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ABSTRACT ARTICLE INFO

Yager family of t-norms is a parametric family of con-
tinuous nilpotent t-norms which is also one of the most
frequently applied one. This family of t-norms is strictly
increasing in its parameter and covers the whole spec-
trum of t-norms when the parameter is changed from
zero to infinity. In this paper, we study a nonlinear op-
timization problem where the feasible region is formed as
a system of fuzzy relational equations (FRE) defined by
the Yager t-norm. We firstly investigate the resolution
of the feasible region when it is defined with max-Yager
composition and present some necessary and sufficient
conditions for determining the feasibility and some
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1 Abstract continued:

procedures for simplifying the problem. Since the feasible solutions set of FREs is non-
convex and the finding of all minimal solutions is an NP-hard problem, conventional
nonlinear programming methods may involve high computation complexity. For these
reasons, a method is used, which preserves the feasibility of new generated solutions. The
proposed method does not need to initially find the minimal solutions. Also, it does not
need to check the feasibility after generating the new solutions. Moreover, we present
a technique to generate feasible max-Yager FREs as test problems for evaluating the
performance of the current algorithm. The proposed method has been compared with Lu
and Fangs algorithm. The obtained results confirm the high performance of the proposed
method in solving such nonlinear problems.

2 Introduction

In this paper, we study the following nonlinear problem in which the constraints are
formed as fuzzy relational equations defined by Yager t-norm:

min f(x)

Aϕx = b

x ∈ [0, 1]n
(1)

where I = {1, 2 . . .m} , J = {1, 2 . . . n} , A = (aij)m×n, 0 ≤ aij ≤ 1, (∀i ∈ I and ∀j ∈
J) is a fuzzy matrix, b = (bi)m×1, 0 ≤ bi ≤ 1 (∀j ∈ I) is a m-dimentional fuzzy
vector, and ϕ is the max-Yager composition that is ϕ(x, y) = T PY (x, y) = max{1 −
[(1− x)p + (1− y)p]

1
p , 0} in which p > 0.

if ai is the i’th row of matrix A, then problem 1 can be expressed as follows:

min f(x)

ϕ(ai, x) = bi, i ∈ I
x ∈ [0, 1]n

(2)

where the constraints mean:

ϕ(ai, x) = max
j∈J
{ϕ(aij, xj)} = max

j∈J
{T PY (aij, xj)}

= max
j∈J
{max {1− [(1− aij)p + (1− xj)p]

1
p , 0}}

= bi , ∀i ∈ I

(3)

As mentioned, the family {T PY } is strictly increasing in p. It can be easily shown that
Yager t-norm T PY (x, y) converges to the basic fuzzy intersection min{x, y} as p goes to
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infinity and converges to Drastic product t-norm [8] as p approaches zero. Also, it is
interesting to note that T 1

Y (x, y) = max{x+y−1, 0}, that is, the Yager t-norm is converted
to Lukasiewicz t-norm if p = 1. In [43] three feature types were presented based on
the concept of information set for face recognition, which includes sigmoid and energy
features, two features, viz. effective information set features-I and features-II and their
combinations using t-norms and s-norms of Hamacher and Yager, and two hybrid features
called Gabor-information set features and wavelet-information set features. In [46] the
authors used Yager t-norm and t-conorm to investigate the performance of Fuzzy inference
procedure of Fuzzy ID3 algorithm. In [47], the authors generalized a fixed-point theorem
in fuzzy metric spaces by using a class of continuous t-norms known as ω-Yager t-norms,
which was successfully used to prove the existence and uniqueness of solution for the
recurrence equation associated with the probabilistic divide and conquer algorithms.
The problem to determine an unknown fuzzy relation R on universe of discourses U × V
such that AϕR = B, where A and B are given fuzzy sets on U and V , respectively, and
ϕ is an composite operation of fuzzy relations, is called the problem of fuzzy relational
equations (FRE). Since Sanchez [54] proposed the resolution of FRE defined by max-min
composition, different fuzzy relational equations were generalized in many theoretical
aspects and utilized in many applied problems such as fuzzy control, discrete dynamic
systems, prediction of fuzzy systems, fuzzy decision making, fuzzy pattern recognition,
fuzzy clustering, image compression and reconstruction, fuzzy information retrieval, and
so on [5,11,24,28,40,44,45,48,51,59,61,67]. For example, Klement et al. [31] presented the
basic analytical and algebraic properties of triangular norms and important classes of fuzzy
operators generalization such as Archimedean, strict and nilpotent t-norms. In [50] the
author demonstrates how problems of interpolation and approximation of fuzzy functions
are converted with solvability of systems of FRE. The authors in [45] used particular FRE
for the compression/decompression of color images in the RGB and YUV spaces.
The solvability and the finding of solutions set are the primary (and the most fundamental)
subject concerning FRE problems. Many studies have reported fuzzy relational equations
with max-min and max-product compositions. Both compositions are special cases of
the max-triangular-norm (max-t-norm). Di Nola et al. proved that the solution set
of FRE (if it is nonempty) defined by continuous max-t-norm composition is often a
non-convex set that is completely determined by one maximum solution and a finite
number of minimal solutions [6]. This non-convexity property is one of two bottlenecks
making major contribution to the increase in complexity of problems that are related to
FRE, especially in the optimization problems subjected to a system of fuzzy relations.
The other bottleneck is concerned with detecting the minimal solutions for FREs. Chen
and Wang [2, 3] presented an algorithm for obtaining the logical representation of all
minimal solutions and deduced that a polynomial-time algorithm to find all minimal
solutions of FRE (with max-min compositions) may not exist. Also, Markovskii showed
that solving max-product FRE is closely related to the covering problem which is an NP-
hard problem [42]. In fact, the same result holds true for more general t-norms instead
of the minimum and product operators [36, 37]. Lin et al. [37] demonstrated that all
systems of max-continuous t-norm fuzzy relational equations, for example, max-product,
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max-continuous Archimedean t-norm and max-arithmetic mean are essentially equivalent,
because they are all equivalent to the set covering problem. Over the last decades, the
solvability of FRE defined with different max-t compositions has been investigated by
many researches [49,52,53,55,57,58,62,66,70]. It is worth to mention that Li and Fang [35]
provided a complete survey and a detailed discussion on fuzzy relational equations. They
studied the relationship among generalized logical operators involved in the construction
of FRE and introduced the classification of basic fuzzy relational equations.
Optimizing an objective function subjected to a system of fuzzy relational equations or
inequalities (FRI) is one of the most interesting and on-going topics among the problems
related to the FRE (or FRI) theory [1,9,13–27,33,38,56,63,68]. By far the most frequently
studied aspect is the determination of a minimizer of a linear objective function and the
use of the max-min composition [1,14]. So, it is an almost standard approach to translate
this type of problem into a corresponding 0-1 integer linear programming problem, which
is then solved using a branch and bound method [10,64]. In [32] an application of optimiz-
ing the linear objective with max-min composition was employed for the streaming media
provider seeking a minimum cost while fulfilling the requirements assumed by a three-tier
framework. Chang and Shieh [1] presented new theoretical results concerning the linear
optimization problem constrained by fuzzy max-min relation equations by improving an
upper bound on the optimal objective value. The topic of the linear optimization problem
was also investigated with max-product operation [13, 26, 39]. Loetamonphong and Fang
defined two sub-problems by separating negative and non-negative coefficients in the ob-
jective function and then obtained the optimal solution by combining those of the two
sub-problems [39]. Also, in [26] and [13], some necessary conditions of the feasibility and
simplification techniques were presented for solving FRE with max-product composition.
Moreover, some studies have determined a more general operator of linear optimization
with replacement of max-min and max-product compositions with a max-t-norm compo-
sition [18,25,33,56], max-average composition [30,63] or max-star composition [22].
Recently, many interesting generalizations of the linear and non-linear programming prob-
lems constrained by FRE or FRI have been introduced and developed based on compos-
ite operations and fuzzy relations used in the definition of the constraints, and some
developments on the objective function of the problems [4, 7, 12, 14–17, 19, 20, 34, 38, 65].
For instance, the linear optimization of bipolar FRE was studied by some researchers
where FRE was defined with max-min composition [12] and max-Lukasiewicz composi-
tion [34, 38]. In [34] the authors introduced the optimization problem subjected to a
system of bipolar FRE defined as X(A+, A−, b) = {x ∈ [0, 1]m : x ◦ A+ ∨ x̃ ◦ A− = b}
where x̃i = 1−xi for each component of x̃ = (x̃i1×m and the notations ”∨” and ”◦” denote
max operation and the max-Lukasiewicz composition, respectively. They translated the
problem into a 0-1 integer linear programming problem which is then solved using well-
developed techniques. In [38], the foregoing problem was solved by an analytical method
based on the resolution and some structural properties of the feasible region (using a
necessary condition for characterizing an optimal solution and a simplification process for
reducing the problem). In [21], the authors focused on the algebraic structure of two fuzzy
relational inequalities Aϕx ≤ b1 and Dϕx ≥ b2, and studied a mixed fuzzy system formed
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by the two preceding FRIs, where is an operator with (closed) convex solutions. Yang [69]
studied the optimal solution of minimizing a linear objective function subject to fuzzy re-
lational inequalities where the constraints defined as ai1∧x1 +ai2∧x2 + · · ·+ain∧xn ≥ bi
for i = 1 . . .m and a∧b = min {a, b}. He presented an algorithm based on some properties
of the minimal solutions of the FRI. Ghodousian et al. [17, 20] introduced FRI-FC prob-
lem min {cTx : Aϕx ◦ b , x ∈ [0, 1]n}, where ϕ is max-min composition and ”◦” denotes
the relaxed or fuzzy version of the ordinary inequality ”≤”.
Another interesting generalizations of such optimization problems are related to objec-
tive function. Wu et al. [65] represented an efficient method to optimize a linear frac-
tional programming problem under FRE with max-Archimedean t-norm composition.
Dempe and Ruziyeva [4] generalized the fuzzy linear optimization problem by consid-
ering fuzzy coefficients. Dubey et al. studied linear programming problems involving
interval uncertainty modeled using intuitionistic fuzzy set [7]. If the objective function is

