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ABSTRACT

ARTICLE INFO

Community detection has a wide variety of applications
in different fields such as data mining, social network
analysis and so on. Label Propagation Algorithm (LPA)
is a simple and fast community detection algorithm,
but it has low accuracy. There have been presented
some advanced versions of LPA in recent years such
as CenLLP and WILPAS. In this paper, we present im-
proved versions of CenLP and WILPAS methods called
CenLP+ and WILPAS+ respectively. Experiments and
benchmarks demonstrate that while CenLLP+ is as fast
as CenLP, it outperforms CenLLP on both synthetic
and real-world networks. Moreover, while accuracy of
WILPAS+ on synthetic networks comparable with that
of WILPAS, on real-world networks, WILPAS+ excels
WILPAS. In addition, whereas both presented methods
CenLP+ and WILPAS+ show high accuracy on syn-
thetic networks, on real-world networks they outperform
remarkably all other tested label propagation based al-
gorithms for community detection. Therefore, since
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1 Abstract Continued:

CenLLP+ and WILPAS+ are both fast and accurate, specially on real-world networks,
they can efficiently reveal community structures of mega-scale social networks.

2 Introduction

Community structure is considered as an important property of real-world networks. De-
spite the lack of unique definition of community, it is widely accepted that a community
has more internal connections than external ones . Communities can be found in many
complex systems such as social and biological networks, the internet, food webs and so
on. Nodes of a community have often several characteristics in common.

A wide variety of different methods have been proposed for community detection. In 2002,
Newman and Girvan introduced a divisive algorithms using centrality indices called edge
betweenness to find community boundaries [10]. In 2004, a measure called modularity
was introduced to assess the quality of detected communities of a network [24]. After
that, so many methods were presented for modularity optimization [2] 6, B]. In addition
to modularity optimization strategies, graph partition-based methods [23] 8, 29], density-
based methods[31], 27] and label propagation algorithm (LPA) [25] have been presented
for community detection.

Among all the community detection methods, LPA is one of the fastest algorithms. LPA
algorithm is simple and its time complexity is nearly linear time. However because of ran-
domness, the detected communities have poor stability. That is, LPA may find different
communities in different runs. In some runs, small communities are merged with big ones
forming "monster” communities which is a drawback of LPA [17].

The LPA can be described as follows. Initially, each node is assigned a unique numeric
label. At each iterative step, each node updates its label to the most frequent label from
its neighbours in a random order. When there are multiple most frequent labels, the node
will randomly pick one of them. Relabeling continues until the label of each node is its
most frequent label among its neighbours. Finally, the nodes with the same label are
considered in the same community. Because of two sources of randomness, LPA shows
low accuracy. First source is random update order of nodes for label updating and the
second one is randomly selecting one label when there are multiple most frequent labels
to choose.

To increase accuracy, CenLP method eliminates these two types of randomness. First,
CenLP replaces random order of nodes with one deterministic order of nodes. Second,
CenLLP provides a new label choosing mechanism when there are multiple most frequent
labels to select. In CenLP, for each node u , its most similar neighbor of higher local
density, if exists, is defined as its preference node or p(u). Then, If a node u has an
equal maximum number of neighbor labels and one of them equals the label of p(u), then
node u adopts that label. CenLP+ changes this strategy a little to improve accuracy.
More accurately, CenLP+ attempts to choose label of p(p(u)), when there are multiple
maximum neighbour labels to select, regardless of the content of the set of maximum
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neighbour labels. The main reason for doing this in CenLLP+ is that p(p(u)) is more likely
to be the center of its community than p(u). Therefore, adopting label of node p(p(u))
for node u, can lead to a much more accurate community detection.

WILPAS is another method which increase accuracy of community detection with re-
placing two source of randomness of LPA with two deterministic part. First, nodes are
arranged such that more important nodes update their labels first. Second, each node
adopts a neighbour label that has more influence on it. Influence of a neighbour label
can be calculated as the summation of all influence of neighbour nodes holding that la-
bel. Influence of a node u on node v can be estimated as importance value of node u
multiplied by strength of the link connecting these two nodes. Important value of node
u is estimated by degree of node u. Moreover, strength of a link can be estimated by
the similarity measure between its two endpoints. WILPAS+ attempts to find for a each
node u, a ’follower’ node such the follower node have both higher importance ( higher
degree) than u and maximum influence on u at the same time. Then each node will adopt
the label of its follower node. The reason behind this strategy is that, in real networks,
nodes with high degrees have important role in forming communities, spreading informa-
tion, viral marketing and so on. Thus, follower node of a node u is more likely to be an
important node in the community of node u. Therefore, these follower nodes can guide
us to find ground-truth communites of real-world networks with higher accuracy.

