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ABSTRACT ARTICLE INFO

Let G be a (p,q) graph and A be a group. We denote the
order of an element a ∈ A by o(a). Let f : V (G) → A
be a function. For each edge uv assign the label 1
if (o(f(u)), o(f(v))) = 1or 0 otherwise. f is called a
group A Cordial labeling if |vf (a) − vf (b)| ≤ 1 and
|ef (0) − ef (1)| ≤ 1, where vf (x) and ef (n) respectively
denote the number of vertices labelled with an element
x and number of edges labelled with n(n = 0, 1). A
graph which admits a group A Cordial labeling is called
a group A Cordial graph. In this paper we define group
{1,−1, i,−i} Cordial graphs and characterize the graphs
Cn + Km(2 ≤ m ≤ 5) that are group {1,−1, i,−i} Cor-
dial.
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1 Introduction

Graphs considered here are finite, undirected and simple. Let A be a group. The order
of a ∈ A is the least positive integer n such that an = e. We denote the order of a by
o(a). Cahit [3] introduced the concept of Cordial labeling. Motivated by this, we defined
group A cordial labeling and investigated some of its properties. We also defined group
{1,−1, i,−i} cordial labeling and discussed that labeling for some standard graphs [1]
.In this paper we characterize Cn + K2, Cn + K3, Cn + K4 and Cn + K5 that are group
{1,−1, i,−i} Cordial. Terms not defined here are used in the sense of Harary[5] and
Gallian [4].

The greatest common divisor of two integers m and n is denoted by (m,n) and
m and n are said to be relatively prime if (m,n) = 1. For any real number x, we denote
by ⌊x⌋, the greatest integer smaller than or equal to x and by ⌈x⌉, we mean the smallest
integer greater than or equal to x.

Given two graphs G and H, G + H is the graph with vertex set V (G) ∪ V (H)
and edge set E(G) ∪E(H) ∪ {uv/u ∈ V (G), v ∈ V (H)}. We need the following theorem.
Theorem 1.1 [1]
The Complete graph Kn is group {1,−1, i,−i} Cordial iff n ∈ {1, 2, 3, 4, 7, 14, 21}.
Theorem 1.2 [2]
The Wheel Wn is group {1,−1, i,−i} Cordial iff 3 ≤ n ≤ 6.

2 Group {1,−1, i,−i} Cordial labeling of sum of Cn

and Km

Definition 1. Let G be a (p,q)graph and consider the group
A = {1,−1, i,−i} with multiplication. Let f : V (G) → A be a funtion. For each edge uv
assign the label 1 if (o(f(u)), o(f(v))) = 1or 0 otherwise. f is called a group {1,−1, i,−i}
Cordial labeling if |vf (a) − vf (b)| ≤ 1 and |ef (0) − ef (1)| ≤ 1, where vf (x) and ef (n)
respectively denote the number of vertices labelled with an element x and number of
edges labelled with n(n = 0, 1). A graph which admits a group {1,−1, i,−i} Cordial
labeling is called a group {1,−1, i,−i} Cordial graph.

Example 2. A simple example of a group {1,−1, i,−i} Cordial graph is given in Fig. 2.1.
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Fig. 2.1

We now investigate the group {1,−1, i,−i} Cordial labeling of Cn + Km for 1 ≤ m ≤ 5 .
Cn+K1 is the Wheel and theorem 1.2 characterizes the Wheels that are group {1,−1, i,−i}
cordial.

Theorem 3. Cn + K2 is group {1,−1, i,−i} cordial iff n 6= 3, 9.