z(x) =
n

max
i=1
{min {ci, xi}} with ci ∈ [0, 1], the model is called the latticized problem [60].

Also, Yang et al. [68] introduced another version of the latticized programming problem
subject to max-prod fuzzy relation inequalities with application in the optimization man-
agement model of wireless communication emission base stations. The latticized problem
was defined by minimizing objective function z(x) = x1 ∨ x2 ∨ · · · ∨ xn subject to feasible
region X(A, b) = {x ∈ [0, 1]n : A ◦ x ≥ b} where ”◦” denotes fuzzy max-product composi-
tion. They also presented an algorithm based on the resolution of the feasible region. On
the other hand, Lu and Fang considered the single non-linear objective function and solved
it with FRE constraints and max-min operator [41]. They proposed a genetic algorithm
for solving the problem. Also, Ghodousian et al. [15, 16, 19] presented GA algorithms to
solve the non-linear problem with FRE constraints defined by Lukasiewicz, Dubois Prade
and Sugeno-Weber operators.
In this paper, we use the genetic algorithm proposed in [15] for solving problem (1), which
keeps the search inside of the feasible region without finding any minimal solution and
checking the feasibility of new generated solutions. For this purpose, the paper consists
of three main parts. Firstly, we describe some structural details of FREs defined by the
Yager t-norm such as the theoretical properties of the solutions set, necessary and suffi-
cient conditions for the feasibility of the problem, some simplification processes and the
existence of an especial convex subset of the feasible region. By utilizing the convex sub-
set, the GA can easily generate a random feasible initial population. Then, an algorithm
is presented based on the obtained theoretical properties. Finally, we provide some sta-
tistical and experimental results to evaluate the performance of the proposed algorithm.
Since the feasibility of problem (1) is essentially dependent on the t-norm (Yager t-norm)
used in the definition of the constraints, a method is also presented to construct feasible
test problems. More precisely, we construct a feasible problem by randomly generating a
fuzzy matrix A and a fuzzy vector b according to some criteria resulted from the neces-
sary and sufficient conditions. It is proved that the max-Yager fuzzy relational equations
constructed by this method is not empty. Moreover, a comparison is made between the
current method and the method presented in [41].
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The remainder of the paper is organized as follows. Section 2 takes a brief look at some
basic results on the feasible solutions set of problem (1). In section 3, the GA algorithm
is briefly described. A comparative study is presented in section 4 and, finally in section
5 the experimental results are demonstrated.

3 Some theoretical aspects of max-Yager FRE

3.1 Characterization of feasible solutions set

This section describes the basic definitions and structural properties concerning prob-
lem (1) that are used throughout the paper. For the sake of simplicity, let STP

Y
(ai, bi)

denote the feasible solutions set of i’th equation, that is STP
Y

(ai, bi) = {x ∈ [0, 1]n :
n

max
j=1
{T PY (aij, xj)} = bi}. Also, let STP

Y
(A, b) denote the feasible solutions set of problem

(1). Based on the foregoing notations, it is clear that
STP

Y
(A, b) =

⋂
i∈I
STP

Y
(ai, bi).

