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1 Abstract continued

is proposed to generate random feasible max-Schweizer-Sklar fuzzy relational inequalities
and an algorithm is presented to solve the problem. Finally, an example is described to
illustrate these algorithms.

2 Introduction
In this paper, we study the following linear problem:

min Z=c'z
Apx < bt
x € [0,1]"

where Iy = {1,2,...,m1}, Ir = {m1 +1,my +2,...,m; + mao} and J = {1,2,...,n}.
A = (@ij)mixn and D = (d;j)m,xn fuzzy matrices such that 0 < a;; < 1 (Vi € I; and
VieJ)and 0 < d;; <1 (Vi € Iy and Vj € J). b' = (b])m,x1 is an mydimensional
fuzzy vectorin [0, 1]™ (i.e., 0 < b} < 1,Vi € I1), b*> = (b?)m,x1 18 an mydimensional fuzzy
vectorin [0,1]™2 (ie., 0 < b? < 1, Vi € I,), and c is a vector in [J". Moreover, II is the
max-Schweizer-Sklar composition, that is, p(z,y) = Ths(z,y) = (max{z? + y* — 1, O})%
in which p > 0. By these notations, problem (1) can be also expressed as follows:

min Z =c'z
max;e {Tgg(aij, v;)} < di,i € 1y @
maxje{T6g(dij, x;)} < di i € Iy
z € [0,1]"

Especially, by setting A = D and b' = b%, the above problem is converted to max-
Schweizer-Sklar fuzzy relational equations. The family {T§¢} is increasing in the parame-
ter p. It can be easily shown that Schweizer-Sklar t-norm T§q(z,y) converges to the basic
fuzzy intersection {x,y} when p — 400 [7].

Sanchez was first who developed the theory of fuzzy relational equations (FRE) [44].
Nowadays, it has been shown that many issues associated with a body knowledge can
be formulated as FRE problems [39]. FRE theory has been also applied in many fields,
including fuzzy control, fuzzy decision making, fuzzy pattern recognition, fuzzy cluster-
ing, image compression and reconstruction, and so on. Generally, when inference rules
and their consequences are known, the problem of determining antecedents is reduced to
solving an FRE [38].

The finding of solutions set is the primary subject concerning with FRE problems [2, 3,
5, 34, 33, 37]. Over the last decades, the solvability of FRE defined with different max-t
compositions have been investigated by many researchers [40, 41, 43, 45, 48,47, 50, 53, 56].
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Moreover, some researchers introduced and improved theoretical aspects and applications
of fuzzy relational inequalities (FRI) [11, 16, 21, 22, 32, 55].

The problem of optimization subject to FRE and FRI is one of the most interesting and
on-going research topic among the problems related to FRE and FRI theory [1, 8, 9, 13,
23, 28, 30, 35, 42, 46, 51, 49, 55]. The topic of the linear optimization problem was also
investigated with max-product operation [14, 26, 36]. Moreover, some generalizations of
the linear optimization with respect to FRE have been studied with the replacement of
max-min and max-product compositions with different fuzzy compositions such as max-
average composition [27, 49|, max-star composition [17] and max-t-norm composition
[20, 23, 26, 30, 46].

Recently, many interesting generalizations of the linear programming have been intro-
duced and developed, that are subjected to a system of fuzzy relations [4, 6, 10, 12, 22,
31, 35, 52].

The optimization problem subjected to various versions of FRI could be found in the
literature as well [19, 15, 16, 21, 22, 25, 54, 55]. Yang [54] applied the pseudo-minimal
index algorithm for solving the minimization of linear objective function subject to FRI
with addition-min composition. Xiao et al. [55] introduced the latticized linear pro-
gramming problem subject to max-product fuzzy relation inequalities with application
in the optimization management model of wireless communication emission base sta-
tions.Ghodousian et al. [19, 15] introduced a system of fuzzy relational inequalities with
fuzzy constraints (FRI-FC) in which the constraints were defined with max-min compo-
sition. They used this fuzzy system to convincingly optimize the educational quality of a
school (with minimum cost) to be selected by parents.

The remainder of the paper is organized as follows. In section 3, some preliminary no-
tions and definitions and three necessary conditions for the feasibility of problem (1) are
presented. In section 77, the feasible region of problem (1) is determined as a union of the
finite number of closed convex intervals. T'wo simplification operations are introduced to
accelerate the resolution of the problem. Moreover, a necessary and sufficient condition
based on the simplification operations is presented to realize the feasibility of the prob-
lem. Problem (1) is resolved by optimization of the linear objective function considered
in section 5. In addition, the existence of an optimal solution is proved if problem (1) is
not empty. The preceding results are summarized as an algorithm and, finally in section
7?7 an example is described to illustrate. Additionally, in section ??, a method is proposed
to generate feasible test problems for problem (1).

3 Basic properties of max-Schweizer-Sklar FRI

This section describes the basic definitions and structural properties concerning problem
(1) that are used throughout the paper. For the sake of simplicity, let Stz (A, b') and
Srr (D,b?) denote the feasible solutions sets of inequalities Apa < b' and Dyx > b7,
respectively, that is, Srp (A,b") = {z € [0,1]" : Apx < b'} and Spp (D, 0?) = {z €
[0,1]™ : Dpa < b?}.Also, let Srz_(A, D,b',b%) denote the feasible solutions set of problem
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(1). Based on the foregoing notations, it is clear that Sy (A, D, bl b?) = St (4, by N
STgs (D, b2)

Definition 1. For each i € I and each j € J, we define Srr_(ay;, b)) = {z € [0,1] :
TEs(aij,x) < bj}. Similarly, for each i € Iy and each j € J, STg (dij, 0?) = {x € [0,1] :
T§s(dij, x) < b7}. Furthermore, the notations J; = {j € J : Sqr_(ai;,b;) # @}, Vi € I,
and J2 ={j € J: St (dij, b2) # @}, Vi € Iy, are used in the text.
From the least-upper-bound property of [, it is clear that il[lf ]{STgs(aij,b})} and
z€|0,1
sup {Srr_(ai;,0;)} exist, if Srp_(ai;,b;) # @. Moreover, since Tgg is a t-norm, its mono-
z€[0,1]
tonicity property implies that Spp_ (aij,b}) is actually a connected subset of [0, 1]. Addi-
tionally, due to the continuity of T4, we must have i?f ]{STSS (aij, b))} = m[in]{STgs (aij, b})}
z€|(0,1 xe|0,1
and sup {Srz_(aij,b})} = max {Sre _(ai;,b;)} . Therefore,
IE[ 1] :EG[O,H 58
Sty (ai;,b}) = [Jél[%ﬁ}{STé’s(“U’ bll)}’fel[%?f}{STgS(aij’ b;)}]; ie., Sre_(aij,b;) is a closed sub-
interval of [0, 1]. By the similar argument, if Sy»_(aij, b7) # @, then we have St (a5, b) =

[m[%ﬁ]{STp (aij, b2)}, max {STp (aij, b?)}] € [0,1]. From Definition 1 and the above state-
S

ments, the following tvvo Corollarles are easily resulted.

