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ABSTRACT ARTICLE INFO

Graceful labelings use a prominent place among differ-
ence vertex labelings. In this work we present new fam-
ilies of graceful graphs all of them obtained applying
a general substitution result. This substitution is ap-
plied here to replace some paths with some trees with
a more complex structures. Two caterpillars with the
same size are said to be analogous if the larger stable
sets, in both caterpillars, have the same cardinality. We
study the conditions that allow us to replace, within a
gracefully labeled graph, some snakes (or paths) by anal-
ogous caterpillars, to produce a new graceful graph. We
present five families of graphs where this replacement is
feasible, generalizing in this way some existing results:
subdivided trees, first attachment trees, path-like trees,
two-point union of paths, and armed crowns.
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1 Introduction

A graceful labeling of a graph G of size n is an injective assignment of integers from the
set {0, 1, ..., n} to the vertices of G such that, when each edge has assigned a weight, given
the absolute value of the difference of the labels of its end vertices, all the weights are
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distinct. From this definition it is possible to conclude that the order of a graceful graph
G of size n, is at most n + 1. A graceful labeling is called an α-labeling when the graph
G is bipartite, with stable sets A and B, and the labels assigned to the vertices in A are
smaller that the labels assigned to the vertices of B. This last type of labeling have been
used to construct graceful or α-labelings of larger graphs. Most of these constructions
are based by the method used by Stanton and Zarnke [20], where the authors used an
α-labeled tree S and a graceful tree T, with a distinguish vertex w, to form an α-labeled
tree G by attaching to every vertex of S the vertex w of a tree that is a copy of T . Several
generalizations of this technique are known nowadays, in particular, we must mention
here, the results of
Koh et al. [10] (see also [9], [11] and [12]). Burzio and Ferrarese [4] extended some of
these results to prove that the subdivision of all edges of a graceful tree is a graceful tree,
that is, they replaced every edge of a graceful tree by a path on length k. Sethuraman and
Selvaraju [17] replaced every edge of a path by the complete bipartite graph K2,m, where
m may change from edge to edge; they called this replacement, supersubdivision. More
general results about super subdivisions can be found in [2], [3], and [18]. In Section 3
we analyze this concept in more detail. There, we introduce a replacement theorem that
allows us to replace, within a graceful labeled graph, some specific labeled subgraphs by
some analogous graphs.
In Section 4 we present some applications of the replacement theorem, each of these
applications produces new families of graceful graphs, extending in this way, the number
of known graceful graphs.
The reader interested in graph labelings and, in particular, methods to construct labeled
graphs, is refered to Gallian’ survey [6]. In this paper we follow the notation and termi-
nology used in [5] and [6].

2 Essential Tools

A difference vertex labeling, or simply a labeling, of a graph G of size n is an injective
mapping f from V (G) into a set N of nonnegative integers, such that every edge uv of
G has assigned a weight defined by |f(u)− f(v)| . All labelings considered in this work
are difference vertex labelings. A labeling is called graceful when N = {0, 1, ..., n} and
the induced weights are 1, 2, ..., n. If G admits such a labeling, then it is called a graceful
graph.
Let G be a bipartite graph where {AG, BG} is the natural bipartition of V (G), we refer
to AG and BG as the stable sets of V (G). Without loss of generality, we assume that
|AG| ≤ |BG|. A bipartite labeling of G is an injection f : V (G) → {0, 1, ..., t} for which
there is an integer λ, named the boundary value of f, such that f(u) ≤ λ < f(v) for every
(u, v) ∈ AG ×BG, that induces n different weights. This is an extension of the definition
given by Rosa and Širáň in [15]; there, they focussed on bipartite labelings of trees. From
the definition we may conclude that t ≥ |E(G)| , furthermore, the labels assigned by f
on the vertices of AG and BG are in the integer intervals [0, λ] and [λ+ 1, t], respectively.
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If t = n, the bipartite labeling f is an α-labeling. By an α-graph we mean a graph that
admits an α-labeling. If G is an α-graph, λ is the smaller of the two vertex labels of the
edge of weight 1. In the rest of this work, we assume that the vertex labeled λ is in AG.
Thus, if G is an α-tree, then λ = |AG| − 1.
Let f : V (G)→ {0, 1, ..., t} be a labeling of a graph G of size n, n ≤ t:

• f : V (G) → {0, 1, ..., t}, defined for every v ∈ V (G) as f(v) = t − f(v), is the
complementary labeling of f. If f is graceful, f is also graceful. Moreover, if f is
an α-labeling with boundary value λ, then f is an α-labeling with boundary value
t− λ− 1.

• g : V (G) → {c, c + 1, ..., c + t}, defined for every v ∈ V (G) and c ∈ Z as g(v) =
c+ f(v), is the shifting of f in c units. Note that this labeling preserves the weights
induced by f.

