus $9 k+2 \geq 10 k+1$ or $9 k+2 \geq 10 k$ so that $k \leq 1$ or $k \leq 2$. Also $9 k-3 \geq 10 k+1=>k \leq-4$ which is a contradiction. When $\mathrm{k}=2$, a group $\{1,-1, i,-i\}$ Cordial labeling of $C_{7}+K_{4}$ is given in table 8.

Subcase(iii): No v_{i} is given label 1 .

n	v_{1}	v_{2}	v_{3}	v_{4}	u_{1}	u_{2}	u_{3}	u_{4}	u_{5}	u_{6}	u_{7}	u_{8}	u_{9}	u_{10}	u_{11}
3	1	1	-1	-1	i	i	$-i$								
7	1	-1	-1	-1	1	i	1	i	i	$-i$	$-i$				
11	1	1	-1	-1	1	-1	-1	i	i	i	i	$-i$	$-i$	$-i$	$-i$

Table 8
We need to have $6(k+1) \geq 10 k+1$ or $6(k+1) \geq 10 k$ so that $4 k \leq 5$ or $4 k \leq 6$. Otherwise we have, $6 k \geq 10 k+1$ or $6 k \geq 10 k$, both impossible. Thus in this Case, $n \in\{3,7,11\}$. The labelings given for $n \in\{3,4,5,6,7,9,10,11,13,17\}$ are group $\{1,-1, i,-i\}$ Cordial is clear from Table 9.

n	$v_{f}(1)$	$v_{f}(-1)$	$v_{f}(i)$	$v_{f}(-i)$	$e_{f}(0)$	$e_{f}(1)$
3	2	2	2	1	10	11
4	2	2	2	2	13	13
5	2	2	3	2	16	15
6	3	3	2	2	18	18
7	3	3	3	2	21	20
9	4	3	3	3	25	26
10	4	4	3	3	28	28
11	3	4	4	4	30	31
13	5	4	4	4	35	36
17	6	5	5	5	46	45

Table 9

Theorem 6. $C_{n}+K_{5}$ is group $\{1,-1, i,-i\}$ Cordial iff n satisfies one of the following: (i) $n+5 \equiv 0(\bmod 4)$ where $n \geq 7$.
(ii) $n+5 \equiv 1(\bmod 4)$ where $n \geq 8$.
(iii) $n+5 \equiv 2(\bmod 4)$ where $n \geq 17$.
(iv) $n+5 \equiv 3(\bmod 4)$ where $n \geq 22$.

Proof. Let the vertices of C_{n} be labelled as $u_{1}, u_{2}, \ldots, u_{n}$ and let the vertices of K_{5} be labelled as $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$. Number of vertices of $C_{n}+K_{5}$ is $n+5$ and number of edges is $6 n+10$.
Case $(1): n+5 \equiv 0(\bmod 4)$.
Let $n+5=4 k(k \in \mathbb{Z}, k \geq 2)$. Now each vertex label should appear k times. Number of edges $=6 n+10=6(4 k-5)+10=24 k-20$ and so each edge label appears $12 k-10$ times.
If $k=2$, there is no choice of 2 vertices so that 14 edges get label 1 . Suppose $k \geq 3$. Label the k vertices $v_{1}, v_{2}, u_{1}, u_{2}, u_{3}, \ldots, u_{k-2}$ by 1 . Label the remaining vertices arbitrarily
so that k of them get label $-1, k$ of them get label i and k of them get label $-i$. Number of edges with label $1=(n+4)+(n+3)+5+(k-3) 4=12 k-10$. That this labeling is a group $\{1,-1, i,-i\}$ Cordial labeling of $C_{n}+K_{5}(n \geq 7)$ is evident from Table 10.
Case $(2): n+5 \equiv 1(\bmod 4)$.
Let $n+5=4 k+1(k \in \mathbb{Z}, k \geq 2)$. Number of edges $=6 n+10=6(4 k-4)+10=24 k-14$ and so each edge label appears $12 k-7$ times.
If $k=2$, there is no choice of 2 or 3 vertices so that 17 edges get label 1 .For $k=3$, a group $\{1,-1, i,-i\}$ Cordial labeling of $C_{8}+K_{5}$ is given in table 10. Suppose $k \geq 4$. Label the k vertices $v_{1}, v_{2}, u_{1}, u_{3}, u_{4}, u_{5}, \ldots, u_{k-1}$ by 1 . Label the remaining vertices arbitrarily so that $k+1$ of them get label $-1, k$ of them get label i and k of them get label $-i$. Number of edges with label $1=(n+4)+(n+3)+2.5+(k-4) 4=12 k-7$. That this labeling is a group $\{1,-1, i,-i\}$ Cordial labeling of $C_{n}+K_{5}(n \geq 8)$ is evident from Table 10.