This paper is structured as follows. In Section [3| related works in the field are listed.
Some notions are defined in Section [dl In Section 5] the proposed methods CenLP+ and
WILPAS+ are presented. Experimental results of comparing the proposed methods with
some famous methods in this area are discussed in section [6] Finally, conclusion is given
in Section [7

3 Related Works

In 2007, Raghaval et al.[25] proposed Label Propagation Algorithm (LPA) for community
detection. LPA can be summarized as four following steps:

1) Initialize every node with a unique label.

2) Arrange the nodes in a random order.

3) For every node in that random order, set its label with the one which is the most
frequent label among its neighbours.

4) If every node has a label that the maximum number of their neighbours have, then
stop the algorithm; else go to step 2.

Label of each node u in LPA is defined as follows:

l(u) = argrlnax Z 1, (1)

where N'(u) indicates the set of neighbours of node u with label I. This is LPA’s asyn-
chronous version. Since synchronous version has potential label oscillations as discussed
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in [25], we will not consider this version. As discussed earlier LPA has two types of ran-
domness. Unfortunately, randomness of LPA may result in missing small communities
and even getting trivial solution in which all nodes are assigned the same label [I7]. More-
over, it makes the algorithm unstable such that different communities may be detected
in different runs of the algorithm.

Zhang et al. generalized LPA to weighted networks by calculating the probability value
of every label [33]. The label updating formula in this case is changed as follows:

l(u) = argrlnax Z w(u,v) , (2)

where w(u, v) indicates the weight of the edge between nodes u and v.

Barber and Clark proposed modularity-specialized algorithm (LPAm) to constrain the
label propagation process [5]. Their algorithm is near-linear time, but it may get stuck
in poor local maxima in the modularity space. To scape local maxima, Liu et al. in-
troduced an advanced modularity-specialized label propagation algorithm called LPAm—+
[19]. LPAm+ combines LPAm with multistep greedy agglomerative algorithm to get
higher modularity values. Thus, LPAm+ does not guarantee near-linear time complexity
[34]. Xing et al. presented a node influence based label propagation algorithm called
NIBLPA [30]. NIBLPA defines two concepts node influence and label influence for spec-
ifying node orders and label choosing mechanism respectively. Zhang et al. proposed a
label propagation algorithm with prediction of percolation transition named LPAp [34].
They transformed the process of label propagation into network construction process. Us-
ing this prediction process of percolation transition, they tried to delay the occurrence of
trivial solutions. Sun et al. proposed a centrality-based label propagation called CenLLP
[28]. They presented a new measure for computing the centrality of nodes. Based on
these centrality values, one specific update order in addition to node preference values
are specified in order to improve traditional LPA. Arab et al. presented a novel label
propagation algorithm called WILPAS with specific update order and new mechanism for
label updating [4]. WILPAS method considers both node importance and link weight dur-
ing label propagation process in order to reveal real community structure, while avoiding
forming monster communities.

4 Terminology

Let G = (V, E) be an undirected network where V' is the set of nodes and E is the set of
links. The number of nodes and links of GG is denoted by n and m respectively. That is
n = |V| and m = |E|. Let d, be the degree of node u in the network. Degrees of node
u within and outside of its community are denoted by d™ and d°“ respectively. Mixing

parameter p for each node u is defined as dg:t. The set of all neighbours of node wu is
denoted by N(u). Internal and external links respectively refers to the links within and
between communities. Moreover, w(u,v) refers to the weight of the link between nodes u

and v. Also [(u) indicates the label of node w.
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5 The Proposed Methods

In this section, we first analyze the structure of CenLP method. To do that, we present
the definitions of local density p , the similarity 6 with higher density neighbours, the
centrality of nodes £ and also pseudo-code of CenLP. After that, we introduce the proposed
improved version of CenLLP called CenLP+. In fact, CenLLP+ modifies the label choosing
mechanism of CenLLP in order to increase peformance.

5.1 CenLP

The CenLLP method proposes a specified node order for label updating and also a new
label choosing formula. The specified node order is such that nodes which are less likely
to be centers of communities should update their labels first. These nodes called border
nodes. The basic assumption for specifying centers of communities is that community
centers are surrounded by neighbors with lower local density and they have a relatively
low similarity with any nodes with a higher local density. The label choosing formula is
such that a node u prefers to adopt the label of a neighbour node whose local density
is higher than that of itself and their similarity is maximum among all neighbors of the
node. If such node exists, it is called node preference of node u or p(u). In the followings
some basic definitions of CenLP are presented.