Corollary 1. For each i € I and each j € J, Sp (ay,b;) # @.Also,

STgs (aij7 bzl) = [Oa g[%}f]{STgS (aijv bzl)}] :

Corollary 2. If Sy (ai,bj) # @ for some i € I, and j € J, then
Srr (aij,07) = [ min {Sp»_(aij, b7)}, 1].

z€[0,1]
Remark 1. Corollary 1 together with Definition 1 implies J} = J, Vi € I.

Definition 2. For each i € I, and each j € J, we define

B =

1 aij < b}
Uij = 1\p p 1
((bz) +1- aij) aij > b;
Also, for each 1 € Iy and each j € J, we set
+00 dij < bzz
1
((B3)F +1—d)? b} #0,dyy > b7

From Definition 2, if a;; = by, then U;; = 1. Also, we have Li; = 1, if djj = b? and b7 # 0.

2

Lemma 1 below shows that U;; and L;; stated in Definition 2, determine the maximum
and minimum solutions of sets Syz_(ai;,b;)( i € 1) and Sz (a”, b?)( i € Iy), respectively.
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Lemma 1. (a) Uy; = max {Srr (ai;,b;)},Vi € I, and Vj € J. (b) If Sy (ai;,b7) # @

z€[0,1]
for some i € Iy and j € J, then L;; = xrél[(i)%]{STgS(aij, b}
Proof. The proof is similar to the proof of Lemma 1 in [15].

Corollary 3. (a) For eachi € I) and j € J, Syz_(aij,b}) = [0,Uy]. (b) If Stz (ai;,b7) #
@ for some i € Iy and j € J, then Srp_(aij,b7) = [Lij, 1].

Definition 3. For each i € I, let STgs(aij,b,}) ={z € [0,1]": m%fc{Tgs(aij,xj)} < b}}.
=

7

Similarly, for each i € Iy,we define Sty (dij,07) = {x € [0,1]" : m?llX{Tgs<dij,$j)} < b7}
]:

According to Definition 3 and the constraints stated in (2), sets Srz_(a;, ;) and Srr_(d;, b7)

actually denote the feasible solutions sets of the ith inequality maf{Tgs(aU, z;)} < bi(
Je

i € I)and ma:]X{qu’S(dij, x;)} > b?( i € L) of problem (1), respectively. Based on (2) and
Je

Definitions 1 and 3, it can be easily concluded that for a fixed i € I, STgs(ai, bh) # o iff
Srr (aij,bj) # @, ¥j € J. On the other hand, by Corollary 1 we know that Srr_(aij,b;) #
@,i€ I, and Vj € J. As a result, STgS(ai,b}) =+ & for each i € I;. However, in contrast
to Sre_(ai,b), set Spz_(d;, b7) may be empty. Actually, for a fixed i € Iy, Spp_(d;, b7) is
nonempty if and only if STgs(dij, b?) is nonempty for at least some j € J. Additionally,
for each i € I and j € J we have Spz_(di;,b7) # @ if and only if d;; > b. These results
have been summarized in the following lemmal Part (b) of the lemma gives a necessary
and sufficient condition for the feasibility of set Sy»_(d;, b?)( Vi € I). Tt is to be noted
that the lemma 2 ( part (b))also provides a necessary condition for problem (1).

Lemma 2. (a) Srr (a;,b;) # @, Vi € I. (b) For a fived i € Iy, Srz (dij, 07) # & iff

7

UlsTé’S(dij,bg) # @. Also, for each i € Iy and j € J, Sp_(dij,b7) # @ iff dij > b}
]:

Definition 4. For eachi € I and j € J?, we define Srz (d;, b7, 7) = [0,1] x - - x [0,1] x
[Lij, 1] x [0,1] x --- x [0,1], where [L;;, 1] is in the jth position.

Lemma 3. (G,) STgs(ai, bg) = [O, Ui,l] X [O, Ui72:| X e X [O, Ui,n]; Vi € [1.
(b) STgs(di,b?) = U ST§S<di7b127j>7 Vi € [2-

jeJ?
Proof. For a more general case, see Lemma 2.3 in [16]. O

Definition 5. L€t7(2> = [Uila Uig, ceey Ui,n]; Vi € [1. AlSO, leti(@,j) = [K(Z,j)l,X(’L,j)g,
X (i,§)n), Vi € Iy and Vi € J?, where
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Lemma 3 together with Definitions 4 and 5, results in Theorem 1, which completely
determines the feasible region for the ith relational inequality.

Theorem 1. (a) Syp_(a;,b}) = [0,X(0)], Vi € L. (b) Spp (d;,07) = U [X(4,5),1],
jeJ?

Vi € Iy, where 0 and 1 are ndimensional vectors with each component equal to zero and

one, respectively.

Theorem 1 gives the upper and lower bounds for the feasible solutions set of the ith
relational inequality. Actually, for each i € I;, vectors 0 and X (i) are the unique minimum
and the unique maximum of set Srr_(a;, b}). In addition, for each i € I, set St (di, b?)
has the unique maximum ( i.e., vector 1), but the finite number of minimal solutions
X(4,7)(Vj € J?). Furthermore, part (b) of Theorem 1 presents another feasible necessary

condition for problem (1) as stated in the following corollary.