Definition 3.1. For each i ∈ I, we define Ji = {j ∈ J : aij ≥ bi}.

According to definition 1, we have the following lemmas, which are easily proved by the
monotonicity and identity law of t-norms, definition 1 and the definition of Yager t-norm.

Lemma 3.1. For a fixed i ∈ I, STP
Y

(ai, bi) 6= ∅ if and only if Ji 6= ∅.

Proof. The proof is similar to the proof of Lemma 3 in [15].

Definition 3.2. Suppose that i ∈ I and STP
Y

(ai, bi) 6= ∅ (here, Ji 6= ∅ from lemma 3).

Let x̂i = [(x̂i)1, (x̂i)2 . . . (x̂i)n] ∈ [0, 1]n where the components are defined as follows:

(x̂i)k =

{
1− [(1− bi)p − (1− aik)p]

1
p , k ∈ Ji

1, k /∈ Ji
,∀k ∈ J

Also, for each j ∈ Ji, we define x̆i = [(x̆i)1, (x̆i)2 . . . (x̆i)n] ∈ [0, 1]n such that:

x̆i(j)k =

{
1− [(1− bi)p − (1− aij)p]

1
p , bi 6= 0 and k = j

0, otherwise
,∀k ∈ J

The following theorem characterizes the feasible region of the i’th relational equation
(i ∈ I).

Theorem 3.2. Let i ∈ I. If STP
Y

(ai, bi) 6= ∅, then STP
Y

(ai, bi) =
⋃
j∈Ji

[x̆i(j), x̂i].

Proof. For a more general case, see Corollary 2.3 in [21].
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From theorem 1, x̂i is the unique maximum solution and x̆i(j)’s (j ∈ Ji) are the minimal
solutions of STP

Y
(ai, bi).

Definition 3.3. Let x̂i, (i ∈ I) be the maximum solution of STP
Y

(ai, bi). We define

X = min
i∈I
{x̂i}.

Definition 3.4. Let e : I → Ji so that e(i) = j ∈ Ji, ∀i ∈ I, and let E be the set of
all vectors e. For the sake of convenience, we represent each e ∈ E as an m-dimensional
vector e = [j1, j2 . . . jm] in which jk = e(k).

Definition 3.5. Let e = [j1, j2 . . . jm] ∈ E. We define X(e) = [X(e)1, X(e)2 . . . X(e)n] ∈
[0, 1]n, where X(e)j = max

i∈I
{x̆i(e(i))j} = max

i∈I
{x̆i(ji)j)},∀j ∈ J.

Theorem 2 below completely determines the feasible solutions set of problem (1).

Theorem 3.3. STP
Y

(A, b) =
⋃
ε∈E

[X(e), X].

Proof. Since STP
Y

(A, b) =
⋂
i∈I
STP

Y
(ai, bi), from theorem 1 we have

STP
Y

(A, b) =
⋂
i∈I

⋃
j∈Ji

[x̆i(j), x̂i] =
⋂
i∈I

⋃
ε∈E

[x̆i(e(i)), x̂i]

=
⋃
ε∈E

⋂
i∈I

[x̆i(e(i)), x̂i] =
⋃
ε∈E

[max
i∈I
{x̆i(e(i))},min

i∈I
{x̂i}]

=
⋃
ε∈E

[X(e), X]

where the last equality is obtained by definitions 3 and 5.
As a consequence, it turns out that
overlineX is the unique maximum solution and X(e)s (einE) are the minimal solutions
of STP

Y
(A, b). Moreover, we have the following corollary that is directly resulted from

theorem 2.

Corollary. first necessary and sufficient condition. STP
Y

(A, b) 6= ∅ if and only if

X ∈ STP
Y

(A, b).

The following example illustrates the above-mentioned definitions.

Example 3.1. Consider the problem below with Yager t-norm
0.9 0.4 0.6 0.7 0.4 0.4
0.5 0.1 0.2 0.3 0.5 0.2
0.2 0.8 0.4 0.4 0.6 0.9
0.9 0.7 0.3 0.8 0.8 0.5
0.0 0.0 0.1 0.2 0.0 0.7

ϕx =


0.7
0.5
0.6
0.8
0.0


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where ϕ(x, y) = T 2
Y (x, y) = max {1− [(1− x)2 + (1− y)2]

1
2 , 0} (i.e., p = 2). By definition

1, we have J1 = {1, 4}, J2 = {1, 5}, J3 = {2, 5, 6}, J4 = {1, 4, 5} and J5 = {1, 2, 3, 4, 5, 6}.
The unique maximum solution and the minimal solutions of each equation are obtained
by definition 2 as follows:

x̂1 = [0.7172, 1, 1, 1, 1, 1], x̂2 = [1, 1, 1, 1, 1, 1], x̂3 = [1, 0.6536, 1, 1, 1, 0.6127],
x̂4 = [0.8268, 1, 1, 1, 1, 1], x̂1 = [1, 1, 0.5641, 0.4, 1, 0.0461].
x̆1(1) = [0.7172, 0, 0, 0, 0, 0], x̆1(4) = [0, 0, 0, 1, 0, 0],
x̆2(1) = [1, 0, 0, 0, 0, 0], x̆2(5) = [0, 0, 0, 0, 1, 0],
x̆3(2) = [0, 0.6536, 0, 0, 0, 0], x̆3(5) = [0, 0, 0, 0, 1, 0], x̆3(6) = [0, 0, 0, 0, 0, 0.6127]
x̆4(1) = [0.8268, 0, 0, 0, 0, 0], x̆4(4) = [0, 0, 0, 1, 0, 0], x̆4(5) = [0, 0, 0, 0, 1, 0],
x̆5(j) = [0, 0, 0, 0, 0, 0], j ∈ {1, 2, 3, 4, 5, 6}

Therefore, by theorem 1 we have STP
Y

(a1, b1) = [x̆1(1), x̂1] ∪ [x̆1(4), x̂1], STP
Y

(a2, b2) =

[x̆2(1), x̂2] ∪ [x̆2(5), x̂2], STP
Y

(a3, b3) = [x̆3(2), x̂3] ∪ [x̆3(5), x̂3] ∪ [x̆3(6), x̂3], STP
Y

(a4, b4) =

[x̆4(1), x̂4] ∪ [x̆4(4), x̂4] ∪ [x̆4(5), x̂4], and STP
Y

(a5, b5) = [01×6, x̂5] where 01×6 is a zero vec-

tor. From definition 3, X = [0.7172, 0.6536, 0.5641, 0.4, 1, 0.0461]. It is easy to verify
that X = STP

Y
(A, b). Therefore, the above problem is feasible by corollary 1. Fi-

nally, the cardinality of set E is equal to 36 (definition 4). So, we have 36 solutions
X(e) associated to 36 vectors e. For example, for e = [1, 5, 2, 5, 5], we obtain X(e) =
max {x̆1(1), x̆2(5), x̆3(2), x̆4(5), x̆5(5)} from definition 5 that means
X(e) = [0.7172, 0.6536, 0, 0, 1, 0].