Definition (Structure Neighborhood). The structure neighborhood of a node w is the set
I'(u) containing u and its adjacent nodes:

P(u) = N(u) U {u} (3)

Definition (Strength). The strength of a node u is defined as

k(u) = Z w(u,v). (4)

vEN (u)

Definition (Structural Similarity). The structural similarity between two nodes u and v
is defined as
ey — L@ T 5
[P()][I(v)]
where || indicates the cardinality of a set.
Definition (local Density). For a node u € V, the local density is defined as

_ k)
n—1

u (6)
where k(u) and n are the strength of node w and the number of nodes in the network
respectively.

Definition (Similarity with Nodes of Higher Density). For a node w € V, the similarity
with nodes of higher density is defined as

Ou = MATyeN () A py>po STT(U, V), (7)
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where sim(u, v) refers to the structural similarity o(u, v).
Definition (Centrality). Given a weighted undirected network G(V, E, w), the centrality
v, of a node u € V' is defined as

_ Pu

Since centers of communities will have high p and low 9, their v values will be higher than
those of other nodes. Thus, these nodes can be recognized by this characteristic. Then,
the nodes are sorted in ascending order of their v values. This specific order of nodes is
used for label updating in CenLLP. Therefore, the border nodes should be updated first.
Moreover, remaining nodes based on their preference nodes , update their labels.

Definition (Preference Node ). For a node u € V, the preference node p(u) is defined as

p(u) ={veV| argmax sim(u,v)} 9)
vEN (u) A pu>pu
Note that preference node p(u) may not exist for some nodes, specially for nodes which
are centers of their community. The main part of label choosing mechanism of CenL.P
is as follows. If a node u has an equal maximum number of neighbor labels and one of
them equals [(p(u)), then set: {(u) = I(p(u)); if the node does not have a preference node,
select a candidate label randomly.

5.2 CenLP+ method: improved version of CenLP

The presented CenLLP+ method changes the mentioned label choosing mechanism of
CenLP such that the accuracy of community detection can be improved. In fact, label
choosing mechanism of CenLP+ for each node u is as follows. If a node u has an equal
maximum number of neighbor labels, then if p(p(u)) exists, then set I(u) = I(p(p(u))),
else if p(u) exists, set {(u) = I(p(u)). But if neither p(p(u)) nor p(u) exist, then select a
candidate label randomly. Moreover, CenLLP+ does not check the existing of the label of
preference node among neighbour labels. The pseudo-codes of two methods CenLLP and
CenLP+ are presented as Algorithm [I] and Algorithm [2] respectively.

Fig (1] shows karate club network. This network is formed by 34 members of a karate club
in the United States. Because of a disagreement between administrator and instructor
of the club, a new club was formed by the instructor by taking about the half of the
original club members. This network has two communities specified by shapes ’circle” and
‘'square’ in Fig . The edges between nodes (members) of this network represent the social
interactions between the members outside the club. Two nodes 34’ and '1’ represent the
club president and the instructor respectively. Therefore, these two nodes are the centers
of their own communities.

In Fig [I| red arrow connecting a node v to node u indicates that u is preference node of
v, i.e. u = p(v). Starting from each node, by following red arrows at several steps, finally
either two nodes '34” or "1’ are reached, which are the centers of their own communities.
Except starting from node '10’, by following red arrows in Fig [I] ultimately the center
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1 foreach wu € updateOrder do

2 if u has an equal maximum number of neighbors then

3 if isExist (p(u)) A candidatelLabels.contains( I(p(u)) ) then
1 [ 1(w) =l(p(u));

5 else

6 | 1(u) = randomly select from candidate labels;

7 end

8
9

else
‘ 1(u) = label with the highest frequency among neighbors;
10 end

11 end

Algorithm 1: CenLLP method

Figure 1: Preference nodes on karate club networks. Red arrow connecting a node v to
node u indicates that u is preference node of v, i.e. u = p(v).
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of community of that node is reached. In experimental results we will see that, for each
node v, adopting label of p(p(v)) as suggested by CenLP+, instead of choosing label of
p(v), as proposed by CenLP, will lead to more accurate community detection. This is
because p(p(v)) is more close to the center of its community than p(v).