Proof. Let the vertices of Cn be labelled as u1, u2, ..., un and let the vertices of K2 be
labelled as v1, v2 . Number of vertices of Cn + K2 is n + 2 and number of edges is 3n + 1.
If n=3 , C3 + K2 ≈ K5 and by Theorem 1.1, K5 is not group {1,−1, i,−i} Cordial. If
n=9 , C9 + K2 has 11 vertices and 28 edges. There is no choice of 2 or 3 vertices so that
14 edges get label 1. So, C9 + K2 is not group {1,−1, i,−i} Cordial. Thus, n 6= 3, 9.
Conversely, suppose that n 6= 3, 9.
Case(1): n + 2 ≡ 0(mod 4).
Let n + 2 = 4k(k ∈ Z, k ≥ 2). Now each vertex label should appear k times. As number
of edges is 12k − 5, one edge label appears 6k − 3 times and another 6k − 2 times. Label
the vertices v1,u1,u2,....,uk−1 by 1. Label the remaining vertices arbitrarily so that k of
them get label −1, k of them get label i and k of them get label −i.
Case(2): n + 2 ≡ 1(mod 4).
Let n + 2 = 4k + 1(k ∈ Z, k ≥ 2). Now one vertex label should appear k + 1 times
and each of the other three labels should appear k times. Number of edges = 3n + 1 =
3(4k − 1) + 1 = 12k − 2 and so each edge label appears 6k − 1 times . Label the vertices
v1,u1,u2,....,uk−1 by 1. Label the remaining vertices arbitrarily so that k of them get label
−1, k of them get label i and k + 1 of them get label −i.
Case(3): n + 2 ≡ 2(mod 4).
Let n + 2 = 4k + 2(k ∈ Z, k ≥ 1). When k=1, a group {1,−1, i,−i} Cordial labeling of
C4 + K2 is given in Table 1. Suppose k ≥ 2. Now 2 vertex labels appear k + 1 times and
2 vertex labels appear k times. Number of edges = 12k +1. So one edge label appears 6k
times and another 6k + 1 times (k ≥ 2). Label the vertices v1, u1, u2, ...., uk−1 by 1. Label
the remaining vertices arbitrarily so that k vertices get label 1, k + 1 vertices get label i
and k + 1 vertices get label −i.
Case (4): n + 2 ≡ 3(mod 4).
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Let n + 2 = 4k + 3. If k = 1, a group {1,−1, i,−i} Cordial labeling of C5 + K2 is
given in Table 1. k = 2, is impossible by assumption. Suppose k ≥ 3. In this case, 3

n v1 v2 u1 u2 u3 u4 u5

4 i −i 1 1 −1 −1
5 i −i 1 −1 1 −1 i

Table 1

vertex labels appear k + 1 times and 1 vertex label appears k times. Number of edges
= 3(4k + 1) + 1 = 12k + 4 and so each edge label should appear 6k + 2 times. Label the
vertices v1,u1,u3,u4,.....,uk(k ≥ 3) with label 1. Label the other vertices arbitrarily so that
k + 1 vertices get label −1, k + 1 vertices get label i and k + 1 vertices get label −i. That
Cn + K2 is group {1,−1, i,−i} Cordial forn 6= 3, 9 follows from Table 2.

Nature of n vf (1) vf (−1) vf (i) vf (−i) ef (1) ef (0)
n + 2 ≡ 0(mod 4) k k k k 6k − 2 6k − 3
n + 2 ≡ 1(mod 4) k k k k + 1 6k − 1 6k − 1
n + 2 ≡ 2(mod 4) k k k + 1 k + 1 6k 6k + 1
n + 2 ≡ 3(mod 4) k k + 1 k + 1 k + 1 6k + 2 6k + 2

Table 2

.

Theorem 4. Cn + K3 is group {1,−1, i,−i} Cordial iff n 6= 3.

Proof. Let the vertices of Cn be labelled as u1, u2, ..., un and let the vertices of K3 be
labelled as v1, v2, v3 . Number of vertices of Cn + K3 is n + 3 and number of edges is
4n + 3.

