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1 Introduction

The formal definition of the term graph is considered in |

] as G = (V, E). According to

this definition, a graph may be used to model objects and relationships among them when-
ever there is certain relationship or information that needs to be encoded [16]. Graphs
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have several applications in many areas, some examples of them are: Map Coloring, Radio
Frequency Assignment, VLSI Floorplanning, Communication Networks, Bioinformatics,
Data Flow Analysis [11, 15, 18, 31, 42, 45, 18], etc. Among these examples, communi-
cation networks are of special interest. Any communication network can be modeled as
graphs with sets of vertices and edges. These networks are exposed to the risks of disrup-
tion and malfunction by getting removed some vertices/edges. Such degrees of disruption
are considered as network vulnerabilities to decomposition and failure. In addition, the
existence of servicing clients in mobile and ad-hoc networks are also among the issues
that raise the need to assess the vulnerability of networks.

Hence, networks vulnerability study is crucial and any achievement in this regard would
lead to better assessment of computer networks. In computer science domain, networks
vulnerability has been studied since the late 80s and several parameters have been pro-
posed to estimate and assess such vulnerabilities. The rest of this paper is organized
as follows: In section 2, the vulnerability parameters and their desired properties are
discussed. Some famous vulnerability parameters such as connectivity, Tenacity, and
Toughness are discussed in this section as well. In section 3, the Normalized Toughness
(ty) and Normalized Tenacity (Ty) parameters are proposed and their properties are
reviewed. An overview is provided on how the new parameters would work for certain
classes of graphs in section 4, and section 5 will conclude the paper and discuss future
works.

2 Graph Vulnerability Parameters

As it is mentioned in section 1, the vulnerability parameters are proposed to study the ex-
tent of potential weakness and disruption of communication networks that are considered
and modeled as graphs. Numerous classes of graphs have been introduced to decrease the
vulnerability, and Harary graphs are one of those proposed [32]. Several efforts have been
done to calculate the vulnerability of this types of graphs as well [22, 39, 10]. In other
words, the vulnerability parameters help us to assess the network resistance to decompo-
sition and they are designed to map such assessment to a real number. There are several
theoretical parameters that show and estimate the vulnerability of a graph, including con-
nectivity, integrity, binding number, Toughness, Tenacity, etc. [17]. In [14] some desirable
properties of vulnerability measures are discussed. Some of these properties are:

e Monotonicity:The parameter values must be monotone (either increasing or de-
creasing)

e Comparability (Ordered Values): the values given by the parameters to any
graph must be comparable

e Distinguishability: the measure must be global enough so that its values could
distinguish between two networks (graphs)



143 A. Javan / JAC 49, issue 2, December 2017, PP. 141-159

e Computational Complexity: the vulnerability parameter should be computed
in polynomial time for any graph

e Normality: A graph or network vulnerability parameter desired to be normalized.
Being normalized means that the values should be in a finite, normal and bounded
range of real numbers (i.e. [0,1]).

Connectivity, Tenacity, and Toughness are amongst the most popular parameters. How-
ever, their disadvantage is that they do not meet some of the properties mentioned above.
For example, these parameters provide diverse ranges of values that make it difficult to
distinguish between two graphs regarding their vulnerability (i.e. connectivity, Tenacity
or Toughness). On the other hand, their values are not monotone which makes it difficult
to estimate the growth or decrease rate of them. Some examples and formal definitions of
these parameters are provided here. Since this paper is focused on Toughness and Tenac-
ity, the formal definition of these two parameters is provided below which will help to
clarify the normalization process later. For all cases in this paper, we consider the graphs
to be simple and undirected. Table 1 shows the values of some vulnerability parameters
for some simple graphs.

2.1 Toughness
The Vertex/Edge Toughness of a graph G, ¢(G), defined in [17] as follows:

t(G) = Sén‘}%){m} (1)
G) = min () @)