1 foreach wu € updateOrder do

2 if u has an equal maximum number of neighbors then
3 if isExist (p(u)) then

4 if isExist (p(p(u))) then

5 | 1(w) = 1(p(p(u)) );

6 else

: 1) = 1(p(w);

8 end

9 else

10 | 1(u) = randomly select from candidate labels;
11 end

12 else

13 ‘ 1(u) = label with the highest frequency among neighbors;
14 end

15 end

Algorithm 2: CenLLP+ method

5.3 WILPAS method

The method WILPAS is based on this assumption that each node u has an effect on each
of its neighbour node v according to both w(u,v) as the strength of relationship between
the two nodes and also d,, as the importance value of node u. Therefore, w(u,v) * d, can
be thought as the influence value of node u on the neighbour node v which is denoted by
inf(u,v). Thus,

inf(u,v) = w(u,v) *d,. (10)

One can simply extend this definition to be used for influence of a label [ on a node. More
accurately, influence value of label [ on a node v can be thought as the summation of the
influence values of its neighbour nodes having label [. That is:

inf(l,v) = Z inf(u,v) (11)

ueN!(v)

In WILPAS, the extended importance value of each node is defined as FI(v) = d, +
Y ue N) d,. WILPAS has two stages. Stage one has specific node order for label updating
and also one special label updating formula. Stage two of WILPAS is similar to LPA with
random update order and randomly selecting most frequent labels. The specified node
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order of stage one is based on descending order of EI values of nodes. In addition, label
updating formula of stage one of WILPAS is such that each node v adopts a neighbour
label [ having maximum influence inf(l,v). In other words, in stage one of WILPAS, the
new label [(v) for a node v is defined as follows:

l(v) = argrlnax inf(l,v) . (12)

The process of label updating continues in iterative steps untill labels of nodes do not
change anymore. Stage two of WILPAS is injecting detected labels from stage one into
ordinary label propagation agorithm (LPA). The stage two of WILPAS causes possible
sub-communities to be merged to get real ones.

5.4 WILPAS+: improved version of WILPAS

The main goal for presenting WILPAS+ is to improve the quality of detected communities
of WILPAS for real-world networks, while increasing its speed. In stage one of WILPAS,
as discussed, each node adopts a label with maximum influence on it. But in WILPAS+,
at first, each node v defines a neighbour node called following node f(v). The node f(v)
has both high degree and high influence on v. Then, in stage one of WILPAS+, each node
adopts the label of its following node. Stage two of WILPAS+ is similar to standard LPA
with one difference. Once there are multiple most frequent labels to select, choose the
one with maximum importance, i.e. adopt the one that their corresponding nodes have
higher degrees.

The more accurate descriptions for WILPAS+ are presented as follows.

In WILPAS+ method, each node v attempts to find a following node f(v) with two
primary conditions: 1) f(v) has high influence on v. 2) f(v) should be more close to
the center of its community than v. Therefore, one candidate for f(v) is a neighbour
node u of v such that d, > d, and the influence inf(u,v) is maximum. Consider two
nodes which have maximum degrees of their own communities. If these two nodes are
connected with an edge, there is a possibility that one of them becomes following node of
another. This can result in merging the two communities by WILPAS+. To avoid that,
the third condition for defining following node is necessary. At first, let define for a node
v a neighbour node u with maximum influence on it and denoted it by max_inf(v):

maz_inf(v) = argmax inf(u,v) (13)
u€eN (v)

Then, the third condition can be described as follows. The ’following’ node f(v) should
be such that inf(v, f(v)) should be equal or greater than avx maz_inf(v). The parameter
« is a arbitrary threshold such that 0 < a < 1. If «a is too small, the above problem
of possibility of merging two communities may still exist. On the other hand, if « is
very close to one, the second condition would be very hard to be satisfied. In experiment
section we set v = 0.50. For node v, following node f(v) is defined as follows.

flv) = argmax inf(u,v) (14)

uEN (V) A dy>dy A inf(u,v)>axmaz_inf(v)
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Figure 2: Following nodes on karate club network for WILPAS+ method. Red arrow
connecting a node v to node u indicates that u is following node of v, i.e. u = f(v).

Fig [2| shows following nodes of karate club network. Red arrow connecting a node v to
node u indicates that u is following node of v, i.e. u = f(v). Starting from each node,
by following red arrows with at most two steps, finally either two nodes '34’ or '1’ are
reached, which are the centers of their own communities.

WILPAS+ method has two stages. In first stage of WILPAS+, each node will get the
label of its following node . There is an efficient way to do that. Consider red arrows in
Fig [2| as edges. Let E’ denote the set consisting of these edges. In graph G(V, E’) find
connected components of nodes. Assign all nodes of each connected component the same
label as a community. For example, by finding connected components of graph G(V, E'),
where G(V, F) is karate club network, two real communities of this network are detected.
Finding connected components of G(V, E') takes O(|E'|) time using DFS algorithm. Since
|E'| = n, stage one of WILPAS+ takes linear time complexity O(n). The second stage of
WILPAS+ is like ordinary label propagation algorithm with one difference: When there
are multiple most frequent neighbour labels, the one is chosen which their corresponding
neighbour nodes have higher degrees.
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6 Experiments

This section evaluates the effectiveness and the efficiency of CenLP+ and WILPAS+.
We conduct experiments on both artificial networks and famous real-world networks. We
compare the performance of CenLP+ and WILPAS+ with LPA, CenLLP, LPAp, LPAm,
NIBLPA and WILPAS. All the simulations are carried out in a desktop pc with Pentium
Core 2, 1.8 GHZ processor and 4GB of RAM under Windows 8.1 OS.