$n+5$	$v_{f}(1)$	$v_{f}(-1)$	$v_{f}(i)$	$v_{f}(-i)$	$e_{f}(1)$	$e_{f}(0)$
$4 k(k \geq 3)$	k	k	k	k	$12 k-10$	$12 k-10$
$4 k+1(k \geq 3)$	k	$k+1$	k	k	$12 k-7$	$12 k-7$
$4 k+2(k \geq 5)$	k	k	$k+1$	$k+1$	$12 k-4$	$12 k-4$
$4 k+3(k \geq 6)$	k	$k+1$	$k+1$	$k+1$	$12 k-1$	$12 k-1$

Table 10
Case $(3): n+5 \equiv 2(\bmod 4)$.
Let $n+5=4 k+2(k \in \mathbb{Z}, k \geq 2)$. Number of edges is $24 k-8$. So each edge label appears $12 k-4$ times. If $3 v_{i}$'s are given label 1 , we get $(n+4)+(n+3)+(n+2)=3 n+9=12 k$ edges with label 1. But we need only $12 k-4$ edges with label 1 . So at most $2 v_{i}$'s are given label 1.
Subcase(i): $2 v_{i}^{\prime}$'s are given label 1.
Maximum number of edges that can get label 1 using k vertices is $(n+4)+(n+3)+(k-$ $2) 5=2(4 k-3)+7+5 k-10=13 k-9$. So a necessary condition to get a group $\{1,-1, i,-i\}$ Cordial labeling is $13 k-9 \geq 12 k-4=>k \geq 5$. Maximum number of edges that can get label 1 using $k+1$ vertices is $(2 n+7)+(k-1) 5=2(4 k-3)+7+5 k-5=13 k-4$. So a necessary condition to get a group $\{1,-1, i,-i\}$ Cordial labeling is $13 k-4 \geq 12 k-4=>$ $k \geq 0$. For $k \leq 4$, it is easy to observe that there is no group $\{1,-1, i,-i\}$ Cordial labeling. For $k \geq 5$, label the k vertices $v_{1}, v_{2}, u_{1}, u_{3}, u_{5}, u_{6}, u_{7}, \ldots ., u_{k}$ by 1 . Label the remaining vertices arbitrarily so that k of them get label $-1, k+1$ of them get label i and $k+1$ of them get label $-i$. Number of edges with label $1=(n+4)+(n+3)+15+(k-5) 4=12 k-4$. That this labeling is a group $\{1,-1, i,-i\}$ Cordial labeling of $C_{n}+K_{5}(n \geq 8)$ is evident from Table 10.
Subcase(ii): One v_{i} is given label 1.
Maximum number of edges that can get label 1 using k vertices is $(n+3)+(k-1) 6=$ $10 k-6$. So a necessary condition to get a group $\{1,-1, i,-i\}$ Cordial labeling is $10 k-6 \geq$ $12 k-4=>k \leq-1$, which is a contradiction. Maximum number of edges that can get label 1 using $k+1$ vertices is $(n+3)+6 k=10 k$. So a necessary condition to get a group
$\{1,-1, i,-i\}$ Cordial labeling is $10 k \geq 12 k-4=>k \leq 2$. If $k=2, n=5$, and a group $\{1,-1, i,-i\}$ Cordial labeling of $C_{5}+K_{5}$ is given in table 11 .
Case $(4): n+5 \equiv 3(\bmod 4)$.
Let $n+5=4 k+3(k \in \mathbb{Z}, k \geq 2)$. Number of edges $=6 n+10=6(4 k-2)+10=$ $24 k-2$. So each edge label appears $12 k-1$ times. If $3 v_{i}$'s are given label 1 , we get $(n+4)+(n+3)+(n+2)=3 n+9=12 k+3$ edges with label 1 . But we need only $12 k-1$ edges with label 1 . So at most $2 v_{i}$'s are given label 1 .
Subcase(i): $2 v_{i}$'s are given label 1 .
Maximum number of edges that can get label 1 using k vertices is $(n+4)+(n+3)+(k-$ $2) 5=2(4 k-2)+7+5 k-10=13 k-7$. So a necessary condition to get a group $\{1,-1, i,-i\}$ Cordial labeling is $13 k-7 \geq 12 k-1=>k \geq 6$. Maximum number of edges that can get label 1 using $k+1$ vertices is $(2 n+7)+(k-1) 5=2(4 k-2)+7+5 k-5=13 k-2$. So a necessary condition to get a group $\{1,-1, i,-i\}$ Cordial labeling is $13 k-2 \geq 12 k-1=>k \geq 1$. But for $1 \leq k \leq 5$, we observe that there is no group $\{1,-1, i,-i\}$ Cordial labeling . For $k \geq 6$, label the k vertices $v_{1}, v_{2}, u_{1}, u_{3}, u_{5}, u_{7}, u_{8}, u_{9}, \ldots, u_{k+1}$ by 1 . Label the remaining vertices arbitrarily so that $k+1$ of them get label $-1, k+1$ of them get label i and $k+1$ of them get label $-i$. Number of edges with label $1=2 n+7+20+(k-6) 4=12 k-1$. That this labeling is a group $\{1,-1, i,-i\}$ Cordial labeling of $C_{n}+K_{5}(n \geq 8)$ is evident from Table 10.
Subcase(ii): One v_{i} is given label 1 .
Maximum number of edges that can get label 1 using k vertices is $(n+3)+(k-1) 6=$ $10 k-5$. So a necessary condition to get a group $\{1,-1, i,-i\}$ Cordial labeling is $10 k-5 \geq$ $12 k-1=>k \leq-2$, which is a contradiction. Maximum number of edges that can get label 1 using $k+1$ vertices is $(n+3)+6 k=10 k+1$. So a necessary condition to get a group $\{1,-1, i,-i\}$ Cordial labeling is $10 k+1 \geq 12 k-1=>k \leq 1$, which is a contradiction.