If n = 3, C3 + K3 ≈ K6 which is not group {1,−1, i,−i} Cordial by Theorem
1.1. Conversely , assume n 6= 3. We need to prove that Cn + K3 is group {1,−1, i,−i}
Cordial.
Case(1): n + 3 ≡ 0(mod 4).
Let n + 3 = 4k(k ∈ Z, k ≥ 2). Now each vertex label should appear k times. Number of
edges = 4(4k − 3) + 3 = 16k − 9 and so one edge label appears 8k − 4 times and another
8k − 5 times. Label the vertices v1,u1,u3,u5,....,u2k−3 by 1. Label the remaining vertices
arbitrarily so that k of them get label −1, k of them get label i and k of them get label
−i. Number of edges with label 1 = n + 2 + (k − 1)4 = 8k − 5.
Case(2): n + 3 ≡ 1(mod 4).
Let n + 3 = 4k + 1(k ∈ Z, k ≥ 2). If k = 2, a group {1,−1, i,−i} Cordial labeling of
C6+K3 is given in Table 3. Suppose k ≥ 3. Now one vertex label should appear k+1 times
and each of the other three labels should appear k times. Number of edges is 16k − 5
. Label the vertices v1,u1,u3,....,u2k−5, u2k−4, u2k−3(k ≥ 3) by 1. Label the remaining
vertices arbitrarily so that k of them get label −1, k of them get label i and k of them
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get label −i. Number of edges with label 1 = n + 2 + (k − 2)4 + 2 × 3 = 8k − 2.
Case(3): n + 3 ≡ 2(mod 4).
Let n + 3 = 4k + 2(k ∈ Z, k ≥ 2). Now 2 vertex labels appear k + 1 times and 2 vertex
labels appear k times. Number of edges = 16k − 1. So one edge label appears 8k times
and another 8k − 1 times . Label the vertices v1, u1,u3,....,u2k−5, u2k−3, u2k−2 by 1. Label
the remaining vertices arbitrarily so that k + 1 vertices get label −1, k vertices get label
i and k vertices get label −i. Number of edges with label 1 = n + 2 + (2k − 2)2 + 3 = 8k.
Case (4): n + 3 ≡ 3(mod 4).
Let n + 3 = 4k + 3(k ≥ 1). If k = 1, n = 4. A group {1,−1, i,−i} Cordial labeling of
C4 +K3 is given in Table 3. Suppose k ≥ 2. In this case, 3 vertex labels appear k+1 times
and 1 vertex label appears k times. Label the vertices v1,u1,u3,u5,.....,u2k−1 with label 1.
Label the other vertices arbitrarily so that k + 1 vertices get label −1, k + 1 vertices get
label i and k vertices get label −i. Number of edges with label 1 = 8k + 2.
That Cn + K2 is group {1,−1, i,−i} Cordial for n 6= 3 follows from Table 4.

n v1 v2 v3 u1 u2 u3 u4 u5 u6

4 −1 −1 i 1 i 1 −i
6 −1 −1 i 1 i 1 1 −i −i

Table 3

Nature of n vf (1) vf (−1) vf (i) vf (−i) ef (1) ef (0)
n + 3 ≡ 0(mod 4) k k k k 8k − 4 8k − 5
n + 3 ≡ 1(mod 4) k + 1 k k k 8k − 3 8k − 2
n + 3 ≡ 2(mod 4) k + 1 k + 1 k k 8k − 1 8k
n + 3 ≡ 3(mod 4) k + 1 k + 1 k + 1 k 8k + 1 8k + 2

Table 4

Theorem 5. Cn + K4 is group {1,−1, i,−i} Cordial iff
n ∈ {3, 4, 5, 6, 7, 9, 10, 11, 13, 17}.