In this paper, we use normalized mutual information (NMI) as the evaluation measure
which is currently widely used in measuring the quality of detected communities. NMI
allows us to measure the amount of information common to two different network parti-
tions. Accordingly, if real known partition matches detected ones, we have NMI=1, but
when two partitions are independent of each other, we have NMI=0.

6.1 Test on synthetic networks

In this section, LFR benchmark networks is used which are currently the most commonly
used synthetic networks in community detection [16]. The parameters of LER benchmark
networks are as follows: number of nodes n, the average degree k, maximum degree maxk,
mixing parameter pu. Moreover, minc and mazc refer to the minimum and maximum
values for community sizes respectively.

Two ranges for different community sizes indicated by the letters B (stays for big) and VB
(stays for very big) are chosen. These wo ranges for letters B and VB are [cmin, cmax] =
[20,100] and [cmin,cmax] = [200,1000] respectively. For each type of networks, we
generate 10 samples and for each sample we run 10 times each tested label propagation-
based algorithm. Then, the average of these 100 NMI values are reported as output.
Fig[3]shows the accuracy of the mentioned methods on the networks with size of 1000. We
observe that for n = 1000, when p < 0.55, CenLP+ and WIPLAS+ methods get higher
NMI values than ordinary CenLLP and WILPAS methods. Moreover, when p < 0.55,
CenLLP+ and LPAm have the highest accuracy for community detection. WILPAS+ is
third best accurate method for this range of v on this network.

For n = 10000, it can be observed from Fig[4that LPA, LPAp and NIBLPA has the lowest
accuracy. Furthermore, three methods CenLLP, CenLLP+ and LPAm have approximately
the same NMI results. WILPAS method has best accuracy on this network.

Fig [5| demonstrates the NMI results for the five most accurate tested label propagation
methods i.e. WILPAS, CenLLP, WILPAS+, CenLP+ and LPAm for a network with n =
100000, k = 40, [cmin, cmax] = [200,1000]. As it can be observed from this figure, four
methods WILPAS, CenLP, WILPAS+, CenLP+ have the same accuracy for u < 0.65.
For pn = 0.70, two methods WILPAS+ and CenLLP+ obtain the same NMI result, but a
little lower than that of WILPAS. Thus, in addition on the network with n = 1000 in Fig
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Figure 3: Comparing different label propagation-based algorithms on the network with
n = 1,000.

, CenLP+ excels ordinary CenLP method on network with n = 100000 as well (see Fig

B).

In summary, on synthetic networks, CenLP+ methods outperforms CenLP method. WILPAS+
has more accuracy than WILPAS on the synthetic network with n = 1000. However on
networks with n = 10000 and n = 100000, for largest tested value of mixing parameter

1, accuracy of WILPAS is a little lower than that of WILPAS. But as we can see later,

on real-world networks, WILPAS+ method outperforms ordinary WILPAS method.

6.2 Experiment on Real-world Networks

In this section, we are going to evaluate the above methods on real-world networks which
their communities are already known. Zachary karate club [32], American college football
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Figure 4: Comparing different label propagation-based algorithms on the network with
n = 10, 000.

[10], dolphin social network [22] and Polblog [I] are four famous networks in the field.
The details of these networks are shown in Table [l The NMI results of all tested label
propagation-based methods are displayed in Table

Each method is run 10 times on each real network, then the average NMI results are re-
ported. The number in the {} for CenLLP, NIBLPA and WILPAS, CenLP+ and WILPAS+
in Table [I] shows the number of found communities by these five deterministic methods.
Since LPA, LPAp and LPAm detect different partitions on the same network for each
run, we ignore them. The maximum resulted NMI values on each network has been bold
in Table 2.
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Figure 5: Comparing different label propagation-based algorithms on a network, when
n = 100,000 and average degree k = 40.

Network Nodes | Links | Communities
Karate [32] 34 78 2
Dolphin [22] 62 159 2
Football [lﬂﬂ] 115 615 12
Polblog [1] 1490 | 16715 2

Table 1: Real-world networks with known community structures.