In which the minimum is taken over all vertex/edge cut set S of G if G is non-complete
and if G is complete then ¢(K),) = co. For convenience, Vertex Toughness is mentioned
as Toughness and these words are used in this paper equivalently. In [29] and [28], in
order to deal with the value infinity for complete graphs, the minimum is taken over all
S C V(G) which leads to p(G) — 1 instead of co; in which, p(G) is the order of graph.
The order of a graph is considered as the number of vertices of the graph [11, 16]. This
means that in order to achieve the minimum Toughness, the graph must be decomposed
so that there would be maximum disconnected components. In [1, 28, 29] the relationship
between Toughness and other measures of vulnerability are reviewed. However, many
papers dealing with Toughness have appeared since 1973, aimed mainly at establishing
links between the Toughness of a graph and its cycle structure, inspired by conjectures in
[17]: It was conjectured that a constant ¢ exists such that £(G) > ¢ implies hamiltonicity of
G, that t(G)) > 3/2 implies the existence of a two-factor in G and, for any positive integer
k such that k,(G) is even, t(G) > k,(G) implies the existence of a k-factor in G. Some
of these conjectures were reviewed in [0], as well. Only the last of these conjectures has
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been proved [25]. In this paper we merely focus on Tenacity and Toughness, to provide
a normalized calculation method for them, thus, we dont need to list all references to
progress made in investigating the remaining conjectures. The names of authors who are
currently the most distinguished in this field may be found in [9, 25].

2.2 Tenacity
The Tenacity of a graph G, T'(G), defined in [21] as follows:

+7(G—-29)

T(G) = msln{ 151

In which the minimum is taken over all vertex/edge cut set S of G; 7(G — S) is the
number of vertices/edges in the largest component of the graph induced by (G — S) and
w(G — 9) is the number of components of G — S. The formula above can be defined as
Vertex-Tenacity, Edge-Tenacity, or Mix-Tenacity. The notation will change slightly while
the concept is still the same. So, the Vertex-Tenacity would be:

1,(6) = min {2 2E = (@)

Such that, S is a subset of V' (G) the set of vertices of graph G, 7(G — 5) is the number of
vertices in the largest component of (G — S) and w(G — 5) is the number of components
of (G —95). Edge-Tenacity is defined as follows [33]:

146) = jmin, (P HESS) )

Such that, S is a subset of F(G) the set of edges of graph G, 7(G — 5) is the number of
edges in the largest component of (G —S) and w(G — 5) is the number of components of
(G — S). Finally, Mix-Tenacity is defined as below [33]:

T.(G) = min { '5';(5? 5 %)y (6)

Such that, S is a subset of E(G) the set of edges of graph G, 7(G — S) is the number of
vertices in the largest component of (G — 5) and w(G — S) is the number of components

of (G- S).
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Table 1: Vulnerability parameters for some special graphs with six vertices

Graph K | Ke t te T T, T,

Ps 11224 )s6] 1

H2,6)=Cs | 2 2| 1 | 1 43| 1| 7/6

RO

H(3,6) sl 1 Is2]a3]32] 5/3
<@ H(4,6) alal 2] 2 |s2] 2 |36
%% H(5,6)=Kg oo oo oo ] o | 0| 00

2.3 Connectivity, Tenacity, and Toughness of Some Special Graphs

In this subsection, some examples of certain classes of graphs are presented to review how
connectivity, Tenacity, and Toughness of them are calculated and which desired properties
of vulnerability parameters are met by them.

As it is shown in Table 1, all the vulnerability parameters almost meet the Monotonicity
property of vulnerability measures. We conclude from Table 1 that, all three measures are
almost distinguishable but it is hard to compare two different graphs with different orders
(i.e. the number of vertices); however, the new calculation method that is presented in
this paper makes the graphs comparable easily with each other regarding their Tenacity
and Toughness. In addition, none of the parameters mentioned above can be computed
in polynomial time in general [7, 8, 10, 13, 30, 36, 37, 51] and all of them are classified as
NP-hard problems. Figure 1 shows the Monotonicity of the parameters.

In [38], the vulnerability parameters including Integrity, Connectivity, Binding number,
Toughness and Tenacity of several graph classes are studied and compared. The results
achieved in [38], showed that Tenacity is one of the most suitable measures of stability or
vulnerability since it can distinguish between graphs that are supposed to have different
vulnerabilities. What remains as an issue is the ambiguity of the vulnerability parameters.
This means that sometimes these parameters present a dual approach to deal with some
special classes of graphs. K3 is one of the examples; this graph is considered as a cycle
graph as well. As it is known, the value of Tenacity and Toughness regarding complete
graphs are not available meanwhile they provide definite values for cycles. This is also
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Figure 1: The trend of Monotonicity among Connectivity, Tenacity, and Toughness

one of the issues that this paper is aimed to resolve it.