Corollary 4. If STgs(A,D,bl,b2) #+ &, then 1 € STgs(di,b?), Vi € Iy ie.,
le ﬂ STgs(diab?) = STgs(D7b2>)'

j€l>
Proof. Let Sz (A, D,b',b?) # @. Then, Srz_(D,b?) # @, and therefore, Srz _(di, b7) # &,
Vi € I. Now, Theorem 1 ( part (b)) implies 1 € Sgz_(d;, 07), Vi € I. O

Lemma 4 describes the shape of the feasible solutions set for the fuzzy relational inequal-
ities Apx < bt and Dpx < b%, separately.

Lemma 4. (a) Spz (A, 0') = N [0,Ua] x N[0, Uig] x -+ x ([0, Uiy

i€l i€l i€l

(b) STSS(D7b2> = ﬂ U STgS(di,b?,j)-

i€lzjeJ?

Proof. The proof is obtained from Lemma 3 and equations Syz (4, =N St (ai, b)
i€lq

and

Srz (D, 0*) = () Sz (d;, 7). O

i€lr

Definition 6. Let e : Iy — J? so that e(i) = j € JZ, Vi € Iy, and let Ep be the set of all
vectors e. For the sake of convenience, we represent each e € Ep as an modimensional
vector € = [J1, 72, -+, Jmy) 10 which jy = e(k), k =1,2,...,ms.

Definition 7. Let ¢ = [j1,0,...,7ms] € Ep. We define X = mlln{Y(z)}, that s,

el
X, = miln{Y(i)j}, Vi € J.Moreover, let X(e) = [X(e)1,X(e)2,...,X(€)n], where
vely
X(e); = max{X(i.e(i)),} = max{X(i.3),}. ¥ € J.
i€ly

i€la
Based on Theorem 1 and the above definition, we have the following theorem character-
izing the feasible regions of the general inequalities Apz > b' and Dz > b? in the most
familiar way.
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Theorem 2. (a) Sy (A,b") = [0,X],Vi e I,. (b) Sqp (D,0*) = U [X(e),1].

EEED
Proof. See Theorem 2.2 and Remark 2.5 in [16]. O

Corollary 5. Assume that STgs(A,D, b, b%) # @.Then, there exists some ¢ € Ep such
that [0, X] N [X(e),1] # 2.

Corollary 6. Assume that Srp (A, D, b',v?) £ 3. Then, X € St (D, b?) .

Proof. Let Srz (A, D,b', %) # @. By Corollary 5, [0, X]N[X(é),1] # @ for some é € Ep.
Thus, X € [X(é),1] that means X € |J [X(e), 1]. Therefore, from Theorem 2( part(b)),

ecEp

X € Sz (D, ). O

4 Feasible solutions set and simplification operations

In this section, two operations are presented to simplify the matrices A and D, and
a necessary and sufficient condition is derived to determine the feasibility of the main
problem. At first, we give a theorem in which the bounds of the feasible solutions set of
problem (1) are attained. As is shown in the following theorem, by using these bounds,
the feasible region is completely found.

Theorem 3. Suppose that Syr (A, D,b',0%) # &. Then

Sro (A, D, 0%) = | ] [X(e), X]

ecEp
Proof. Syr (A, D,b,0?) = S (Ab') N S (D,0?), then by Theorem 2,
Srr (A, D, b, 0?) = [0, X]N ( U [X(e), 1]) and the statement is established. O

ecFEp

In practice, there are often some components of matrices A and D, which have no effect
on the solutions to problem (1). Therefore, we can simplify the problem by changing the
values of these components to zeros. We refer the interesting reader to [16] where a brief
review of such these processes is given. Here, we present two simplification techniques
based on the Schweizer-Sklarfamily of t-norms.

Definition 8. If a value changing in an element, say a;;, of a given fuzzy relation matriz
A has no effect on the solutions of problem (1), this value changing is said to be an
equivalence operation.

Corollary 7. Suppose that i € I, and T&g(aizy,x),), Yo € STgs(A,bl). In this case,
it is obvious that m%fc{Tgs(aij,xj)} < b} is equivalent to m%lx{TgS(aij,xj)} < b}, that
i= =

J#3o
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is, resetting a;; to zero has no effect on the solutions of problem (1) (since component
aij, only appears in the ith constraint of problem (1)). Therefore, if Thq(ai,, ;) < bi,
Vo € STgs(A, b'), then resetting aj, to zero is an equivalence operation.

Lemma 5 (simplification of matrix A). Suppose that matriz A = (@i;)m,xn is resulted
from matriz A as follows:
0 a;<bl

ag ay > b
for each i€ I and j € J. Then, Srr (A, bl = STgs(fl,bl).

Proof. From corollary 7, it is sufficient to show that The(aij,, zj,) < by, Va € STgs(A, bh).
But, from the monotonicity and identity laws of T§g, we have

Tés(aijo, 250) < Tés(aijy, 1) = iy, < by, Yy, € [0,1]. Thus, T¢s(aiy,w5,) < bj, Vo €
St (A, bh). O

Lemma 5 gives a condition to reduce the matrix A. In this lemma, A denote the simplified
matrix resulted from A after applying the simplification process. Based on this notation,
we define
Jl={jeJ: Sty (ai;,b}) # @}( Vi € I) where a;; denotes (i, j)th component of matrix
A. So, from Corollary 1 and Remark 1, it is clear that J! = J! = J. Moreover, since
Sre (A, D0, 0?) = Spz (A,b') N Spr (D, %), from Lemma 5 we can also conclude that
Srp (A, D, b 6%) = Spr (A, D, b, 1?).

By considering a fixed vector e € Ep in Theorem 3, interval [X(e), X| is meaningful iff
X(e) < X. Therefore, by deletinginfeasible intervals [X(e), X] in which X(e) £ X, the
feasible solutions set of problem (1) stays unchanged. In order to remove such infeasible in-
tervals from the feasible region, it is sufficient to neglect vectors e generating infeasible so-
lutions X(e)( ie., solutions X(e) such that
X(e) ¢ X). These considerations lead us to introduce a new set Ep = {e € Ep :
X(e) < X} to strengthen Theorem 3. By this new set, Theorem 3 can be written as
Sre (A, D01, 0%) = U [X(e), X], if Syz_(A, D, b, 0?) # 2.