6.2.1 Zachary karate Club

The well-known karate club network of Zachary [32] is a standard benchmark for commu-
nity detection. Zachary observed 34 members of a karate club in the United States over
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two years. At some point, a disagreement between the club president and the instructor
resulted in the split of the club into two separate groups. These two original communities
are specified with shapes ’circle’ and ’square’ in Fig [6]

Fig [6] shows the output of two methods CenL.P and CenLP+ on karate network. While
CenLP divides this network into four communities, CenLP+ method detects two real
communities of karate network approximately as it is. More accurately, CenLLP+ just
assign node 10 incorrectly to another community. WILPAS and WILPAS+ detect two
original communities perfectly with NMI=1.

6.2.2 Dolphin social network

Dolphin network [22] shows the frequent associations between 62 dolphins living in Doubt-
ful Sound, New Zealand. Nodes are dolphins and the edges between nodes shows that
the two corresponding dolphins were seen together more than expected by chance. After
leaving one of dolphins, they separated in two communities. These two original commu-
nities are specified by shapes ’circle’ and ’square’ in Fig[7] As it is observable from Fig[7]
WILPAS+ has higher accuracy than WILPAS. Moreover, CenLP+ is more accurate than
CenLP on this network. Among all the tested methods on this network, WILPAS+ gets
the highest NMI value, as it can be seen from Table

It is important to note that NMI measure is more sensitive to assignment of nodes to a
wrong community rather than dividing a real communities into several sub-communities.
For instance, if node 40 for WILPAS+ method in Fig [7|b was correctly assign to its
real community (the community shaded with red), then instead of NMI=0.75, NMI1=0.84
would be obtained. Moreover, CenLP in fact finds two different partitions with NMI=0.58
and NMI=0.64 respectively. The NMI value 0.61 for CenLP on dolphin network in Table
is the average of these two values in 10 runs. The detected partition shown in Fig [7}.c
is related to NMI=0.64 .

6.2.3 American college football

Another well known benchmark for community detection is American college football
network compiled by Girvan and Newman [10]. This network represents Division I games
for the 2000 season. Nodes represent teams and the edges represent the games between
teams. This network has 12 communities.

As one can see from Table 2] WILPAS+ get highest NMI value 0.92 with finding 11
communities which is very close to 12 real communities of this network. CenLP+ is the
second accurate method with resulted NMI=0.91.

6.2.4 Polblogs network

This network represents the links between weblogs about US politics preceding the US
Presidential Election of 2004 [I]. The links were automatically extracted from a crawl of
the front page of the weblogs. Each blog is labeled with 0’ or "1’ to indicate whether
they are ”liberal” or ”conservative”. This network can be considered both directed or
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Figure 6: a) result of CenLP method on karate club network. b) result of CenL.LP+
method on karate club network.

undirected. In this paper, the undirected version of this network is considered which has
1490 nodes and 16715 links. Since nodes with degree zero makes this network discon-
nected, when comparing the performance of methods, these nodes are ignored. Thus, by
removing 266 nodes with degree zero in addition to removing two nodes with degree one,
a connected network with 1222 nodes is obtained. This resulted network is considered for
testing and comparing community detection methods.
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Figure 7: Detected communities of four methods WILPAS, WILPAS+, CenLLP and
CenLP+ on the dolphin network.

However CenLLP and CenLP+ achieve maximum NMI value 0.71 on Polblog network, but
the number of detected communities of WILPAS and WILPAS+ shows accuracy of these
two methods in finding true number of original communities.
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When dealing with community detection on real-world networks, WILPAS+ outperforms
other methods on karate and dolphin and football network with highest obtained NMI
value. CenLP+ is the second accurate method on real-world networks based on the
resulted NMI values. Furthermore, on real-world networks, the numbers of detected com-
munities of WILPAS and WILPAS+ is more close to the numbers of known communities

of these networks.

network | LPAm | LPAp | WILPAS | LPA | NIBLPA | CenLP CenLP+ | WILPAS+

Karate 0.55 0.56 1,{2} 0.70 | 0.21 {3} | 0.60, {4} | 0.84, {2} 1.{2}

Dolphin | 0.45 0.55 | 0.66,{3} | 0.52 | 0.50 {5} | 0.61,{4} 0.74, {3} 0.75,{3}

Polblog | 0.45 0.61 | 0.70,{2} | 0.70 | 0.20 {9} | 0.71 {3} | 0.71, {3} 0.69,{2}

Football | 0.89 0.88 | 0.90,{13} | 0.87 | 0.78 {9} | 0.90, {13} | 0.91 , {14} | 0.92 {11}
Table 2: NMI results of the methods on four real networks with known community
structures.