3 Normalized Toughness and Normalized Tenacity

In this section, we are going to introduce Normalized Tenacity and Normalized Toughness
parameters and explain how they are calculated for several types of graphs. The Nor-
malized Tenacity and Normalized Toughness parameters are based on a coefficient which
makes their values lie in the closed interval [0,1]. Thus, in this paper the coefficients
are presented which are calculated through upper bound achievements both for Tenacity
and Toughness. The Tenacity or Toughness value would be multiplied by the reversed
coeflicient achieved for each. This will results values that are in the closed interval [0,1].
The Normalized Tenacity /Toughness of completely disconnected graphs is considered to
be 0 and for complete graphs, they are considered to be 1. The next subsections will
introduce Normalized Tenacity and Normalized Toughness as our new parameters.

3.1 Normalized Toughness

In order to normalize the Toughness of graphs so that it would lie in the closed interval
[0,1], it is necessary to find a coefficient such that its multiplication to Toughness would
results a normal value in this interval. Thus an upper bound should be obtained. Com-
plete graphs with the most connectivity are considered as the upper bound or the hardest
case for Toughness. As it discussed before, t(K,) = 00; so, this cannot be considered
as an upper bound. In [28] and [29], p(G) — 1 is considered as an upper bound where
p(G) is the number of vertices of a graph. If the number of the vertices of the complete
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graph is considered as n, then ¢(K,) = n — 1. This coefficient is not desirable since it still
has ambiguity for calculation of certain graphs such as Kj3. K3 can be considered both
as a complete graph (K3) and a cycle graph (C3). In order to overcome this ambiguity,
another upper bound is proposed. It is proved that the upper bound for the Toughness
of all classes of graphs is 2/(n — 1) using the following lemma.

Lemma 1: For any graph G = (V, E), the upper bound for Toughness is (n — 1)/2.
Proof: As it is mentioned earlier, the complete graphs are the upper bound or the worst
cases for vulnerability assessment. Consider a K, o graph in which n — 2 vertices are
completely connected to each other and two other vertices are connected to the remaining
vertices except each other (K, having removed one edge). The schema of the graph would
be as Figure 2.

A&

<

Figure 2: The schema of K, having removed the edge (u,v)

For the graph in Figure 2, in order to achieve minimum Toughness, n — 2 vertices should
be removed so that 2 components would remain. Replacing the values in formula (1)
would results (n — 2)/2. It is clear that if only one edge between u and v is added, the
resulting graph would be K,. It is also clear that due to the Monotonicity property of
Toughness, adding one edge would increase the value of Toughness very little with the
value €. Thus clearly:

n— 2
2

to(Kn) > (7)
Therefore, the upper bound for Toughness can be considered as (n — 1)/2. According
to Lemma 1, the coefficient for Normalized Vertex Toughness would be 2/(n — 1). This
coefficient is also true for Edge Toughness. It can also be proved through the Lemma 2.

Lemma 2: For any graph G = (V, E), the upper bound for Edge Toughness is (n —1)/2.
Proof: Based on the method presented in [33], we can conclude that the worst case for
Edge Toughness relation, leading to the minimum value, is to remove n(n — 1)/2 edges
to obtain n components. This case provides the minimum value. Thus the value of the
Edge Toughness would be:
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So, the upper bound for Edge Toughness would also be (n — 1) /2.

Therefore, the Normalized (Vertex) Toughness and Edge Toughness would be respectively:

2 |51

tuy (G) = —— X Sglvi(%){m} (9)
(o (6) = 2 min () (10)

3.2 Normalized Tenacity

In order to achieve Normalized Tenacity parameters, the equations (4), (5), and (6) must
be modified, so that their values can lie in the closed interval [0, 1]. To this purpose, the
coefficient must be considered as the upper bound for Tenacity so that its multiplication
by Tenacity would meet the constraint above. Clearly, complete graphs are the densest
graphs and hence are considered as an upper bound for the Tenacity of graphs.

The proper coefficient for (vertex) Tenacity is proved through the following lemma:

Lemma 3: For any graph G = (V, E), the upper bound for (vertex) Tenacity is n.
Proof: Likewise Lemma 1, consider an almost complete graph K,,. The overall schema
of the graph is presented in Figure 2. In order to achieve minimum Tenacity, maximum
disconnection is desired. So, n — 2 vertices must be removed. Thus the Tenacity of the
complete graph would be:

—24+1 -1
T(K,) >~ 2+ :"2 , (11)

n—1
n20=>n>—1:>2n>n—1:>n>T (12)

This graph only misses one edge so that it could be a complete graph. Therefore the
Tenacity of the complete graph can be considered as:

T,(K,) =n. (13)