3.2 Simplification processes

In practice, there are often some components of matrix A that have no effect on the
solutions to problem (1). Therefore, we can simplif11y the problem by changing the
values of these components to zeros. For this reason, various simplification processes have
been proposed by researchers. We refer the interesting reader to [21] where a brief review
of such these processes is given. Here, we present two simplification techniques based on
the Yager t-norm.

Definition 3.6. If a value changing in an element, say aij, of a given fuzzy relation
matrix A has no effect on the solutions of problem (1), this value changing is said to be
an equivalence operation.

Corollary. Suppose that T PY (aij0 , xj0), ∀x ∈ STP
Y

(A, b). In this case, it is obvious that
n

max
j=1
{T PY (aij, xj)} = bi is equivalent to

n
max

j=1, j 6=j0
{T PY (aij, xj)} = bi, that is, ”resetting aij0

to zero” has no effect on the solutions of problem (1) (since component aij0 only appears
in the i’th constraint of problem (1)). Therefore, if T PY (aij0 , xj0) < bi, ∀x ∈ STP

Y
(A, b) ,

then ”resetting aij0 to zero” is an equivalence operation.
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Lemma 3.4. (first simplification). Suppose that j0 ∈ Ji, for some i ∈ I and j0 ∈ J .
Then, ”resetting aij0 to zero” is an equivalence operation.

Proof. From corollary 2, it is sufficient to show that T PY (aij0 , xj0) < bi, ∀x ∈ STP
Y

(A, b).

But, from lemma 1 we have T PY (aij0 , xj0) < bi, ∀xj0 ∈ [0, 1]. Thus, T PY (aij0 , xj0) < bi,
∀x ∈ STP

Y
(A, b).

Lemma 3.5. (second simplification). Suppose that j0 ∈ Jj1 and bi1 6= 0, where i1 ∈ I
and j0 ∈ J . If j0 ∈ Ji2 for some i2 ∈ I(i1 6= i2) and

[(1− bi2)p− (1− ai2j0)p]
1
p > [(1− bi1)p− (1− ai1j0)p]

1
p , then ”resetting ai1j0 to zero” is an

equivalence operation.

Proof. Similar to the proof of lemma 4, we show that T PY (ai1j0 , xj0) < bi, ∀x ∈ STP
Y

(A, b).

Consider an arbitrary feasible solution x ∈ STP
Y

(A, b). Since x ∈ STP
Y

(A, b), it turns

out that T PY (ai1j0 , xj0) > bi1 never holds. So, assume that T PY (ai1j0 , xj0) = bi1 , that is,

max {1− [(1− ai1j0)p + (1− xj0)p]
1
p
,0]} = bi1 . Since bi1 6= 0, we conclude that 1 − [(1 −

ai1j0)
p + (1 − xj0)

p]
1
p = bi1 , or equivalently xj0 = 1 − [(1 − ai1j0)

p + (1 − xj0)
p]

1
p = bi1 .

Now, from [(1 − bi2)
p − (1 − ai2j0)

p]
1
p > [(1 − bi1)

p − (1 − ai1j0)
p]

1
p , we obtain xj0 >

[(1− bi1)p− (1−ai1j0)p]
1
p . Therefore, from lemma 2 (part (a)), we have T PY (ai2j0 , xj0) > bi2

that contradicts x ∈ STP
Y

(A, b).

We give an example to illustrate the above two simplification processes.

Example 3.2. Consider the problem presented in example 1. From the first simplification
(lemma 4), ”resetting the following components aij to zeros” are equivalence operations:
a12, a13, a15, a16; a22, a23, a24, a26; a31, a33, a34; a42, a43, a46; in all of these cases, aij < bi, that
is, j /∈ Ji. Moreover, from the second simplification (lemma 5), we can change the values
of components a14, a21, a36, a41, and a44 to zeros with no effect on the solutions set of the
problem. For example, since a41 > b4(i.e. 1 ∈ J4), b4 6= 0, a11 > b1 (i.e. 1 ∈ J1) and

0.2828 = [(1− b1)p − (1− a11)p]
1
p > [(1− b4)p − (1− a41)p]

1
p = 0.1732

”resetting a41 to zero” is an equivalence operation.

In addition to simplifying the problem, a necessary and sufficient condition is also de-
rived from lemma 5. Before formally presenting the condition, some useful notations
are introduced. Let Ã denote the simplified matrix resulted from A after applying the
simplification processes (lemmas 4 and 5). Also, similar to definition 1, assume that
J̃i = {j ∈ J : ãij ≥ bi (i ∈ I) where ãij denotes (i, j)’th component of matrix Ã. The
following theorem gives a necessary and sufficient condition for the feasibility of problem
(1).

Theorem 3.6. (second necessary and sufficient condition).STP
Y
6= ∅ if and only if J̃i 6=

∅,∀i ∈ I.

Proof. Since STP
Y

(A, b) = STP
Y

(Ã, b) from lemmas 4 and 5, it is sufficient to show that

STP
Y

(Ã, b) 6= ∅ if and only if J̃i 6= ∅, ∀i ∈ I. Let STP
Y

(Ã, b) 6= ∅. Therefore, STP
Y

(ãi, bi) 6=



164 A. Ghodousian / JAC 50 issue 1, June 2018, PP. 155 - 183

ϕ, ∀i ∈ I, where ãi denotes i’th row of matrix Ã. Now, lemma 3 implies J̃i 6= ϕ, ∀i ∈ I.
Conversely, suppose that J̃i 6= ϕ, ∀i ∈ I. Again, by using lemma 3 we have J̃i 6= ϕ, ∀i ∈ I.
By contradiction, suppose that STP

Y
(Ã, b) = ϕ. Therefore, X /∈ STP

Y
(Ã, b) from corollary

1, and then there exists i0 ∈ I such that X /∈ STP
Y

(ãi0 , bi0). Since max
j /∈Ji
{T PY (ãi0j, Xj)} <

bi0(from lemma 1), we must have either max
j∈Ji
{T PY (ãi0j, Xj)} > bi0 or max

j∈Ji
{T PY (ãi0j, Xj)} <

bi0 . Anyway, since X ≤ x̂i0 (i.e. Xj ≤ (x̂i0)j, ∀j ∈ J), we have max
j∈Ji
{T PY (ãi0j, Xj)} ≤

max
j∈Ji
{T PY (ãi0j, (x̂i0)j)} = bi0 , and then the former case (i.e. max

j∈Ji
{T PY (ãi0j, Xj)} > bi0)

never holds. Therefore, max
j∈Ji
{T PY (ãi0j, Xj)} < bi0 that implies bi0 6= 0 and T PY (ãi0j, Xj) <

bi0 , ∀j ∈ J̃i0 . Hence, by lemma 2, we must have Xj < 1−[(1−bi0)p−(1−ãi0j)p]
1
p , ∀j ∈ J̃i0 .