n	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	u_{1}	u_{2}	u_{3}	u_{4}	u_{5}	u_{6}	u_{7}	u_{8}
5	-1	-1	-1	i	i	1	$-i$	1	1	$-i$			
8	1	-1	-1	-1	i	1	i	1	1	i	$-i$	$-i$	$-i$

Table 11

References

[1] Athisayanathan, S., Ponraj, R. and Karthik Chidambaram, M., K., Group A Cordial labeling of Graphs, Preprint submitted to the Journal of Discrete Mathematical Sciences and Cryptography.
[2] Athisayanathan, S., Ponraj, R. and Karthik Chidambaram, M., K., Group $\{1,-1, i,-i\}$ Cordial Labeling of Some Graphs,Preprint submitted to the Journal of Prime Research in Mathematics.

139 M.K.Karthik Chidambaram / JAC 49 issue 2, December 2017 PP. 129-139
[3] Cahit, I., Cordial graphs: a weaker version of graceful and harmonious graphs, Ars Combin. 23(1987) 201-207.
[4] Gallian, J. A, A Dynamic survey of Graph Labeling, The Electronic Journal of Combinatorics Dec 7(2015), No.D56.
[5] Harary, F., Graph Theory, Addison Wesley, Reading Mass, 1972..

[^0]: *Corresponding author: M.K.Karthik Chidambaram. Email: karthikmat5 @gmail.com
 ${ }^{\dagger}$ athisxc @gmail.com
 ${ }^{\ddagger}$ ponrajmath@gmail.com

[^1]: Journal of Algorithms and Computation 49, issue 2, December 2017, PP. 129-139