This coefficient can be obtained using another method. Consider the graph shown in
Figure 3. In this graph, by removing n — p vertices, p components will be generated.
Thus, the Tenacity of this graph will be:

n—p+1

T,(G) = "

(14)

By setting p = 1 the graph will be a complete graph, and we have:
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So,

1 {|S!+T(G—S)

Ty (G) = — X min

n_ Scv(G) w(G —29) } (16)

In [33], it is shown that the Edge Tenacity for complete graph K, is as follows:

T(Ky) = : (17)

Since this is an upper bound for All Types of Graphs, we consider 1/(T.(K,,)) as the coef-
ficient for calculation of Normalized Edge Tenacity. Thus the Normalized Edge Tenacity
for the graphs would be:

2 . S|+ 7(G-5)
BT A (e (18)

Lemma 4: For any graph G = (V, E), the upper bound for Mix Tenacity is (n(n — 1) +
2)/2n.

Proof: This lemma is also proved by considering a complete graph. The complete graph
K, consists of n vertices and (n(n — 1)/2) edges. Based on the method which discussed

in [33], in order to achieve minimum value, all edges must be removed. Therefore,
M1 p(n—1) 42
Tn(K,) = —2 = (19)

n 2n

Thus, the upper bound for Mix Tenacity of graphs would be (n(n — 1) + 2)/2n. Then,
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Table 2: The Toughness and Tenacity and their corresponding normalized parameters for
Cg and Clg

Graph i ty Ty T,

K3 C3 | 01 1 1 1 00 3 1 1 1

Cho 1 2/91 1|29 6/5 o0 1|29

B 2n . S|+ T(G = 9)
Tns (@) = S Ty S A oG —

} (20)

4 The Properties of Normalized Toughness and Tenac-
ity

The Normalized Toughness and Normalized Tenacity parameters that are proposed in this
paper, meet some desired properties of the vulnerability parameters. The main properties
are reviewed in this section.

4.1 Normalized parameter values and possibility of graph com-
parisons

The normalized vulnerability parameters values enable one to compare vulnerability of
several classes of graphs regardless of their orders (i.e. the number of vertices). As an ex-
ample the Tenacity and Toughness of consider C'3 and C'y along with their corresponding
normalized values in Table 2.

As it is shown in Table 2, the Edge Toughness for both graphs is 1, but it is clear that
(o is weaker than C3 and thus their normalized values show this difference better (i.e.
tex(C3) > tey(Cro) and t,,,(C3) > t,,(Cho)). This is also true for Tenacity except that
Tenacity provides different values regarding the vulnerability of these two graphs, but
the range and amount of weakness are more comprehensible via normalized values. As a
conclusion, normalization of parameters enables us to compare different graphs regardless
of their size. Due to this property of Normalized Tenacity and Normalized Toughness
parameters, these parameters are also applicable in mobile networks in which the numbers
of the nodes vary by time. The sign <> is used to indicate the ambiguity that is faced
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while dealing with the graph with 3 vertices.

4.2 Overcoming ambiguity

They avoid ambiguity and thus they provide one definite value for any graph. The am-
biguity on how to deal with K3 and C3 can be mentioned as an example. The fully
connected graph with three vertices can be considered both as a cycle and a complete
graph. According to the Table 2, while calculating Toughness or Tenacity of this graph,
if it is considered as a complete graph, the values for some parameters would not be avail-
able; while, the values of the aforementioned parameters are available for cycle graphs.
This ambiguity would still remain if the upper bound mentioned in [28, 29] was chosen.
That was the reason why new upper bounds were presented in this paper. Table 2 shows
this property in a summary for t,(K3 <> C3) and T, (K3 <> Cj3).

4.3 Bounding normalized parameters to random graphs con-
cepts

Since the values of the normalized parameters lie in the closed interval [0,1], thus these
new parameters can be utilized to connect some random graph concepts to vulnerability
parameters. This possibility is due to the probabilistic nature of the value of the normal-
ized parameters (i.e. likewise the probability values of the events/variable, the values of
the Normalized Toughness and Normalized Tenacity, lie in the closed interval [0,1]), they
suite to provide a connection between vulnerability of graphs or networks and randomized
graphs concepts.

4.4 Better study of the problems which do not rely on graphs
orders

For the case Toughness and Tenacity, the range of possible values would increase by
increasing the order of the graphs. However, since the new parameters values are inde-
pendent of the number of the vertices of the graph. Therfore, they can be considered as
better means to study some problems that are conceptually independent of the size of the
graphs such as Hamiltonian cycles, etc. As it is discussed, in [17], Chvtal has proposed
two conjectures that:

e There exists t0 such that every t0-tough graph is Hamiltonian and
e Every 2-tough graph is Hamiltonian.