On the other hand, [(1−bi0)p−(1−ãi0j)p]
1
p ≥ 0, ∀j ∈ J̃i0 . Therefore, Xj < 1, ∀j ∈ J̃i0 , and

then from definitions 2 and 3, for each ∀j ∈ J̃i0 there must exists ij ∈ I such that j ∈ J̃ij
and Xj = (x̂ij)j = 1− [(1− bij)p− (1− ãijj)p]

1
p . Until now, we proved that bi0 6= 0 and for

each j ∈ J̃i0 , there exist ij ∈ I such that j ∈ J̃ij and [(1−bij)p−(1− ãijj)p]
1
p > [(1−bi0)p−

(1−ãi0j)p]
1
p (because, 1−[(1−bij)p−(1−ãijj)p]

1
p = Xj < 1−[(1−bi0)p−(1−ãi0j)p]

1
p ). But

in these cases, we must have ãi0j = 0 (∀j ∈ J̃i0) from the second simplification process.
Therefore, ãi0j < bi0(∀j ∈ J̃i0) that is a contradiction.

Remark. Since STP
Y

(A, b) = STP
Y

(Ã, b)(from lemmas 4 and 5), we can rewrite all the pre-

vious definitions and results in a simpler manner by replacing J̃i with Ji(i ∈ I).

4 The proposed GA for solving problem (1)

In this section, the genetic algorithm proposed in [15] is briefly discussed. Since the
feasible region of problem (1) is non-convex, a convex subset of the feasible region is firstly
introduced. Consequently, the proposed GA can easily generate the initial population by
randomly choosing individuals from this convex feasible subset. At the last part of this
section, a method is presented to generate random feasible max-Yager fuzzy relational
equations.

4.1 Initialization

The initial population is given by randomly generating the individuals inside the feasible
region. For this purpose, we firstly find a convex subset of the feasible solutions set, that
is, we find set F such that F ⊆ STP

Y
(A, b) and F is convex. Then, the initial population

is generated by randomly selecting individuals from set F .

Definition 4.1. Suppose that STP
Y

(Ã, b) 6= ∅. For each i ∈ I, let x̆i = [(x̆i)1, (x̆i)2 . . . (x̆i)n] ∈
[0, 1]n where the components are defined as follows:
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(x̆i)k =

{
1− [(1− bi)p − (1− aik)p]

1
p , bi 6= 0 and kinJ̃i

0, otherwise
,∀k ∈ J

Also, we define X = max
i∈I
{x̃i}.

Remark. According to definition 2 and remark 1, it is clear that for a fixed i ∈ I and
j ∈ J̃i, x̆i(j)k ≤ (x̆i)k (∀k ∈ J). Therefore, from definitions 5 and 7 we have X(e)k =
max
i∈I
{x̃i(e(i))k} = max

i∈I
{x̃i(ji)k} ≤ max

i∈I
{(x̃i)k} = Xk, ∀kinJ and ∀einE. Thus, X(e) ≤

X, ∀einE. Now, Suppose that STP
Y

(Ã, b) 6= ∅ and F = {x ∈ [0, 1]n : X ≤ x ≤ X}. Then,

F ⊆ STP
Y

(Ã, b) and is a convex set [15].

Example 4.1. Consider the problem presented in example 1, where
X = [0.7172, 0.6536, 0.5641, 0.4, 1, 0.0461]. Also, according to example 2, the simplified
matrix Ã is

Ã =


0.9 0 0 0 0 0
0 0 0 0 0.5 0
0 0.8 0 0 0.6 0
0 0 0 0 0.8 0
0 0 0.1 0.2 0 0.7


From definition 7, we have x̃1 = [0.7172, 0, 0, 0, 0, 0], x̃2 = [0, 0, 0, 0, 1, 0],
x̃3 = [0, 0.6536, 0, 0, 1, 0], x̃4 = [0, 0, 0, 0, 1, 0], x̃5 = [0, 0, 0, 0, 0, 0],

and then X =
5

max
i=1
{x̃i} = [0.7172, 0.6536, 0, 0, 1, 0]. Therefore, set F = [X,X] is obtained

as a collection of intervals:
F = [X,X] = [0.7172, 0.6536, [0, 0.5641], [0, 0.4], 1, [0, 0.0461]]
By generating random numbers in the corresponding intervals, we acquire one initial
individual: x = [0.7172, 0.6536, 0.4298, 0.3, 1, 0.0211].

The algorithm for generating the initial population is simply obtained as follows:

Algorithm 1 Initial Population

Get fuzzy matrix A, fuzzy vector b and population size Spop
If X /∈ STP

Y
(A, b), then stop; the problem is unfeasible (corollary 1).

For i = 1 . . . Spop
Generate a random n-dimensional solution pop(i) in the interval [X,X]

End

4.2 Selection strategy

Suppose that the individuals in the population are sorted according to their ranks from
the best to worst, that is, individual pop(r) has rank r. The probability Pr of choosing
the r’th individual is given by the following formulas:
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Pr = Wr∑Spop
k=1 Wk

, Wr = 1√
2πqSpop

e
− 1

2
[ r−1
qSpop

]2

where the weight to be a value of the Gaussian function with argument r, mean 1, and
standard deviation qSpop, where q is a parameter of the algorithm.

4.3 Mutation operator

As usual, suppose that STP
Y

(A, b) 6= ∅. So, from theorem 3 we have J̃i 6= ∅, ∀i ∈ I, where

J̃i = {j ∈ J : ãij ≥ bi}, ∀i ∈ I (see definition 1 and remark 1).

Definition 4.2. Let I+ = {i ∈ I : bi 6= 0}. So, we define D = {j ∈ J : if∃i ∈
I+suchthatj ∈ J̃i ⇒ |J̃i| > 1}, where |J̃i| denotes the cardinality of set J̃i.