Proof. Let the vertices of Cn be labelled as u1, u2, ..., un and let the vertices of K4 be
labelled as v1, v2, v3, v4. Number of vertices of Cn + K4 is n + 4.
Number of edges is 5n + 6.
Case(1): n + 4 ≡ 0(mod 4).
Let n + 4 = 4k(k ≥ 2). If 3 vi’s are given label 1, we get (n + 3) + (n + 2) + (n + 1) =
3n + 6 = 12k − 6 edges with label 1. But we need only 10k − 7 edges with label 1. So at
most 2 vi’s are given label 1.
Subcase(i): 2 vi’s are given label 1.
If k=2, a group {1,−1, i,−i} Cordial labeling of C4 + K4 is given in Table 5.
Suppose k ≥ 3. Minimum number of edges that can get label 1 using k vertices is (8k −
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3) + 4 + (k − 3)3 = 11k − 8. So , the necessary condition is , 10k − 7 ≥ 11k − 8 and so
k ≤ 1 which is a contradiction.
Subcase(ii): One vi is given label 1.
Maximum number of edges that can get label 1 now is (4k − 1) + (k − 1)5 = 9k − 6. To
get a group {1,−1, i,−i} Cordial labeling we need to have 9k − 6 ≥ 10k − 7 i.e. k ≤ 1,
which is impossible.
Subcase(iii): No vi is given label 1.
We need to have k.6 ≥ 10k − 7 => 4k ≤ 7 which is a contradiction. Thus in case 1 , we
get n = 4.
Case(2): n + 4 ≡ 1(mod 4).
Let n + 4 = 4k + 1(k ≥ 2). If 3 vi’s are given label 1, we get (n + 3) + (n + 2) + (n + 1) =
3n + 6 = 12k − 3 edges with label 1. But we need only at most 10k − 4 edges with label
1. So at most 2 vi’s are given label 1.
Subcase(i): 2 vi’s are given label 1.
If k = 2, a group {1,−1, i,−i} Cordial labeling of C5 + K5 is given in Table 5.
Suppose k ≥ 3. Minimum number of edges that can get label 1 using k + 1 vertices is
(8k − 1) + 4 + (k − 2)3 = 11k − 3. So the necessary condition is, 10k − 4 ≥ 11k − 3 or
10k − 5 ≥ 11k − 3 i.e. k ≤ −1 or k ≤ −2 , both not possible. Minimum number of edges
that can get label 1 using k vertices is, (8k−1)+4+(k−3)3 = 11k−1+4−9 = 11k−6.
So the necessary condition is , 10k− 4 ≥ 11k− 6 or 10k− 5 ≥ 11k− 6 i.e. k ≤ 2 or k ≤ 1.
Subcase(ii): One vi is given label 1.
Now , maximum number of edges that can get label 1 using k+1 vertices is, (n+3)+k.5 =
4k + 5k = 9k. So the necessary condition to get a group {1,−1, i,−i} Cordial labeling is
9k ≥ 10k − 4 or 9k ≥ 10k − 5 i.e. k ≤ 5. If 3 ≤ k ≤ 5, a group {1,−1, i,−i} Cordial
labeling of Ck + K5 is given in Tables 5 and 6.

n v1 v2 v3 v4 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

4 1 1 −1 −1 i i −i −i
5 1 1 −1 −1 i i i −i −i
9 1 −1 −1 −1 1 i 1 1 i i −i −i −i
13 1 −1 −1 −1 1 −1 1 i 1 i 1 i i −i
17 1 −1 −1 −1 1 −1 1 −1 1 i 1 i 1 i

Table 5

n u11 u12 u13 u14 u15 u16 u17

13 −i −i −i
17 i i −i −i −i −i −i

Table 6
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Subcase(iii): No vi is given label 1.
We need to have 6(k + 1) ≥ 10k − 5 => 4k ≤ 11 => k ≤ 11

4
. Thus in Case 2,we have

n ∈ {5, 9, 13, 17}.

Case(3): n + 4 ≡ 2(mod 4).
Let n + 4 = 4k + 2(k ≥ 2). If 3 vi’s are given label 1, we get 3n + 6 = 12k edges with
label 1. But we need only at most 10k − 2 edges with label 1. So at most 2 vi’s are given
label 1. Subcase(i): 2 vi’s are given label 1.
Thus at least 2n + 5 = 8k + 1 edges will have label 1. So k ≤ 3

2
which is impossible.