6.3 Efficiency analysis

To illustrate the running time of the proposed algorithms Cenlp+ and WILPAS+ and
compare them with other algorithms, we produce 10 networks using LFR software, where
the number of nodes n = 100,000 and the average degree k = 40 and [minc, maxc| =
[200, 1000] and mixing parameter g = 0.40. Figure |8 plots the average running time
(in seconds) of our proposed methods CenLP+ and WILPAS+ on these 10 synthetic
networks compared with other six label propagation algorithms: LPA, LPAm, LPAp,
NIBLPA, CenLP and WILPAS. As we can see from Figure [§ while two methods CenLP
and CenLLP+ have the same running time, WILPAS+ is faster than WILPAS. More accu-
rately, WILPAS+ is a little faster than CenLP and CenLLP+, much faster than WILPAS
and LPAm, but slower than LPA, LPAp and NIBLPA.

In summary, while the proposed method WILPAS+ has a little lower accuracy than that
of WILPAS on synthetic networks, its accuracy on real-world network shows remarkable
improvement in comparison to WILPAS. Moreover, another proposed method CenLLP+
shows higher accuracy than ordinary CenLP method on both synthetic and real-world
networks. In addition, two improved method CenLLP+ and WILPAS+ preserve the speed
of original methods CenLLP and WILPAS.

7 Conclusion

In this paper, we propose two improved versions of label propagation-based algorithms
CenLLP and WILPAS denoted by CenLP+ and WILPAS+ respectively. Both of these
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Figure 8: The execution times of different methods on a network with n=100,000, k=40,
[minc, mazxc] = [200,1000] , p = 0.40.

two presented methods use node importance and link strength for community detection.
Experimental results show that CenLP+ is more accurate than CenLLP on both artificial
and real-world networks, while preserving original speed of CenLLP. Moreover, experiments
show that while accuracy of WILPAS+ is comparable to that of WILPAS on synthetic
networks, on real-world networks it demonstrates remarkable improvement in community
detection.

In summary, both WILPAS+ and CenLLP+ shows high accuracy in detecting true com-
munity structures of networks while preserving the speed of the original methods. On
real-world networks, both WILPAS+ and CenLLP+ outperform all other tested meth-
ods with gaining higher NMI values. In fact, experiments on several well-known real-
world networks demonstrate that WILPAS+ is more capable of finding the number of
known communities of these networks. Therefore, two presented methods WILPAS+ and
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CenL.P+ can be used for efficient community detection on large real-world social networks.

References

1]

[10]

[11]

[12]

Adamic L.A., and Glance, N., The political blogosphere and the 2004 US election:
divided they blog. In Proceedings of the 3rd international workshop on Link discovery,
(2005) pp.36-43.

Agarwal G., and Kempe, D., Modularity-maximizing graph communities via mathe-
matical programming. The European Physical Journal B, 66 (2008), pp.409-418.

Arab M., and Afsharchi, M., Community detection in social networks using hy-
brid merging of sub-communities. Journal of network and computer applications, 40

(2014), pp.73-84.

Arab M. and Hasheminezhad, M., Efficient Community Detection Algorithm
with Label Propagation using Node Importance and Link Weight International
Journal of Advanced Computer Science and Applications(IJACSA), 9(5), 2018.
http://dx.doi.org/10.14569 /IJACSA.2018.090566

Barber M.J., and Clark, J. W., Detecting network communities by propagating labels
under constraints. Physical Review E; 80(2009), p.026129.

Bennett L., Liu, S., Papageorgiou, L.G., and Tsoka, S., A mathematical programming
approach to community structure detection in complex networks. In Computer Aided
Chemical Engineering 30 ( 2012) pp. 1387-1391.

Danon L., Diaz-Guilera, A., Duch, J. and Arenas, A., Comparing community struc-
ture identification. Journal of Statistical Mechanics: Theory and Experiment, (2005)
(09), p.P09008.

Flake G.W., Lawrence, S., and Giles, C.L., Efficient identification of web communi-
ties. In Proceedings of the sixth ACM SIGKDD international conference on Knowl-
edge discovery and data mining. (2000) pp. 150-160.

Fortunato S., and Barthelemy, M., Resolution limit in community detection. Pro-
ceedings of the National Academy of Sciences, 104 (2007), pp.36-41.

Girvan M., and Newman, M. E., Community structure in social and biological net-
works. Proceedings of the national academy of sciences, 99 (2002), pp.7821-7826.

Guimera R., Sales-Pardo, M., and Amaral, L.A.N., Modularity from fluctuations in
random graphs and complex networks. Physical Review E, 70(2004), p.025101.

Lancichinetti A., and Fortunato, S., Community detection algorithms: a comparative
analysis. Physical review E, 80(2009), p.056117.



49

[13]

[14]

[15]

[24]

[25]

[20]

M. Hasheminezhad / JAC 50 issue 1, 2018, PP. 29 - 50

Lancichinetti A., and Fortunato, S., Limits of modularity maximization in community
detection. Physical review E, 84(2011), p.066122.