BEED
Lemma 6. Let I;(e) ={i € I, : e(i) = j} and J(e) = {j € J : I;(e) # @}, Ve € Ep.
Then,
max {Liei } j € J(@)
K(e)j — ite(e) ( )
0 ¢ J(e)
Proof. From Definition 7, X(e); = ln}a(x){i(i,e(i))j}, Vj € J. On the other hand, by
1elj(e
Definition 5, we have
Lo i—=eli
X(iyel@)); = 4 L0 12
0 j # e(i)

Now, the result follows by combining these two equations. O]
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Corollary 8. e € Ep if and only if Liey < ye(i), Vi € I5.

Proof. Firstly, from the definition of set Ep, we note that e € Ep if and only if X X(e); <
X], Vi € J. Now, let e € ED and by contradiction, suppose that L ci,) > X (i) for
some iy € I5. So, by setting e(ig) = jo, we have jy € J(e), and therefore lemma 6 implies

X(e);, = nllax {LZe 1} > Lige(i) > Xegio). Thus, X(e);, > Xe(i,) that contradicts e € Ep.
N
The converse statement is easily proved by Lemma 6. O]

As mentioned before, to accelerate identification of the meaningful solutions X (e), we
reduce our search to set ED instead of set Ep.As a result from Corollary 8, we can
confine set J? by removing each j € J? such that L;; > Yj before selecting the vectors
e to construct solutions X(e). However, lemma 7 below shows that this purpose can
be accomplished by resetting some components of matrix D to zeros. Before formally
presenting the lemma, some useful notations are introduced.

Definition 9 (simplification of matrix D). Let D = (cZ,-j)mQX” denote a matriz resulted
from as follows:

dij -

~ 0 Jj e Jz2 andLij > 7]'
d;;  otherwise

Also, similar to Definition 1, assume that J?> = {i € J : Str (dij, b2) # @Y( Vi € 1)

where J,j denotes (i, j)th components of matriz D.

According to the above definition, it is easy to verify that jf C J?, Vi € I,. Furthermore,
the following lemma demonstrates that the infeasible solutions X (e) are not generated, if
we only consider those vectors generated by the components of the matrix D, or equiva-
lently vectors generated based on the set J? instead of J2.

Lemma 7. Ep = ED; where Ef is the set of all functions e : Iy — J? so that e(i) =
€ J2, Viel.

Proof Let e € Ep. Then, by Corollary 8, Liciy < Xea), Vi € I. Therefore, we have
d = dje(i), V1 € I, that necessitates J2 = JZ, Vl € I,. Hence, (i) € J2 Vi € Iy, and
then e € Ep. Conversely, let e € Ep. Therefore, e(i) € J?, Vi € I. Since J? C J?,
Vi € I, then e(i) € J?, Vi € I, and therefore e € Fp. By contradiction, suppose that
e ¢ ED So, by Corollary 8, there is some iy € I such that L; ., > X e(ip)- Hence,
d,oe(m) = 0 (since e(ip) € J2 and Liyeii) > Xe(io)) and Liye(y) > 0.The latter inequality
together with Definition 2 implies b7 > 0. But in this case, Tss(dzoe(m)) =Tts(0,2) =
0 < b, Vo € [0,1], that contradicts e(ig) € J7. O

207

By Lemma 7, we always have X (e) < X for each vector e, which is selected based on the
components of matrix D. Actually, matrix D as a reduced version of matrix D, removes
all the infeasible intervals from the feasible region by neglecting those vectors generating
the infeasible solutions X(e). Also, similar to Lemma 5 we have STSPS(A,D,bl,b2) =
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STgs(A, D, v, b?). This result and Lemma 5 can be summarized by STgS(A, D, b, v?) =
Srr (A, D,b',?).

Definition 10. Let L = (L;j)myxn be a matriz whose (i, j)th component is equal to L;;.
We define the modified matriz L* = (L};)m,xn from the matriz L as follows:

I* — “+00 Lij > Yj
" L;;  otherwise

As will be shown in the following theorem, matrix L* is useful for deriving a necessary
and sufficient condition for the feasibility of problem (1)and accelerating identification of
the set Sr» (A, D, b, b?).

Theorem 4. Syp (A, D,b',V?) # @ iff there exists at least some j € J7 such that Lj; #
+00, Vi € [2.

Proof. Let x € Srr_ (A, D,b',b?). Then, from Corollary 5, there exists some é € Ep such
that [X(é), X] # @. Therefore, X (é) < X that implies é € Ep. Now, by Corollary 8, we
have Lisi) < Xy, Vi € I,. Hence, by considering Definition 10, Ljé(i) #+ 400, Vi € Is.
Conversely, suppose that L7, # +oo for some j; € J?, Vi € I,. Then, from Definition 10
we have

Lij, < Xj,, Viel (3)

Consider vector 4 = [j1,72,---,0m] € Eb. So, by noting Lemma 6,

X(é);, = In[a(X){Lié(i)} = rr}a(x){Liji}, Vi € I, and X(é); = 0 for each j € J —
iel; (¢ iel;(é

{41, 72, .., jm}. These equations together with (3) imply X (¢é) < X that means [X (¢), X] #
&. Now, the result follows from Corollary 5.
O

5 Optimization of the problem

According to the well-known schemes used for optimization of linear problems such as (1)
9, 16, 21, 30], problem (1) is converted to the following two sub-problems:
min 7, =3 7, 01ij
Apxr <b
x € [0,1]"

min 7, =37, ¢
Apz < bt

x € [0,1]"



23 A. Ghodousian / JAC 50 issue 2, December 2018, PP. 13 - 36

Where c;“ = max{c;,0} and ¢; = max{c;,0} for j = 1,2,...,n. It is easy to prove that
X is the optimal solution of (5), and the optimal solution of (4) is X (¢é) for some é € Ep.

Theorem 5. Suppose that Srr (A, D,b',0%) # @, and X and X(e*) are the optimal
solutions of sub-problems (5) and (4), respectively. Then c'z* is the lower bound of the
optimal objective function in (1), where x™ = [z5, x5, ..., xk] is defined as follows:

" Yj ¢ < 0 (6)
X(€e); ¢ =0

forg=1,2,....n

Proof. See Colrollary 4.1 in [16]. O

Corollary 9. Suppose that Stz (A, D,0',V?) # @. Then, 2 = [23,25,...,2}] as defined
in (6),is the optimal solution of problem (1).