The mutation operator is defined as follows:

Algorithm 2 Mutation Operator

Get the matrix Ã, vector b and a selected solution ẋ = [ẋ1 . . . ẋn]
While D 6= ∅

Set x′ ← x
Randomly choose j0 ∈ D, and set x′j0 = 0
If x′ is feasible, goto Crossover operator, otherwise set D = D − {j0}

4.4 Crossover operator

In section 2, it was proved that X is the unique maximum solution of STP
Y

(A, b). By using
this result, the crossover operator is stated as follows:

Algorithm 3 Crossover Operator

Get the maximum solution X, the new solution x′ (generated by Alg. 2),
and one parent pop(k) (for some k = 1 . . . Spop)

Generate a random number λ1 ∈ [0, 1]. Set xnew1 = λ1x
′ + (1− λ1)X

Let λ2 =
Spop

min
j=1,j 6=k

‖pop(k)− pop(j)‖, and d = X − pop(k) Set xnew2 = pop(k) +

min {λ2, 1}d

4.5 Construction of test problems

There are usually several ways to generate a feasible FRE defined with different t-norms.
In what follows, we present a procedure to generate random feasible max-Yager fuzzy
relational equations:
From step 4 of the above algorithm, we note that if θ ≤ 0.5, then we will have akji ∈ [0, bk),
and therefore ji /∈ Jk. Also, if θ > 0.5 and (1−bk)p < (1−bi)p−(1−aiji)p, then akji ∈ [bk, 1]
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Algorithm 4 Construction of Feasible Max-Yager FRE

Randomly select m columns {j1 . . . jm} from J = {1 . . . n}
Generate vector b whose elements are random numbers from [0, 1]
For i ∈ {1 . . .m}

Assign a random number from [bi, 1] to aiji
End
For i ∈ {1 . . .m}

If bi 6= 0
For each k ∈ {1 . . .m} − {i}, generate a random number θ from [0, 1]

If θ ≤ 0.5, assign a random number from [0, bk) to akji
Else If (1 − bk)p < (1 − bi)p − (1 − aiji)p, assign a random number from

[bk, 1] to akji
Else assign a random number from [0, 1−[(1−aiji)p−(1−bi)p+(1−bk)p]

1
p ]

to akji
End
For each i ∈ {1 . . .m} and each j /∈ {j1 . . . jm}

Assign a random number from [0, 1] to aij
End

. In this case, after applying the algorithm we will have [(1 − bk)
p − (1 − akji)

p]
1
p ≤

[(1 − bi)p − (1 − aiji)p]
1
p . By the following theorem, it is proved that algorithm 4 always

generates random feasible max-Yager fuzzy relational equations.

Theorem 4.1. The solutions set STP
Y

(A, b) of FRE (with Yager t-norm) constructed by
algorithm 4 is not empty.

Proof. According to step 3 of the algorithm, ji ∈ Ji , ∀i ∈ I . Therefore, Ji 6= ∅, ∀i ∈ I.
To complete the proof, we show that ji ∈ J̃i, ∀i ∈ I. By contradiction, suppose that the
second simplification process reset aiji to zero, for some i ∈ I. Hence, bi 6= 0 and there

must exists some k ∈ I (k 6= i) such that [(1−bk)p−(1−akji)p]
1
p > [(1−bi)p−(1−aiji)p]

1
p

and ji ∈ Jk. But in this case, we must have (1 − bk)p > (1 − bi)p − (1 − aiji)p, and then

akji > 1− [(1− aiji)p − (1− bi)p + (1− bk)p]
1
p , that contradicts step 4.

5 Experimental Results

In this section, we present the experimental results for evaluating the performance of the
proposed algorithm. Firstly, we apply the current algorithm to 8 test problems described
in Appendix A. The test problems have been randomly generated in different sizes by
algorithm 4 given in section 3. Since the objective function is an ordinary nonlinear
function, we take some objective functions from the well-known source: Test Examples
for Nonlinear Programming Codes [29]. In section 5.2, we make a comparison against
the related GA proposed in [41]. To perform a fair comparison, we follow the same
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experimental setup for the parameters θ = 0.5, ξ = 0.01 , λ = 0.995 and γ = 1.005 as
suggested by the authors in [41]. Since the authors did not explicitly reported the size
of the population, we consider Spop = 50 for all methods. As mentioned before, we set
q = 0.1 in relation (2) for the current GA. Moreover, in order to compare the proposed
algorithm with max-min GA [41], we modified all the definitions used in the current
method based on the minimum t-norm. For example, we used the simplification process
presented in [41]. Finally, 30 experiments are performed for all the methods and for eight
test problems reported in Appendix B, that is, each of the methods is executed 30 times
for each test problem. All the test problems included in Appendix A, have been defined
by considering p = 2 in T PY . Also, the maximum number of iterations is equal to 100 for
all the methods.

5.1 Performance of the max-Yager GA

To verify the solutions found by the current method, the optimal solutions of the test
problems are also needed. Since STP

Y
(A, b) is formed as the union of the finite number of

convex closed cells (theorem 2), the optimal solutions are also acquired by the following
procedure: 1. Computing all the convex cells of the Yager FRE. 2. Searching the optimal
solution for each convex cell. 3. Finding the global optimum by comparing these local
optimal solutions.
The computational results of the eight test problems are shown in Table 1 and Figures
1-8. In Table 1, the results are averaged over 30 runs and the average best-so-far solution,
average mean fitness function and median of the best solution in the last iteration are
reported. Table 2 includes the best results found by the current algorithm and the above
procedure. According to Table 2, the optimal solutions computed by the algorithm and
the optimal solutions obtained by the above procedure match very well. Tables 1 and
2, demonstrate the attractive ability of the algorithm to detect the optimal solutions of
problem (1). Also, the good convergence rate of the algorithm could be concluded from
Table 1 and figures 1-8.

Table 1: Results of applying the max-Yager GA to the eight test problems. The results
have been averaged over 30 runs. Maximum number of iterations=100.

Test problems Average best-so-far Median best-so-far Average mean fitness

A.1 10.918379 10.918379 10.919222
A.2 -0.461955 -0.461955 -0.461904
A.3 -0.939706 -0.939706 -0.938272
A.4 2.621036 2.621036 2.623218
A.5 33.489036 33.489038 33.494282
A.6 -0.302549 -0.302549 -0.302529
A.7 -0.788851 -0.788851 -0.788426
A.8 33.28396 33.28396 33.28399
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Figure 1: The performance of the proposed
algorithm on test problem 1.

Figure 2: The performance of the proposed
algorithm on test problem 2.

Figure 3: The performance of the max-Yager
GA on test problem 3.