In [5] it is proved that the second conjecture is false, while the first one is still an open
problem. By introducing Normalized Toughness, it might be easier to find the threshold
to such that the Hamiltonian graphs could be distinguished from the others.

In [5] it is proved that not every 2-tough graph is Hamiltonian by a counterexample. The
following theorem has already been proved [, 7] for graph H and x, y two vertices of H
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which are not connected by a Hamilton path of H. If m > 2] + 3, then G(H, z,y,l,m)
is non-traceable. It is said that a graph is traceable if it has a path containing all of its
vertices. A simple example of the graph along with its schema is provided in [10]. Also,
it was shown that for [ > 2 and m > 1, 7(G(L,u,v,l,m)) = (I + 4m)/(2m + 1) where,
m is the number of disjoint copies of subgraph H, and [ is the number of dominating
vertices [5]. Thus, the number of vertices of the graph would be [ 4+ 8m. Considering the
coefficient of the Normalized Toughness as 2/(n — 1), that is, in this case, 2/(l 4+ 8m — 1).
In the theorem above a lower bound is obtained for m which is the number of disjoint
copies of H. Thus with a constant [, the maximum of the above-mentioned equation is
achieved only when m is minimized. (i.e. m = 2/ + 3). Thus:

_l—{—4m>< 2 B 2(l+4m)
“2m4+1 T I+8m -1 C2m+ 1D +8m—1)

toy (G) (21)

It is clear that the value of the equation above would always lie in the interval [0,1] when
m is large. But for smaller values of m and [, it must be checked to ensure the constraint
remains true, thus the minimum values for m and [ must be substituted to see if the value
still remains in the interval [0,1]. As the minimum m is substituted in the equation (18):

2(1 + 81 4 12) 2(91 + 12)

toy (H) = (41 4+ 6+ 1)(I + 161 + 23) - (4l + 7)(171 + 23) (22)

Since [ > 2 [5], by substituting [ by its minimum value (i.e. [ = 2):

18] + 24 182 + 24 60 12

too (H) = = =— =_—"¢10,1] (23
) = G oo T 1101 151 6845 922 1192 1151 845 169 < (01 (33)

In addition, as m increases, the value becomes even smaller than 12/169.

5 Review and Compare Normalized Toughness and
Normalized Tenacity for some special classes of
graphs

Now it is useful to review some examples of Toughness and Tenacity for some special
classes of graphs to see that the proposed equations remain true and check how they
work. In this section Toughness and tenacities of several classes of graphs have already
been calculated. The results achieved in previous researchers are presented, here; in
addition, the normal Toughness and normal Tenacity are calculated for these classes of
graphs. In [2, 3,5, 12,20, 2224, 26-28, 33-35, 39, 40, 43, 44] the Tenacity and Toughness
for some classes of graphs are discussed. A brief summary of the observations is displayed
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(a)  Start  Graph Wheel Graph

) Cycle Graph (
(K1) (Ws) ) Gear Graph (Gg) ycle Grap

Figure 4: Examples of Star, Wheel, Gear, and Cycle graphs

in Table 3. It is noteworthy that there are many classes of graphs for which Toughness or
Tenacity or both are calculated. Table 3 just presents some important ones as a summary.
Before proceeding to Table 3, some definitions of these special classes of the graphs are
provided here.

Definition 1 [16]: For an integer n > 1, the path P, is a graph of order n and size n+ 1
whose vertices can be labeled by vy;v9;; v, and whose edges are v;v;.1 for i =1,2, ,n+ 1.

Definition 2 [26]: A star graph is a complete bipartite graph denoted by K ,. The
number of vertices of the star graph K ,, is n 41 and n is its total number of edges. The
Figure 4(a) shows K g.

Definition 3 [2]: The wheel graph with n spokes, W,,, is the graph that consists of an
n-cycle and one additional vertex, say u, that is adjacent to all the vertices of the cycle.
The Figure 4(b) shows W.

Definition 4 [2, 12]: The gear graph is a wheel graph with a vertex added between each
pair adjacent graph vertices of the outer cycle. The gear graph G, has 2n + 1 vertices
and 3n edges. The gear graph Gy is shown in Figure 4(c).

Definition 5 [16]: A 3-regular graph is a graph where each vertex has 3 neighbors. A
3-regular graph also called as a cubic graph. One of the best known cubic graphs is the
Petersen graph.