Proof. As in the poof of Theorem 5, ¢fz* is the lower bound of the optimal objective
function. According to the definition of vector z*, we have X(e*); <z < X, Vj € J,
which implies

v e | J [X(e),X] = Spz (A, Db,

ecEp

We now summarize the preceding discussion as an algorithm.

Algorithm 1 (solution of problem (1))
Given problem (1):
1. Compute U;;( Vi € I; and Vj € J) and L;;( Vi € I, and Vj € J) by Definition 2.

2. If 1 € STgs(D, b?), then continue; otherwise, stop, the problem is infeasible (Corol-
lary 4).

3. Compute vectors X (i)( Vi € I;) from Definition 5, and then vector X from Definition
7.

4. If X € STg’S(D7 b?) , then continue; otherwise, stop, the problem is infeasible (Corol-
lary 6).

5. Compute simplified matrices A and D from Lemma 5 and Definition 9, respectively.

6. Compute modified matrix L* from Definition 10.
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7. For each i € I, if there exists at least some j € J? such that L}, # +oo, then
continue; otherwise, stop, the problem is infeasible (Theorem 4).

8. Find the optimal solution X(e*) for the sub-problem (4) by considering vectors
e € Ep and set J?, Vi € I( Lemma 7).

*

9. Find the optimal solution z* = [z}, z3, ..., x}] for the problem (1) by (6) (Corollary
9).

It should be noted that there is no polynomial time algorithm for complete solution of
FRIs with the expectation N # NP. Hence, the problem of solving FRIs is an NP-hard
problem in terms of computational complexity [2].

6 Construction of test problems and numerical ex-
ample

In this section, we present a method to generate random feasible regions formed as the
intersection of two fuzzy inequalities with Schweizer-Sklar family of t-norms. In section
6.1, we prove that the max-Schweizer-Sklar fuzzy relational inequalities constructed by
the introduced method are actually feasible. In section 6.2, the method is used to generate
a random test problem for problem (1), and then the test problem is solved by Algorithm
1 presented in section 5.

6.1 Construction of test problems

There are several ways to generate a feasible FRI defined with max-Schweizer-Sklar com-
position. In what follows, we present a procedure to generate random feasible max-
Schweizer-Sklar fuzzy relational inequalities:

Algorithm?2 (construction of feasible Max-Schweizer-
Sklar FRI)

1. Generate randon scalars a;; € [0,1],4=1,2,...,m; and b} € [0,1],7=1,2,...,m;.
2. Compute X by Definition 7.

2. Randomly select my columns {ji, jo, ..., Jm, } from J ={1,2,... ,n}.

2. Fori € {1,2,...,my}, assign a random number from [0, X, ] to b

3. Fori e {1,2,...,my}, if b? # 0, then
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Assign a random number from the following interval to d;,:

[max{b?, ()P +1— Yi)%}, 1]
End

4. Forie {1,2,...,my}
For each k € {1,2,...,ms} — {1}
Assign a random number from [0, 1] to dj;;,.
End
End

5. For each i € {1,2,...,mo} and each j & {j1,72, .-+, Jms}
Assign a random number for [0, 1] to d;;.
End

By the following theorem, it is proved that Algorithm 2 always generates random feasible
max-Schweizer-Sklar fuzzy relational inequalities.

Theorem 6. Problem (1) with feasible region constructed by Algorithm (2) has the nonempty
feasible solutions set (i.e., Srr (A, D, bt b?) #£ ).

Proof. By considering the columns {ji, ja, ..., jm,} selected by Algorithm 2, let é =
(71,725 -+ s Jms). We show that é € Ep and X(é) < X. Then, the result follows from
Corollary 5. From Algorithm 2, the following inequalities are resulted for each i € I:
1
(1) 8 < X (1) 82 < dig; () ((82)7 +1 = X7,)" < dis,. By (1), we have ((B2)7 +1
1

Yi_); < 1. This inequality together with b7 € [0,1], Vi € I, implies that the interval

max{b?, (2P +1— 7;:)%}, 1] is meaningful. Also, by (I), é(i) = j; € J?, Vi € .

Therefore, é € Ep. Moreover, since the columns {ji, jo, ..., jm, } are distinct, sets I;, (é)(
i € Iy)are all singleton, i.e.,

I(6) = (i}, Viel ™)

As aresult, we also have J(é) = {j1, ja, ..., Jm, } and [;(é) = @ foreach j ¢ {j1, 2, .., Jma }-
On the other hand, from Definition 5, we have X (7, é)¢;y = X (4, Ji)j, = Lsj, and X (7, €(0)); =
0 for each j ¢ J — {j;}. This fact together with (7) and Lemma 6 implies X (é);, = Li;,,
Vi € I, and X(é); = 0 for j & {j1,72,--,Jms}- S0, in order to prove X (é) < X, it is
sufficient to show that X (¢é);, < X;,, Vi € I,. But, from Definition 2,

0 b?=0
X =L = (aaps1-a)} s g0 )
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Now, inequality (III) implies

(b2 +1-a,)" <X, 9)
Therefore, by relations (8) and (9), we have X (¢é);, < X, Vi € I. This completes the
proof. O]

6.2 Numerical example

Consider the following linear optimization problem (1) in which the feasible region has
been randomly generated by Algorithm 2 presented in section 6.1.

min Z = 6.2945x1 + 8.1158x2 — 7.4603x3 + 8.2675x4 + 2647225 — 8.0492x6 — 4.4300x70.9376x8
— 9.1501z9 + 9.2978x1¢