Subcase(ii): One vi is given label 1.
Maximum number of edges that can get label 1 using k + 1 vertices is (n + 3) + k.5 =
(4k−2+3)+5k = 9k+1. So the necessary condition to get a group {1,−1, i,−i} Cordial
labeling is 9k + 1 ≥ 10k − 2 => k ≤ 3. If k = 2, n = 6 and if k = 3, n = 10. A group
{1,−1, i,−i} Cordial labeling of C6 + K4 and C10 + K4 are given in Table 7.

n v1 v2 v3 v4 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

6 1 −1 −1 −1 1 1 i i −i −i
10 1 −1 −1 −1 1 −1 1 i 1 i i −i −i −i

Table 7

Subcase(iii): No vi is given label 1.
We need to have 6(k + 1) ≥ 10k − 2 => 4k ≤ 8 => k ≤ 2. Thus in Case 3 , we have
n ∈ {6, 10}.
Case(4): n + 4 ≡ 3(mod 4).
Let n + 4 = 4k + 3(k ≥ 1). Number of edges = 5(4k− 1) + 6 = 20k + 1. If 3 vi’s are given
label 1, we get 3n + 6 = 12k + 3 edges with label 1. But we need only at most 10k + 1
edges with label 1. So at most 2 vi’s are given label 1. Subcase(i): 2 vi’s are given label
1.
Minimum number of edges that can get label 1 using k vertices is (n + 3) + (n + 2) + 4 +
(k−3)3 = 11k−2 and minimum number of edges that can get label 1 using k +1 vertices
is 11k + 1. Thus 10k + 1 ≥ 11k − 2 => k ≤ 3 or 10k + 1 ≥ 11k + 1 => k ≤ 0 , both
impossible. If k = 1, a group {1,−1, i,−i} Cordial labeling of C3 + K4 is given in Table
8.
If k = 2, and if v1 and v2 are labelled with 1 then 19 edges get label 1. Thus , there is no
choice of 2 or 3 vertices so that 20 or 21 edges get label 1.
If k = 3, a group {1,−1, i,−i} Cordial labeling of C11 + K4 is given in Table 8.
Subcase(ii): One vi is given label 1.
Maximum number of edges that can get label 1 using k vertices is (n + 3) + (k − 1)5 =
(4k − 1 + 3) + 5k − 5 = 9k − 3. Maximum number of edges that can get label 1 using
k + 1 vertices is (n + 3) + k.5 = (4k − 1) + 3 + 5k = 9k + 2. Thus 9k + 2 ≥ 10k + 1 or
9k + 2 ≥ 10k so that k ≤ 1 or k ≤ 2. Also 9k − 3 ≥ 10k + 1 => k ≤ −4 which is a
contradiction. When k = 2, a group {1,−1, i,−i} Cordial labeling of C7 + K4 is given in
table 8.
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Subcase(iii): No vi is given label 1.

n v1 v2 v3 v4 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11

3 1 1 −1 −1 i i −i
7 1 −1 −1 −1 1 i 1 i i −i −i
11 1 1 −1 −1 1 −1 −1 i i i i −i −i −i −i

Table 8

We need to have 6(k+1) ≥ 10k+1 or 6(k+1) ≥ 10k so that 4k ≤ 5 or 4k ≤ 6. Otherwise
we have, 6k ≥ 10k + 1 or 6k ≥ 10k, both impossible. Thus in this Case , n ∈ {3, 7, 11}.
The labelings given for n ∈ {3, 4, 5, 6, 7, 9, 10, 11, 13, 17} are group {1,−1, i,−i} Cordial
is clear from Table 9.

n vf (1) vf (−1) vf (i) vf (−i) ef (0) ef (1)
3 2 2 2 1 10 11
4 2 2 2 2 13 13
5 2 2 3 2 16 15
6 3 3 2 2 18 18
7 3 3 3 2 21 20
9 4 3 3 3 25 26
10 4 4 3 3 28 28
11 3 4 4 4 30 31
13 5 4 4 4 35 36
17 6 5 5 5 46 45

Table 9

Theorem 6. Cn + K5 is group {1,−1, i,−i} Cordial iff n satisfies one of the following:
(i) n + 5 ≡ 0(mod 4) where n ≥ 7.
(ii) n + 5 ≡ 1(mod 4) where n ≥ 8.
(iii) n + 5 ≡ 2(mod 4) where n ≥ 17.
(iv) n + 5 ≡ 3(mod 4) where n ≥ 22.