• h : V (G) → {0, κ, ..., tκ}, defined for every v ∈ V (G) and κ ∈ Z+ as h(v) = κf(v),
is the amplification of f in κ units. If w1, w2, ..., wn are the weights induced by f,
then the weights induced by h are κw1, κw2, ..., κwn.

Suppose now that f : V (G)→ {0, 1, ..., t} is a bipartite labeling with boundary value λ.

• fr : V (G)→ {0, 1, ..., t}, defined for every v ∈ V (G) as, fr(v) = λ−f(v) if f(v) ≤ λ,
and fr(v) = t+ λ+ 1− f(v) if f(v) > λ, is the reverse labeling of f. Note that if f
is an α-labeling, then fr is also an α-labeling with boundary value λ.

• fk : V (G) → {0, 1, ..., t + k − 1}, defined for every v ∈ V (G) and k ∈ Z as,
fk(v) = f(v) if f(v) ≤ λ and fk(v) = f(v) + k − 1 if f(v) > λ, is the bipartite
k-labeling of G obtained from f. This labeling uses labels from {0, 1, ..., λ} ∪ {λ +
k, λ + k + 1, ..., t + k − 1} and induces the weights k, k + 1, ..., t + k − 1. In other
terms, this labeling shifts the weights induced by f in k − 1 units. Thus, if f is an
α-labeling of G and k is a positive constant, then fk is the, well-known, k-graceful
labeling of G.

Let f be an α-labeling of a caterpillar Ω of size n with boundary value λ. Suppose that f
is transformed into a k-graceful labeling shifted c units. Then the stable set AΩ receives
the labels c, c+ 1, ..., c+ λ and the stable set BΩ receives the labels c+ λ+ k, c+ λ+ k+
1, ..., c+ n+ k − 1.

3 The Main Result

Suppose that Γ and Ω are two caterpillars of order n. We say that Γ and Ω are analogous if
|AΓ| = |AΩ| and their diameters have the same parity. Following this definition, in Figure
1 we show the classification of all the caterpillars of order 8. The list of caterpillars is
taken from [13].
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Figure 1: A classification of the caterpillars of size 7.

If U is a nonempty subset of the vertex set V (G) of a graph G, then the subgraph 〈U〉 of
G induced by U is the subgraph having vertex set U and whose edge set consists of those
edges of G incident with two elements of U. A subgraph H of G is called vertex-induced
or induced, denoted H ≺ G, if H ∼= 〈U〉 for some subset U of V (G). If G is a labeled
graph, every element of U is identified with its label in G.
Let Ω be a caterpillar. Suppose that u and v are vertices of Ω such that d(u, v) = diam
Ω. Rosa[14] shown the existence of an α-labeling f of Ω, where f(u) = 0 and f(v) = λ
when diam Ω is even, or f(v) = λ+ 1 when diam Ω is odd. Therefore, for any caterpillar
Γ, analogous to Ω, there exists an α-labeling g such that g(u′) = f(u) and g(v′) = f(v)
where u′v′ ∈ E(Γ) and dist(u′, v′) = diam Γ.
Theorem 1. Let G be a gracefully labeled graph of size n. If a caterpillar Ω is an induced
subgraph of G which induced labeling is a bipartite k-labeling shifted c units, then the
graph G′, obtained by replacing Ω by any other caterpillar Γ analogous to Ω, is a graceful
graph.

Proof. Since Ω and Γ are analogous caterpillars, the existence of a bipartite k-labeling
shifted c units of Ω, implies the existence of a bipartite k-labeling of Γ shifted c units. So,
the labelings of Ω and Γ use the same labels and induce the same weights. Therefore, if
we delete from G all the edges of Ω and introduce all the edges of Γ, we obtain a graceful
graph.

In Figure 2 we show an example of this result, where two subpaths in C20 have been
replaced by analogous caterpillars.
In order to see the potential of this theorem, we have identified 14 caterpillars of order 10
analogous to P10, each of them can be used to replace any of the two distinguished copes
of P10 in C20, producing 196 α-labeled unicyclic graphs.
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Figure 2: α-labeling of a hairy cycle obtained with the replacement theorem.

4 Using Analogous Caterpillars

In this section we use Theorem 1 to prove the existence of graceful or α-labelings of several
families of graphs. We use five families of graceful graphs that have subgraphs isomorphic
to a path whose induced labeling satisfies the conditions of the theorem. In this way, the
new results correspond to generalizations of the existing ones.