Lancichinetti A., Radicchi, F., Ramasco, J.J., and Fortunato, S., Finding statistically
significant communities in networks. PloS one, 6( 2011), p.e18961.

Lancichinetti A., Fortunato, S. and Kertsz, J., Detecting the overlapping and hierar-
chical community structure in complex networks. New Journal of Physics, 11 (2009),
p.033015.

Lancichinetti A., Fortunato, S., and Radicchi, F., Benchmark graphs for testing
community detection algorithms. Physical review E, 78(2008), p.046110.

Leung I.X., Hui, P. Lio, P. and Crowcroft, J., Towards real-time community detection
in large networks. Physical Review E, 79(2009), p.066107.

Li S., Lou, H., Jiang, W., and Tang, J., Detecting community structure via syn-
chronous label propagation. Neurocomputing, 151, (2015) pp.1063-1075.

Liu X., and Murata, T., Advanced modularity-specialized label propagation algo-
rithm for detecting communities in networks. Physica A: Statistical Mechanics and
its Applications, 389(2010), pp.1493-1500.

Liu Z., Li, P., Zheng Y., and Sun, M., Community detection by affinity propagation
(2008). Technical Report.

Lou H., Li, S., and Zhao, Y., Detecting community structure using label propagation
with weighted coherent neighborhood propinquity. Physica A: Statistical Mechanics
and its Applications, 392(2013), pp.3095-3105.

Lusseau D., and Newman, M.E., Identifying the role that animals play in their social
networks. Proceedings of the Royal Society of London B: Biological Sciences, 271
(Suppl 6), (2004) pp.S477-S481.

Kernighan B.W., and Lin, S., An efficient heuristic procedure for partitioning graphs.
The Bell system technical journal, 49 (1970), pp.291-307

Newman M.E., and Girvan, M., Finding and evaluating community structure in
networks. Physical review E, 69 (2004), p.026113.

Raghavan U.N., Albert, R., and Kumara, S., Near linear time algorithm to detect
community structures in large-scale networks. Physical review E, 76( 2007), p.036106.

Rosvall M., and Bergstrom, C.T., Maps of random walks on complex networks reveal
community structure. Proceedings of the National Academy of Sciences, 105(2008),
pp.1118-1123.



50

[27]

28]

[29]

M. Hasheminezhad / JAC 50 issue 1, 2018, PP. 29 - 50

Sun H., Huang, J., Han, J., Deng, H., Zhao, P. and Feng, B., gskeletonclu: Density-
based network clustering via structure-connected tree division or agglomeration. In
Data Mining (ICDM), 2010 IEEE 10th International Conference on (2010) pp. 481-
490.

Sun H., Liu, J., Huang, J., Wang, G., Yang, Z., Song, Q,. and Jia, X., CenLLP: A
centrality-based label propagation algorithm for community detection in networks.
Physica A: Statistical Mechanics and its Applications, 436 (2015), pp.767-780.

White S., and Smyth, P., A spectral clustering approach to finding communities in
graphs. In Proceedings of the 2005 STAM international conference on data mining.
Society for Industrial and Applied Mathematics, (2005) pp. 274-285.

Xing Y., Meng, F., Zhou, Y., Zhu, M., Shi, M., and Sun, G., A node influence based
label propagation algorithm for community detection in networks. The Scientific
World Journal, (2014).

Xu X., Yuruk, N., Feng, Z., and Schweiger, T.A., Scan: a structural clustering
algorithm for networks. In Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining. (2007) pp. 824-833.

Zachary, W.W., 1977. An information flow model for conflict and fission in small
groups. Journal of anthropological research, 33(1977), pp.452-473.

Zhang A., Ren, G., Cao, H., Jia, B., and Zhang, S., Generalization of label propaga-
tion algorithm in complex networks. In Control and Decision Conference (CCDC),
2013 25th Chinese (2013) pp. 1306-1309.IEEE.

Zhang A., Ren, G., Lin, Y., Jia, B., Cao, H., J. and Zhang, S., Detecting community
structures in networks by label propagation with prediction of percolation transition.
The Scientific World Journal, (2014).



	Abstract Continued:
	Introduction
	Related Works 
	Terminology
	The Proposed Methods 
	CenLP 
	CenLP+ method: improved version of CenLP
	WILPAS method
	WILPAS+: improved version of WILPAS 

	Experiments
	Test on synthetic networks
	Experiment on Real-world Networks 
	Zachary karate Club
	Dolphin social network
	American college football
	Polblogs network

	Efficiency analysis

	Conclusion