r0.1576 0.6557 0.7060 0.4387 0.2713 0.8407 0.3517 0.3517 0.0759 0.16227 r0.45057
0.9706 0.0357 0.0318 0.3816 0.6797 0.2551 0.2543 0.8308 0.0540 0.7943 0.0838
0.9572 0.8491 0.2769 0.7655 0.6551 0.5060 0.8143 0.5853 0.5308 0.3112 0.2290
0.4854 0.9340 0.0462 0.7952 0.1626 0.6991 0.2435 0.5497 0.7792 0.5285 0.9133
0.8003 0.6787 0.0971 0.1869 0.1190 0.8909 0.9293 0.9172 0.9340 0.1656 0.1524
0.1419 0.7577 0.8235 0.4898 0.4984 0.9593 0.3500 0.2858 0.1299 0.6020 pr < 0.8258
0.4218 0.7431 0.6948 0.4456 0.9597 0.5472 0.1966 0.7572 0.5688 0.2630 0.5383
0.9157 0.3922 0.3171 0.6463 0.3404 0.1386 0.2511 0.7537 0.4694 0.6541 0.9961
0.7922 0.6555 0.9502 0.7094 0.5853 0.1493 0.6160 0.3804 0.0119 0.6892 0.0782
10.9595 0.1712 0.0344 0.7547 0.2238 0.2575 0.4733 0.5678 0.3371 0.7482] 10.4427 |
r0.3674 0.4899 0.9730 0.6099 0.3909 0.4588 0.6797 0.9934 0.8909 0.07147 r0.13277
0.9880 0.1679 0.6490 0.6177 0.8314 0.9198 0.1366 0.0855 0.3342 0.5216 0.2061
0.9999 0.9787 0.8003 0.8594 0.8034 0.9631 0.7212 0.2625 0.6987 0.0967 0.2307
0.0377 0.7127 0.4538 0.8055 0.0605 0.5468 0.9407 0.8010 0.1978 0.8181 0.1754
0.8852 0.5005 0.4324 0.5767 0.3993 0.5211 0.1068 0.0292 0.9568 0.8175 0.1002
0.9133 0.4711 0.8253 0.8789 0.5269 0.2316 0.6538 0.9289 0.0305 0.7224 pr =2 0.4063
0.7962 0.9677 0.0835 0.1829 0.4168 0.4889 0.4942 0.7303 0.7441 0.1499 0.3470
0.0987 0.0596 0.1332 0.2399 0.6569 0.6241 0.7791 0.4886 0.5000 0.8248 0.1360
0.2619 0.6820 0.9672 0.8865 0.6280 0.6791 0.7150 0.5785 0.4799 0.6596 0.0953
10.3354 0.0424 0.1734 0.0287 0.9189 0.3955 0.9037 0.2373 0.9047 0.5186] 10.2576 ]
z €1[0,1]"

where || = || = |J| = 10 and p(z,y) = Thg(z,y) = /max{z? + y2 — 10}(i.e., p = 2).
Moreover, Z; = 6.2945x1+8.115825+8.2675x4+2.6472x5+0.937625+9.15012° +9.297821,
the objective function of sub-problem (4) and Zy = —7.4603x3 — 8.0492x¢ — 4.43002; is
that of sub-problem (5). By Definition 2, matrices U = (U;;)10x10 and L = (L;;)10x10 are
as follows:

[1.0000 0.8792 0.8393 1.0000 1.0000 0.7991 0.7044 1.0000 1.0000 1.0000]
0.2549 1.0000 1.0000 0.9281 0.7383 0.9705 0.9708 0.5628 1.0000 0.6133
0.3691 0.5757 0.9878 0.6829 0.7895 0.8924 0.6240 0.8426 0.8779 0.9775
1.0000 0.9807 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.6187 0.7500 1.0000 0.9941 1.0000 0.4791 0.3996 0.4266 0.3884 0.9979
1.0000 0.9807 1.0000 1.0000 1.0000 0.8728 1.0000 1.0000 1.0000 1.0000
1.0000 0.8588 0.8983 1.0000 0.6072 0.9952 1.0000 0.8464 0.9830 1.0000
1.0000 0.9807 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.6152 0.7592 0.3212 0.7092 0.8146 0.9919 0.7916 0.9281 1.0000 0.7288

10.5247 1.0000 1.0000 0.7915 1.0000 1.0000 0.9859 0.9346 1.0000 0.7976 |
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[0.9395 0.8818 0.2663 0.8035 0.9299 0.8984 0.7454 0.1753 0.4731 oo
0.2576 oo  0.7882 0.8130 0.5927 0.4432 oo oo  0.9648 0.8777
0.2312 0.3088 0.6424 0.5609 0.6386 0.3545 0.7301 0.9921 0.7516 oo
oo  0.7231 0.9082 0.6180 oo  0.8554 0.3818 0.6238 0.9958 0.6012
L = 104759 0.8715 0.9072 0.8231 0.9223 0.8593 0.9993 oo  0.3075 0.5845
0.5753 0.9712 0.6956 0.6266 0.9421 oo  0.8589 0.5498 oo  0.8020
0.6975 0.4289 oo oo  0.9730 0.9388 0.9361 0.7662 0.7529 oo
00 00 oo  0.9803 0.7662 0.7931 0.6415 0.8812 0.8825 0.7576
10.9767 oo 00 oo 04711 0.9539 0.4996 oo  0.4978 0.8930

Therefore, by Corollary 3 we have, for example:
STg (agz, b ) [O Ugg] [0 0. 5757]andST2 (a57, bé) = [0, U57] = [O, 03996]
Sz, (di2, b7) =[L1, 1] = [0.8818, 1]andSr2 _(des, bg) = [Les, 1] = [0.6266, 1].

Also, from Definition 1, J? = J3 = J—{10}, J2 = J—{2,7,8}, JZ = J—{1,5}, J2 = J —
{8},

Jg=J—-16,9}, J2 =J—{3,4,10}, J2 = J —{1,2,3}, JZ2 = J = {1,2,...,10} and
Jiy = J —{2,3,4,8}.Moreover, the only components of matrix D such that d;; < b7 are
as follows: dj 1o(in the first row), dag, da7, d28(in the second row), ds 1o(in the third row),
dy1, dys(in the fourth row), dsg(in the fifth row), des, dgo(in the sixth row), drs, 74, d710(in
the seventh row), ds;, ds2, dss(in the eighth row) and dyg 2, dio3, dio4, dios(in the tenth

10
row). Therefore, by Lemma 2(part (b)), Sz, (di, b7) = UISTES(dij, b?) # @, Vi € L.
]:

By Definition 5, we have

X(1)=[1 08792 0.8393 1 1 0.7991 0.7044 1 1 1]

X(2)=[0.2549 1 1 0.9281 0.7383 0.9705 0.9708 0.5628 1 0.6133]

X(3) =[0.3691 0.5757 0.9878 0.6829 0.7895 0.8924 0.6240 0.8426 0.8779 0.9775]
X(4)=[109807 1 1 1 111 1 1]