Proof. Let the vertices of Cn be labelled as u1, u2, ..., un and let the vertices of K5 be
labelled as v1, v2, v3, v4, v5 . Number of vertices of Cn + K5 is n + 5 and number of edges
is 6n + 10.
Case(1): n + 5 ≡ 0(mod 4).
Let n + 5 = 4k(k ∈ Z, k ≥ 2). Now each vertex label should appear k times. Number of
edges = 6n + 10 = 6(4k − 5) + 10 = 24k − 20 and so each edge label appears 12k − 10
times.
If k = 2, there is no choice of 2 vertices so that 14 edges get label 1. Suppose k ≥ 3.
Label the k vertices v1, v2, u1,u2,u3,....,uk−2 by 1. Label the remaining vertices arbitrarily
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so that k of them get label −1, k of them get label i and k of them get label −i. Number
of edges with label 1 = (n + 4) + (n + 3) + 5 + (k − 3)4 = 12k − 10. That this labeling is
a group {1,−1, i,−i} Cordial labeling of Cn + K5(n ≥ 7) is evident from Table 10.
Case(2): n + 5 ≡ 1(mod 4).
Let n+5 = 4k +1(k ∈ Z, k ≥ 2). Number of edges = 6n+10 = 6(4k−4)+10 = 24k−14
and so each edge label appears 12k − 7 times.
If k = 2, there is no choice of 2 or 3 vertices so that 17 edges get label 1.For k = 3, a
group {1,−1, i,−i} Cordial labeling of C8 +K5 is given in table 10. Suppose k ≥ 4. Label
the k vertices v1, v2, u1,u3,u4,u5,....,uk−1 by 1. Label the remaining vertices arbitrarily so
that k +1 of them get label −1, k of them get label i and k of them get label −i. Number
of edges with label 1 = (n + 4) + (n + 3) + 2.5 + (k − 4)4 = 12k − 7. That this labeling is
a group {1,−1, i,−i} Cordial labeling of Cn + K5(n ≥ 8) is evident from Table 10.

n + 5 vf (1) vf (−1) vf (i) vf (−i) ef (1) ef (0)
4k(k ≥ 3) k k k k 12k − 10 12k − 10

4k + 1(k ≥ 3) k k + 1 k k 12k − 7 12k − 7
4k + 2(k ≥ 5) k k k + 1 k + 1 12k − 4 12k − 4
4k + 3(k ≥ 6) k k + 1 k + 1 k + 1 12k − 1 12k − 1