Definition 6 [50]: The Harary graph Hy , is a particular example of a k-connected graph
with n vertices having the smallest possible number of edges.

Definition 7 [2, 35, 49]: The Cartesian product of two graphs GG; and G5 are concep-
tually denoted by G; x G3. The total number of vertices of the resulting graphs would
be |V(G1) x V(Gy)|. This definition is applicable to any class of graphs including gear
graphs. For which the Cartesian product of G,, and G,, is denoted by G,, x G,,. The
Cartesian product of two gear graphs has mn vertices. With the same inspiration, the
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(a) Kmn (b) Ky ma,m, (c) Qa4

Figure 5: Examples of Complete Bipartite, Complete multipartite, and 4-Dimentional
Hypercube

Cartesian product of K (a path/complete graph with 2 vertices) and a gear graph with
n vertices (K, x G,) has 4n + 2 vertices.

Definition 8 [16]: Complete Bipartite Graphs are denoted by K, , where its set of
vertices can be partitioned into two partite sets of U and W such that any corresponding
edge uw is an edge of G if and only of u € U and w € W. If |U| = m and |W| = n, this
graph is denoted by K, .

Definition 9 [16]: A complete multipartite graph is a complete r-partite graph for some
integer » > 2. A complete r-partite graph G is a r-partite graph with the property that
two vertices are adjacent in G if and only if the vertices belong to different partite sets.
For an integer r > 1, a graph G is a r-partite graph if V(G) can be partitioned into r
subsets Vi, Vs, , V. (again called partite sets) such that every edge of G joins vertices in
two different partite sets. The complete multipartite graphs are denoted by K., my m,. -

Definition 10 [16]: An important class of graphs is defined in terms of Cartesian prod-
ucts. The n-cube Q,, is Ky if n = 1, while for n > 2, @),, is defined recursively as the
Cartesian product @Q,,_1 x Ky of @,,_1 and K5. The graph @), is an n-regular graph of
order 2.

Definition 11 [23]: Generalized prism graph Z, ; has vertex set {(i,7)]¢ = 1,2 and
j =1,2,,n}. Each vertex (i, j) is adjacent to (i, 7+ 1). In addition, each (1, j) is adjacent

to (2,7 + o) for each o in {52 ],...,0,..., [$]}.

Definition 12 [1]: The generalized Petersen graph GP(n,k),n >2and 1 <k <n — 1,
has vertex-set {ug, U1, ..., Up_1, Vo, V1, ..., Up—1} and edge-set {w;u; 1, uvy, Vv 1 0 < i <
n — 1} with subscripts reduced modulo n.

6 Conclusion

In this paper, Normalized Tenacity and Normalized Toughness are introduced such that
the calculated value for any graph would lie in the interval [0,1]. These modified param-
eters have advantages, including:
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(a) Z(5,1)

Table 3: A brief summary of Toughness, Tenacity, Normalized Toughness and Normalized

o

(b) Z(5,2)

(c) Z(5,3)
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Y

(d) Petersen

Figure 6: Examples of Prism and Peterson graphs

Tenacity values for some special graphs

(e) G(6,2)

Graph v t, tuy T, Toy
C, n 1 %
C,, x C, mn 1: m,n even m3—1 %:2 ";:7;2
n_ . 2n
Cn x C, mn < -5 meven < DD
n_ . 1
G, 2n + 1 y .+n f 4 _nfl 1 —inﬂ
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T 2 2 2
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e Better definitions for Tenacity and Toughness and preventing infinity values for
complete graphs

e The calculated values for the above mentioned parameters are independent of n
(number of vertices/ edges) and they lie in the interval [0,1]

e Since the formulas give definite value for any graph, it is possible to compare two
entirely different graphs with different number of vertices/edges

e [t is more convenient to study graphs regardless of their number of edges and ver-
tices and the issues regarding graph structures, such as Hamiltonian cycles can be
understood and discussed more conveniently

e Since the Normalized Tenacity and Normalized Toughness lie in interval [0,1], we
can apply probabilistic and statistical techniques to analyze compound issues

Although some properties of regular Toughness and Tenacity have been improved, making
these two parameters become more useful parameters to apply in graph theory concept,
consequently; but, the modifications did not apply any changes to Monotonicity and
Computational Complexity of them. The next effort would be to find the point from
which the Hamiltonian graphs could be detected. It would be also useful to bring a
connection between random graphs concepts and Normalized Toughness and Normalized
Tenacity parameters of the graphs, in the future.
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