4.1 The Subdivison Tree

Burzio and Ferrarese [4] proved that when every edge of a graceful tree is replaced by a
path of length k > 1, the resulting graph is a graceful tree.
Proposition Let Sn(T ) be the nth subdivision graph of a tree T, i.e., the tree obtained
by inserting n new vertices into each edge of T. Then if T is graceful, Sn(T ) is also a
graceful tree.
Within the proof of this proposition, the authors used as T (n) a path of order n with a
graceful labeling that assigns the label 0 on a leaf. (Note that their definition of a graceful
labeling uses labels from 1 to n.) There is only one graceful labeling of a path that assigns
the label 0 to a leaf, this is the well-known α-labeling given by Rosa [14]. Therefore, the
tree Sn(T ) contains multiple induced subgraphs isomorphic to a path of length n, whose
induced labelings are of the kind described in Theorem 1. Hence, as a consequence of
Theorem 1 and Proposition 2, we have the following theorem.
Theorem 2. Let T be a tree of order m with edges e1, e2, ..., em−1, and Γ1, Γ2, ..., Γm−1

be a list of caterpillars analogous to Pn. Then the graph obtained by replacing each ei by
Γi is a graceful tree.
In Figure 3 (a), we show a graceful labeling of a tree of the form S7(T (7)) constructed using



42 C. Barrientos / JAC 50 issue 2, December 2018, PP. 37 - 47

the directions in [4]. In part (b) we exhibit the graceful labeling obtained by replacing
some of the edges of T (7) with caterpillars analogous to the path P8.

Figure 3: Graceful tree obtained from a subdivided graceful tree.

4.2 The First Attachment Tree

In [19], Sethuraman and Venkatesh used a variation of the ∆-construction to create a
new variety of α-trees. Let G be a graph with r vertices of degree at least two and H
be any graph with a chosen vertex. Consider r copies of H; G ⊕ H denotes the graph
obtained by merging (via vertex amalgamation) the chosen vertex of each copy of H with
every vertex of degree at least two of G. Let T0 and TA1 by any two caterpillars. They
defined the first attachment tree as T1 = T0 ⊕ TA1 . For i ≥ 2, the ith attachment tree Ti,
is defined recursively as the tree Ti = Ti−1⊕TAi , here the chosen vertex of TAi must have
eccentricity equal to diam TAi − 1.
Proposition 2. For i ≥ 1, the ith attachment tree Ti admits an α-labeling.
Within the proof of this proposition, Sethuraman and Venkatesh use a k-graceful labeling
of TAi shifted c units; the values of k and c change from copy to copy, obviously. Therefore,
each copy of TAi can be replaced by any caterpillar Γ analogous to TAi and the result
still holds. Thus, using Theorem 1 and Proposition 4 we can prove the following result.
Theorem 3. Suppose G is a caterpillar and v1, v2, ..., vr are the vertices of degree at least
two in G. Let Γ1,Γ2, ...,Γr be analogous caterpillars, where the chosen vertex of each Γi

is a vertex with eccentricity diam Γi − 1. Then the graph obtained by merging, for all
1 ≤ i ≤ r, the chosen vertex of Γi with vi, is an α-tree.
In Figure 4 we show an example with an α-labeled tree obtained using a caterpillar G of
size 6 and r = 3, and three analogous caterpillars of size 7.

4.3 The Path-Like Trees

In [1], Barrientos presented another family of α-graphs that uses α-labelings of paths (see
also [7]). We embed the path Pn as a subgraph of the two dimensional grid. Figure 5
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Figure 4: α-labeled tree.

(a) shows such an embedding of P36 with an α-labeling. Given such an embedding, we
consider the ordered set of subpaths L1, L2, ..., Lk which are maximal straight segments
in the embedding and such that the end of Li is the beginning of Li+1. In the example of
Figure 5 (a), L1

∼= L3
∼= L5

∼= L7
∼= P9 and L2

∼= L4
∼= L6

∼= P2. Suppose that for some
i, Li

∼= P2, and that some vertex u of Li−1 is at distance one, in the grid, from a vertex
v in Li+1. An elementary transformation of the path Pn consists in replacing the edge of
Li by a new edge uv. We say that a tree T of order n is a path-like tree when it can be
obtained from some embedding of Pn in the grid, by a set of elementary transformations.
Figure 5 (b) shows a path like tree obtained from the embedding of P36 in part (a).
Prpposition 3. All path-like trees are graceful.
As a consequence of this result and Theorem 1, we can prove the following theorem.
Theorem 4. If T is a path-like tree, then any group of subpaths that are straight
segments in the embedding of T can be replaced by an analogous caterpillar, to obtain a
graceful tree T ′.
Note that in fact, the labelings of T and the final tree T ′, are α-labelings. In Figure 5 (c)
we show an α-labeling obtained using this procedure.