Table 10

Case(3): n + 5 ≡ 2(mod 4).
Let n + 5 = 4k + 2(k ∈ Z, k ≥ 2). Number of edges is 24k− 8. So each edge label appears
12k− 4 times. If 3 vi’s are given label 1, we get (n+4)+ (n+3)+ (n+2) = 3n+9 = 12k
edges with label 1. But we need only 12k − 4 edges with label 1. So at most 2 vi’s are
given label 1.
Subcase(i): 2 vi’s are given label 1.
Maximum number of edges that can get label 1 using k vertices is (n+4)+(n+3)+(k−
2)5 = 2(4k−3)+7+5k−10 = 13k−9. So a necessary condition to get a group {1,−1, i,−i}
Cordial labeling is 13k − 9 ≥ 12k − 4 => k ≥ 5. Maximum number of edges that can get
label 1 using k + 1 vertices is (2n + 7) + (k− 1)5 = 2(4k− 3) + 7 + 5k− 5 = 13k− 4. So a
necessary condition to get a group {1,−1, i,−i} Cordial labeling is 13k−4 ≥ 12k−4 =>
k ≥ 0. For k ≤ 4, it is easy to observe that there is no group {1,−1, i,−i} Cordial labeling.
For k ≥ 5 , label the k vertices v1, v2, u1,u3,u5,u6,u7,....,uk by 1. Label the remaining
vertices arbitrarily so that k of them get label −1, k + 1 of them get label i and k + 1 of
them get label −i. Number of edges with label 1 = (n+4)+(n+3)+15+(k−5)4 = 12k−4.
That this labeling is a group {1,−1, i,−i} Cordial labeling of Cn + K5(n ≥ 8) is evident
from Table 10.
Subcase(ii): One vi is given label 1.
Maximum number of edges that can get label 1 using k vertices is (n + 3) + (k − 1)6 =
10k−6. So a necessary condition to get a group {1,−1, i,−i} Cordial labeling is 10k−6 ≥
12k − 4 => k ≤ −1, which is a contradiction. Maximum number of edges that can get
label 1 using k + 1 vertices is (n + 3) + 6k = 10k. So a necessary condition to get a group
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{1,−1, i,−i} Cordial labeling is 10k ≥ 12k − 4 => k ≤ 2. If k = 2, n = 5, and a group
{1,−1, i,−i} Cordial labeling of C5 + K5 is given in table 11.
Case(4): n + 5 ≡ 3(mod 4).
Let n + 5 = 4k + 3(k ∈ Z, k ≥ 2). Number of edges = 6n + 10 = 6(4k − 2) + 10 =
24k − 2. So each edge label appears 12k − 1 times. If 3 vi’s are given label 1, we get
(n + 4) + (n + 3) + (n + 2) = 3n + 9 = 12k + 3 edges with label 1. But we need only
12k − 1 edges with label 1. So at most 2 vi’s are given label 1.
Subcase(i): 2 vi’s are given label 1.
Maximum number of edges that can get label 1 using k vertices is (n+4)+(n+3)+(k−
2)5 = 2(4k−2)+7+5k−10 = 13k−7. So a necessary condition to get a group {1,−1, i,−i}
Cordial labeling is 13k − 7 ≥ 12k − 1 => k ≥ 6. Maximum number of edges that can get
label 1 using k+1 vertices is (2n+7)+(k−1)5 = 2(4k−2)+7+5k−5 = 13k−2. So a neces-
sary condition to get a group {1,−1, i,−i} Cordial labeling is 13k−2 ≥ 12k−1 => k ≥ 1.
But for 1 ≤ k ≤ 5, we observe that there is no group {1,−1, i,−i} Cordial labeling . For
k ≥ 6 , label the k vertices v1, v2, u1,u3,u5,u7,u8,u9,....,uk+1 by 1. Label the remaining
vertices arbitrarily so that k + 1 of them get label −1, k + 1 of them get label i and k + 1
of them get label −i. Number of edges with label 1 = 2n + 7 + 20 + (k − 6)4 = 12k − 1.
That this labeling is a group {1,−1, i,−i} Cordial labeling of Cn + K5(n ≥ 8) is evident
from Table 10.
Subcase(ii): One vi is given label 1.
Maximum number of edges that can get label 1 using k vertices is (n + 3) + (k − 1)6 =
10k−5. So a necessary condition to get a group {1,−1, i,−i} Cordial labeling is 10k−5 ≥
12k − 1 => k ≤ −2, which is a contradiction. Maximum number of edges that can get
label 1 using k+1 vertices is (n+3)+6k = 10k+1. So a necessary condition to get a group
{1,−1, i,−i} Cordial labeling is 10k + 1 ≥ 12k − 1 => k ≤ 1, which is a contradiction.

n v1 v2 v3 v4 v5 u1 u2 u3 u4 u5 u6 u7 u8

5 −1 −1 −1 i i 1 −i 1 1 −i
8 1 −1 −1 −1 i 1 i 1 1 i −i −i −i

Table 11
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