Figure 4: The performance of the max-Yager
GA on test problem 2.

Figure 5: The performance of the proposed
algorithm on test problem 5.

Figure 6: The performance of the proposed
algorithm on test problem 2.
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Table 2: Comparison of the solutions found by the current method and the optimal values
of the test problems.

Test problems Solutions of max-Yager GA Optimal values

A.1 10.918379 10.918379
A.2 -0.461955 -0.46192
A.3 -0.939706 -0.93971
A.4 2.621036 2.621031
A.5 33.489036 33.4861
A.6 -0.302549 -0.302549
A.7 -0.788851 -0.788851
A.8 33.28396 33.2835

Figure 7: The performance of the proposed
algorithm on test problem 7.

Figure 8: The performance of the proposed
algorithm on test problem 8.

5.2 Comparisons with other works

As mentioned before, we can make a comparison between the current algorithm and max-
min GA [41]. We apply the current algorithm (modified for the minimum t-norm) to the
test problems by considering ϕ as the minimum t-norm. The results are shown in Table
3 including the optimal objective values found by the current method and max-min GA.
As is shown in this table, the current method finds better solutions for test problems
1, 5 and 6, and the same solutions for the other test problems. Table 4 shows that the
current algorithm finds the optimal values faster than max-min GA and hence has a higher
convergence rate, even for the same solutions. The only exception is test problem 8 in
which all the results are the same. In all the cases, results marked with ”*” indicate the
better cases.

Conclusion

In this paper, we investigated the resolution of FRE defined by the Yager t-norm and
introduced a nonlinear problem with the max-Yager fuzzy relational equations. Two nec-
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Table 3: Best results found by the current algorithm and Lu and Fangs method.

Test problems Lu and Fang Current algorithm

B.1 8.4296755 8.4296754∗

B.2 -1.3888 -1.3888
B.3 0 0
B.4 5.0909 5.0909
B.5 71.1011 71.0968∗

B.6 -0.3291 -0.4175
B.7 -0.6737 -0.6737∗

B.8 93.9796 93.9796

essary and sufficient conditions were derived to determine the feasibility of the problem.
In order to simplify the problem, we presented two simplification approaches depending
on the Yager t-norm. A genetic algorithm was used for solving the nonlinear optimiza-
tion problems constrained by the max-Yager FRE. Moreover, we presented a method for
generating feasible max-Yager FREs as test problems for the performance evaluation of
the proposed algorithm. Experiments were performed with the proposed method in the
generated feasible test problems. We conclude that the proposed method can find the
optimal solutions for all the cases with a great convergence rate. Moreover, a compari-
son was made between the proposed method and Lu and Fangs method, which solve the
nonlinear optimization problems subjected to the FREs defined by max-min composition.
The results showed that the proposed method finds better solutions compared with the
solutions obtained by Lu and Fangs algorithm. As future works, we aim at testing current
algorithm in other type of nonlinear optimization problems whose constraints are defined
as FRE or FRI with other well-known t-norms.
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Table 4: A Comparison between the results found by the current algorithm and Lu and
Fangs algorithm.

Test problems Lu and Fang Current algorithm

Average best-so-far 8.4296755 8.4296796∗

B.1 Median best-so-far 8.4296755 8.4296755
Average mean fitness 8.4296755 8.4398745∗

Average best-so-far -1.3888 -1.3888
B.2 Median best-so-far -1.3888 -1.3888

Average mean fitness -1.3877 -1.3886∗

Average best-so-far 0 0
B.3 Median best-so-far 0 0

Average mean fitness 7.1462e-07 0∗

Average best-so-far 5.0909 5.0909
B.4 Median best-so-far 5.0909 5.0909

Average mean fitness 5.0910 5.0908∗

Average best-so-far 71.1011 71.0969∗

B.5 Median best-so-far 71.1011 71.0968∗

Average mean fitness 71.1327 71.1216∗

Average best-so-far -0.3291 -0.4175∗

B.6 Median best-so-far -0.3291 -0.4175∗

Average mean fitness -0.3287 -0.4162∗

Average best-so-far -0.6737 -0.6737
B.7 Median best-so-far -0.6737 -0.6737

Average mean fitness -0.6736 -0.6737∗

Average best-so-far 93.9796 93.9796
B.8 Median best-so-far 93.9796 93.9796

Average mean fitness 93.9796 93.9796

Appendix A

Test Problem A.1:

f(x) = (x1 + 10x2)
2 + 5(x3 − x4)2 + (x2 − 2x3)

4 + 10(x1 − x4)4

bT = [0.2077, 0.4709, 0.8443]

A =

0.4302 0.4464 0.0741 0.0751
0.1848 0.1603 0.4628 0.5929
0.9049 0.1707 0.8746 0.4210


Test Problem A.2:

f(x) = x1 − x2 − x3 − x1x3 + x1x4 + x2x3 − x2x4 + x4x5
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bT = [0.0871, 0.3713, 0.2455, 0.1801]
0.5801 0.7557 0.0705 0.0568 0.0612
0.6871 0.3217 0.6975 0.6199 0.8560
0.0363 0.5551 0.1511 0.8654 0.1547
0.8343 0.0525 0.1708 0.0591 0.5315


Test Problem A.3:

f(x) = x1 − x2 − ln(1 + x3x4x5)− x6
bT = [0.5531, 0.2219, 0.9524, 0.8888]

0.4432 0.4430 0.0774 0.7655 0.2581 0.2074
0.2629 0.0780 0.8817 0.2126 0.5757 0.1161
0.9554 0.9857 0.5055 0.5656 0.1704 0.1256
0.2025 0.1048 0.5135 0.7883 0.8020 0.9774


Test Problem A.4:

f(x) = x1 + 2x2 + 4x5 + ex1x4−x6

bT = [0.9296, 0.6019, 0.1510, 0.5746, 0.0953]
0.9486 0.9505 0.1827 0.5498 0.2400 0.0183
0.0787 0.5247 0.8651 0.4489 0.6457 0.1841
0.9116 0.1440 0.0188 0.0400 0.1404 0.0818
0.8890 0.3096 0.4366 0.8204 0.5103 0.3569
0.0567 0.0415 0.0748 0.0888 0.0672 0.1593


Test Problem A.5:

f(x) =
6∑

k=1

[100(xk+1 − x2k)2 + (1− xk)2]

bT = [0.3205, 0.3143, 0.4007, 0.7064, 0.3223]
0.1588 0.7224 0.1207 0.6127 0.8826 0.7250 0.6135
0.2848 0.9535 0.2324 0.3272 0.9862 0.0513 0.1372
0.0671 0.2631 0.7020 0.9393 0.5195 0.5549 0.5847
0.9175 0.4171 0.7517 0.0661 0.1765 0.7090 0.3740
0.1342 0.8735 0.2747 0.8126 0.3290 0.1664 0.9600