4.4 The Connected Paths

The following family of graphs was introduced by Kathiresan [8]. Let u and v be two fixed
vertices. The graph obtained by connecting u and v by means of b internally disjoint paths,
of length a each, is denoted Pa,b. Kathiresan proved that the graphs P2r,2m+1 are graceful
for all values of r and m. He conjectured that Pa,b is graceful except when a = 2r+ 1 and
b = 4m + 2. Note that under these conditions, Pa,b is an Eulerian graph with the wrong
parity, therefore it is not graceful (see [14]). Sekar [16] studied the cases where a = 2r+ 1
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Figure 5: α-tree obtained from a path-like tree.

and b = 4m + 1, a = 4r and b = 2m, a = 4r + 2 and b = 2m for all values of r and m,
proving that all these cases correspond to graceful graphs. For r ≥ m, Sekar [16] proved
that Pa,b is graceful when a = 4r + 1 and b = 4m, as well as the case where a = 4r − 1
and b = 4m.
Proposition 4 P2r,2m+1 is graceful for all values of r and m.
Proposition 5 P2r+1,2m+1 is graceful for all values of r and m.
The proofs of both results are quite similar. For each 1 ≤ i ≤ 2m + 1, let P i

a−1 denote
the ith copy of the subpath Pa−1 of length a − 2 (the vertices u and v of the definition
are not in these paths.) They start with an α-labeling of P i

a−1 which is transformed into
a 2-graceful labeling. This labeling is amplified by a factor κ = 2m+ 1. Let YP i

a−1
be the

stable set of P i
a−1 that contains the vertices with the largest labels, from every label of

the vertices in YP i
a−1
. Kathiresan and Sekar used the same technique, both subtract the

constant d = i−1. In the case of P2r,2m+1, Kathiresan shifted the labeling of P i
a−1, c = 2i−1

units and label u and v, 0 and r(2m + 1), respectively. When Pa,b = P2r+1,2m+1, Sekar
shifted the labeling of P i

a−1, c = m+ (i+ 1)/2 units when i is odd, and c = 2m+ 1 + i/2
units when i is even. In this case, the vertices u and v are labeled 0 and r(2m + 2),
respectively.
Since the starting labeling of each P i

a−1 is an α-labeling, we can replace each of them by
an analogous α-labeled caterpillar and the resulting graph is still graceful. Thus, we have
the following result.
Theorem 5. Let Γ1,Γ2, ...,Γ2m+1 be analogous caterpillars whose stable sets have the
same cardinality or differ by one unit. For each 1 ≤ i ≤ 2m + 1, let ui, vi ∈ V (Γi) such
that d(ui, vi) = diam Γi. Then the graph obtained by connecting all the ui to a new vertex
u and all the vi to a new vertex v, is a graceful graph.
In all the other cases proved by Sekar, it is possible to replace b − 1 of the paths Pa−1

with analogous caterpillars, the remaining path Pa−1 contains two subpaths that can be
replaced independently.
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In Figure 6 we show an example of these replacements on the starting graph P9,7.

Figure 6: α-graph obtained from a graceful labeling of P9,7.

4.5 The Armed Crowns

The last family of graceful graphs that we want to consider in this work, is based in the
following result of Sekar [16]. He defined an armed crown as a cycle with paths of equal
lengths attached at each vertex of the cycle. Sekar used the symbol Cn � Pm to denote
this graph; instead, we use Cn ~ Pm, to avoid any confusion with the corona of Cn and
Pm.
Proposition 6 Cn ~ Pm is graceful for all m and n.
Once again, Sekar started with α-labelings of the copies of Pm and transformed them into
k-graceful labelings shifted c units. When n ≡ 0, 3(mod 4), that is, when Cn is graceful,
all the n paths are transformed into k-graceful labelings shifted c units, where k and c
depend on the copy of Pm used. When n ≡ 1, 2(mod 4), Sekar did the same with all the
copies of Pm except one, which is treated in a slighly different way. For more details about
armed crowns see [16].
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Theorem 6 If Γ1,Γ2, ...,Γx are caterpillars analogous to Pm, then x copies of Pm

in Cn ~Pm can be replaced by the Γi obtaining a graceful graph, when x ≤ n if
n ≡ 0, 3(mod 4), or x ≤ n− 1 if n ≡ 1, 2(mod 4).
In Figure 7 we show an example of a graceful graph obtained in the way
described before.

Figure 7: α-labeling of a generalized armed crown.

5 Final Comments

We must mention here that the labeled caterpillar Ω in Theorem 1 can be
replaced by any α-tree that satisfies the same conditions that the caterpillar Γ;
we used caterpillars because their α-labelings are well-known, which facilitates
the understanding of the theorem. We hope that new families of graceful
graphs can be obtained applying this theorem.
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