X(5) =[0.6187 0.7500 1 0.9941 1 0.4791 0.3996 0.4266 0.3884 0.9979]
X6)=[1 111108728 1 1 1 1]

X(7)=[1 0.8588 0.8983 1 0.6072 0.9952 1 0.8464 0.9830 1]
X®=[1111111111]

X(9) =[0.6152 0.7592 0.3212 0.7092 0.8146 0.9919 0.7916 0.9281 1 0.7288]
X(10)=1[0.5247 1 1 0.7915 1 1 0.9859 0.9346 1 0.7976]

Also, for example

X(10,1) =[0.9767 0 0 0 0 0 0 0 0 0],X(10,5)=1[0 0 0 0 04711 0 0 0 0 0],
X(10,6)=[0 0 0 0 0 09539 0 0 0 0],X(10,7)=1[0 0 0 O 0O O 0499 0 0 0],
X(10,99=[0 0 0 0 0 0 0 0 04978 0],X(10,10)=[0 0 0 0 0 0 0 0 0 0.8930].



28 A. Ghodousian / JAC 50 issue 2, December 2018, PP. 13 - 36

Therefore, by Theorem 1, Spz (a;,b;) = [0,X(i)], Vi € I, and for example
7

Sy (dhob) = ULX(10,1), 11U [X(10.3), 1] ULX(10,9), 1] UL (10, 10). 1], forthe tenth
=5

row of

matrix D(i.e., i = 10 € ).
From Corollary 4, the necessary condition holds for the feasibility of the problem. More
precisely, we have

D¢1:[0.9934 0.9880 0.9999 0.9407 0.9289 0.9677 0.8248 0.9672 0.9189]
2[0.1327 0.2061 0.2307 0.1754 0.1002 0.4063 0.3470 0.1360 0.0953 0.2576] = b?

that means 1 € Spz_(D,b?).
From Definition 7,

X = [0.2549 0.57568 0.32123 0.68295 0.60721 0.47907 0.39961 0.42659 0.38839 0.6133}

which determines the feasible region of the first inequalities, i.e., Spz (4, b') = [0, X](Theorem
2, part (a)).Also,

DX =[0.4109 0.2749 0.5378 0.3395 0.2575 0.4887 0.5176 0.2375 0.5023 0.4616]
>[0.1327 0.2061 0.2307 0.1754 0.1002 0.4063 0.3470 0.1360 0.0953 0.2576] = b*

Therefore, we have X € STES(D,bQ), which satisfies the necessary feasibility condition
stated in
Corollary 6. On the other hand, from Definition 6, we have |Ep| = 960180480. Therefore,
the number of all vectors e € Ep is equal to 960180480. However, each solution X (e)
generated by vectors e € Ep is not necessary a feasible solution. For example, for é =
8,3,1,4,10,2,6,6,6,9], we attain from
Definition 7
X(é) =max{X(i, é(i))}

i€l

— max{X(1,8), X(2,3), X(3, 1), X (4,4), X(5,10), X (6, 2), X(7, 6), X(8,6), X(9,6), X (10,9)}

) — ) ==

where

X(1,8)=[0 0 0 0 0 0 0 01753 0 0],X(2,3)=[0 0 0782 0 0 0 0 0 0 0],
X(3,1)=[02312 0 0 0 0 0 0 0 0 0],X(4,49)=[0 0 0 06180 0 0 0 0 0 0],
X(5,10)=[0 0 0 0 0 0 0 0 0 0.5845],X(6,2)=1[0 09712 0 0 0 0 0 O 0 0],
X(7,6)=[0 0 0 0 0 0938 0 0 0 0],X(86)=[0 0 0 0 0 07931 0 0 0 0],
X(9,6)=[0 0 0 0 0 07402 0 0 0 0],X(10,6)=1[0 0 0 0 0 O 0O O 00.4978 0].

Therefore, X (é) = [0.2312 0.9712 0.7882 0.6180 0 0.9388 0 0.1753 0.4978 0.5845}
It is obvious that X(é) £ X ( actually, X(é)y > overlineXq, X(é)3 > X3, X(é)s > Xg
and X (é)g £ Xo ) which means X (¢) ¢ Syz_(A, D,b',0?) from Theorem 3.



29 A. Ghodousian / JAC 50 issue 2, December 2018, PP. 13 - 36

From the first simplification (Lemma 5), resetting the following components a;; to zeros are
equivalence operations: a1, a4, ais, ais, a1, Q1,105 A22, @23, A29; A41, A4; (j =3,4,..., 10);
as3, Gs5; Ggj (] SRS {6}); ar1, an, arr, az10; as; (J € J); age: @102, @103, G105, G106,
a10,9. So, matrix A is resulted as follows:

0 0.6557 0.7060 0 0 0.7513 0.8407 0 0 0
0.9706 0 0 0.3816 0.6797 0.2551 0.2543 0.8308 0 0.7943
0.9572 0.8491 0.2767 0.7655 0.6551 0.5060 0.8143 0.5853 0.5308 0.3112
0 0.9340 0 0 0 0 0 0 0 0
i— 0.8003 0.6787 0 0.1869 0 0.8909 0.9293 0.9172 0.9340 0.1656
0 0 0 0 0 0.9593 0 0 0 0
0 0.7431 0.6948 0 0.9597 0.5472 0 0.7572  0.5688 0
0 0 0 0 0 0 0 0 0 0
0.7922 0.6555 0.9502 0.5853 0.1460 0.6160 0.3804 0 0.6892
[0.9595 0 0 0.7547 0 0 0.4733 0.5678 0 0.7482 ]

Also, by Definition 9, we can change the value of components dy; (j € J —{3,8,10}), dy;
(jeJ—{2,56,7,8}),ds; (jeJ—{1,246,10}), dy; (j € J —{1,4,5,7,10}),
Iy (J € J—{8,9,10}), doj (j € J —{4,6,9)), du ( j € J — {2,3,4,10}), dy; (
jeJ—{1,2,3,10}), do; (j € J —{3,4}) and dio; (j € J —{2,3,4,5 8})tozeros For
example since 7 € J? and L7 = 0.7454 > 0.39961 = X, then di7 = 0. Simplified matrix
D is obtained as follows:

0 0 0.9730 0 0 0 0 0.9934 0 0.0714]
0 0.1679 0 0 0.8314 0.9198 0.1366 0.0855 0 0
0.9999 0.9787 0 0.8594 0 0.9631 0 0 0 0.0967
0.0377 0 0 0.8055 0.0605 0 0.9407 0 0 0.8181
b 0 0 0 0 0 0 0 0.02922 0.9568 0.8175
0 0 0 0.8789 0 0.2316 0 0 .03050 0
0 0.9677 0.0835 0 0.1829 0 0 0 0 0.1499
0.0987 0.0596 0.1332 0 0 0 0 0 0 0.8248
0 0 0.9672 0.8865 0 0 0 0
| 0 0.0424 0.1734 0.0287 0.9189 0 0 0.2373 0 0 |

Addltlonally, r=1{3,8}, JZ = 15,6}, J2 = {1,2,4,6}, J? = {4,7,10}, J2 = {9,10},
Jg = {4}, J2 = {2}, JZ = {10}, J¢ = {3,4} and J1o = {5}. Based on these results and
Lemma 7, we have
|Es| = |Ep| = 192. Therefore, the simplification processes reduced the number of the
minimal candidate solutions from 960180480 to 192, by removing 960180288 infeasible
points X (e). Consequently, the feasible region has 192 minimal candidate solutions, which
are feasible. In other words, for each e € E, we have X(e) € STgs(A, D, b, b*). However,
each feasible solution X (e) (e € E5) may not be a minimal solution for the problem. For
example, by selecting é = [3,6,1,7,9,4,2,10, 3,5], the corresponding solution is obtained
as

X(é) = [0.2311 0.4289 0.2713 0.6266 0.4711 0.4432 0.3819 0 0.3075 0.5816}.
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Although X (¢é) is feasible (because of the inequality X (é) < X) but it is not actually a
minimal solution. To see this, let ¢ = [3,6,2,4,9,4,2,10,4,5]. Then,

X(")=[0 0.4289 0.2662 0.6266 0.4711 0.4432 0 0 0.3075 0.5816].

Obviously, X (e”) < X(¢’) which shows that X (¢’) is not a minimal solution.
Now, we obtainthe modified matrix L* according to Definition 10:

[ o oo 0.2662 oo 00 00 oo 01754 oo 00 |
00 00 00 00 0.5927 0.4432 00 00 00 00
0.2311 0.3088 00 0.5609 00 0.3545 00 00 00 00

00 00 00 0.6180 00 00 0.3819 00 00 0.6012

N 00 00 00 00 00 00 00 00 0.3075 0.5846

LF =

00 00 00 0.6266 00 00 00 00 00 00
00 0.4289 00 00 00 00 00 o0 o0 o0

o0 o0 o0 00 00 00 00 00 00 0.5816
o0 00 0.2713 0.4724 o0 o0 00 o0 00 00

| 00 00 00 0.4711 00 00 00 00 00 |

As is shown in matrix L*, for each i € I, there exists at least some j € J? such that
L* # +o0. Thus, by Theorem 4 we have Sy (A, D, bt b?) £ @.

Finally, vector X is optimal solution of sub-problem (5). For this solution, Z, = —7.4603X 3—
4.4300X,; = —80232. Also, Z = ¢'X = 15.1638. In order to find the optimal solution
X(e*) of sub-problems (4), we firstly compute all minimal solutions by making pairwise
comparisons between all solutions X (e) ( Ve € Ep), and then we find X (e*) among the
resulted minimal solutions. Actually, the feasible region has eight minimal solutions as
follows:

e1 =[3,6,2,4,10,4,2,10,4, 5]

X(er) =[0 0.4289 0.2662 0.6266 0.4711 0.4432 0 0 0 0.5846]
es =[8,6,2,4,10,4,2,10,4, 5]

X(es) =[0 0.4289 0 0.6266 0.4711 0.4432 0 0.1754 0 0.5846]
es3 =[3,5,2,4,10,4,2,10,4, 5]

X(e3) =[0 0.4289 0.2662 0.6266 0.5927 0 0 0 0 0.5846]
es =[8,5,2,4,10,4,2,10,4, 5]

X(eq)=[0 0.4289 0 0.6266 0.5927 0 0 0.1754 0 0.5846]
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es =[3,6,2,4,9,4,2,10,4, 5]

X(es) =[0 0.4289 0.2662 0.6266 0.4711 0.4432 0 0 0.3075 0.5816]
e6 =[8,6,2,4,9,4,2,10,4, 5]

X(es) =1[0 04289 0 0.6266 0.4711 0.4432 0 0.1754 0.3075 0.5816]
er =[3,5,2,4,9,4,2,10,4, 5]

X(er) =[0 0.4289 0.2662 0.6266 0.5927 0 0 0 0.3075 0.5816]
es =[8,5,2,4,9,4,2,10,4, 5]

X(eg) =[0 04289 0 0.6266 0.5927 0 0 0.1754 0.3075 0.5816]

By comparison of the values of the objective function for the minimal solutions, X (e;) is
optimal in (4) (i.e., e* = e1). For this solution,
Z) = Z cf X(e);
j=1
=6.2945X (e1)1 + 8.1158X (e1) + 8.2675X (e1)4 + 2.6472X (e1)50.9376 X (e1)s + 9.1501.X (e1)o
+9.2978X (e1)10 = 15.3438

Also, Z = cT'X(ey) = 9.7901. Thus, from Corollary 9,
Tt = [0 0.4289 0.3213 0.6266 0.4711 0.4791 0.3995 0 O 0.5846}
and then Z* = c’'z* = 7.3206.

Conclusion

In this paper, an algorithm was proposed for finding the optimal solution of linear prob-
lems subjected to two fuzzy relational inequalities with Schweizer-Sklar family of t-norms.
The feasible solutions set of the problem is completely resolved and a necessary and suffi-
cient condition and three necessary conditions were presented to determine the feasibility
of the problem. Moreover, depending on the max-Schweizer-Sklar composition, two simpli-
fication operations were proposed to accelerate the solution of the problem. Additionally,
a method was introduced for generating feasible random max-Schweizer-Sklar inequalities.
This method was used to generate a test problem for our algorithm. The resulted test
problem was then solved by the proposed algorithm. As future works, we aim at testing
our algorithm in other type of linear optimization problems whose constraints are defined
as FRI with other well-known t-norms.
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