Test Problem A.6:

f(x) = −0.5(x1x4 − x2x3 + x2x6 − x5x6 + x5x4 − x6x7)
bT = [0.2793, 0.9500, 0.7740, 0.8420, 0.4028, 0.9032]
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
0.1285 0.0451 0.1427 0.1872 0.2295 0.7203 0.6670
0.9561 0.9761 0.2078 0.9746 0.9781 0.4570 0.4021
0.6666 0.8612 0.1218 0.4595 0.8631 0.1837 0.2471
0.5068 0.8627 0.8454 0.4403 0.7161 0.7578 0.9279
0.1450 0.1297 0.1770 0.2023 0.9684 0.6396 0.2200
0.6382 0.3370 0.4653 0.9578 0.6173 0.1641 0.9557


Test Problem A.7:

f(x) = ex1x2x3x4x5 − 0.5(x31 + x32 + x36 + 1)2 + 2x7x8

bT = [0.2756, 0.9283, 0.7121, 0.0869, 0.9084, 0.4182]
0.1561 0.1743 0.8339 0.0394 0.6963 0.0332 0.2050 0.2719
0.9810 0.8829 0.4494 0.9293 0.9583 0.9673 0.6076 0.5612
0.1322 0.8624 0.1449 0.3192 0.3495 0.7525 0.7416 0.8593
0.0870 0.9568 0.8332 0.0631 0.0539 0.0090 0.8811 0.0814
0.6490 0.6310 0.2537 0.9922 0.9580 0.9281 0.3140 0.6324
0.1774 0.5941 0.3514 0.2267 0.3360 0.8476 0.1344 0.2842


Test Problem A.8:

f(x) = (x1 − 1)2 + (x7 − 1)2 + 10
7∑

k=1

(10− k)(x2k − xk+1)
2

bT = [0.1904, 0.3993, 0.7326, 0.1259, 0.5292, 0.4251, 0.8132]

0.0435 0.0555 0.1488 0.2714 0.2047 0.6267 0.3194 0.2752
0.1495 0.4336 0.0635 0.6648 0.6100 0.2811 0.3213 0.9451
0.2675 0.1008 0.7718 0.0747 0.1574 0.7820 0.6325 0.8005
0.1245 0.1986 0.0332 0.0330 0.4692 0.0962 0.0637 0.0066
0.3358 0.2144 0.3903 0.4959 0.5513 0.1610 0.9640 0.0663
0.1220 0.3677 0.0197 0.8984 0.3886 0.7078 0.3703 0.3268
0.9448 0.8626 0.1840 0.8934 0.2138 0.6546 0.9129 0.9503


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Appendix B

Test Problem B.1:

f(x) = (x1 + 10x2)
2 + 5(x3 − x4)2 + (x2 − 2x3)

4 + 10(x1 − x4)4

bT = [0.2077, 0.4709, 0.8443]

A =

0.4302 0.4464 0.0741 0.0751
0.1848 0.1603 0.4628 0.5929
0.9049 0.1707 0.8746 0.4210


Test Problem B.2:

f(x) = x1 − x2 − x3 − x1x3 + x1x4 + x2x3 − x2x4
bT = [0.4228, 0.9427, 0.9831]0.1280 0.7390 0.2852 0.2409

0.9991 0.7011 0.1688 0.9667
0.1711 0.6663 0.9882 0.6981


Test Problem B.3:

f(x) = x1x2x3x4x5

bT = [0.6714, 0.5201, 0.1500]0.4424 0.3592 0.6834 0.6329 0.9150
0.6878 0.7363 0.7040 0.6869 0.2002
0.6482 0.3947 0.4423 0.0769 0.0175


Test Problem B.4:

f(x) = x1 + 2x2 + 4x5 + ex1x4

bT = [0.6855, 0.5306, 0.5975, 0.2992]
0.1025 0.7780 0.3175 0.9357 0.7425
0.0163 0.2634 0.5542 0.4579 0.9213
0.7325 0.2481 0.8753 0.2405 0.4193
0.1260 0.2187 0.6164 0.7639 0.2962


Test Problem B.5:

f(x) =
6∑

k=1

[100(xk+1 − x2k)2 + (1− xk)2]

bT = [0.5846, 0.8277, 0.4425, 0.8266]
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
0.1187 0.4147 0.8051 0.3876 0.3643 0.7031
0.4761 0.8606 0.4514 0.0311 0.5323 0.1964
0.6618 0.2715 0.3826 0.0302 0.7117 0.1784
0.9081 0.1459 0.7896 0.9440 0.8715 0.1265


Test Problem B.6:

f(x) = −0.5(x1x4 − x2x3 + x2x6 − x5x6 + x5x4 − x6x7)
bT = [0.9879, 0.6321, 0.8082, 0.6650]

0.0832 0.3312 0.4580 0.7001 0.8287 0.9978 0.1876
0.3904 0.4277 0.2302 0.1373 0.4850 0.3495 0.8831
0.2393 0.8619 0.2734 0.8265 0.6598 0.4328 0.9315
0.4863 0.3787 0.6748 0.9301 0.4564 0.5893 0.8943


Test Problem B.7:

f(x) = ex1x2x3x4x5 − 0.5(x31 + x32 + x36 + 1)2

bT = [0.9521, 0.0309, 0.8627, 0.8343, 0.6290]
0.9869 0.0805 0.8373 0.1417 0.9988 0.6320
0.0139 0.0169 0.0182 0.4379 0.0295 0.5095
0.2497 0.6914 0.8961 0.3504 0.8225 0.2433
0.9691 0.6170 0.5921 0.4785 0.5994 0.5714
0.6197 0.6298 0.2372 0.5874 0.2560 0.9817


Test Problem B.8:

f(x) = (x1 − 1)2 + (x7 − 1)2 + 10
7∑

k=1

(10− k)(x2k − xk+1)
2

bT = [0.7840, 0.4648, 0.8864, 0.8352, 0.9839]
0.8522 0.2376 0.3586 0.7260 0.8891 0.2771 0.1316
0.4673 0.8176 0.1173 0.5350 0.1426 0.0020 0.2892
0.9707 0.4058 0.7248 0.1826 0.6193 0.8108 0.9630
0.8412 0.4663 0.7011 0.1124 0.6848 0.9434 0.4656
0.0785 0.9515 0.9997 0.0028 0.4982 0.6384 0.3852


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