
Journal of Algorithms and Computation

journal homepage: http://jac.ut.ac.ir

A Closed-Form Solution for Two-Dimensional
Diffusion Equation Using Crank-Nicolson Finite

Difference Method

Iman Shojaei∗1 and Hossein Rahami†2

1Align Technology Inc, San Jose, CA 95134, USA.
2School of Engineering Science, College of Engineering, University of Tehran, Tehran, Iran.

ABSTRACT ARTICLE INFO

In this paper a finite difference method for solving
2-dimensional diffusion equation is presented. The
method employs Crank-Nicolson scheme to improve fi-
nite difference formulation and its convergence and sta-
bility. The obtained solution will be a recursive formula
in each step of which a system of linear equations should
be solved. Given the specific form of obtained matri-
ces, rather than solving the problem in each step using
conventional iterative methods, a closed-form solution is
formulated.

Article history:
Received 15, Agust 2018
Received in revised form 18,
April 2019
Accepted 4 May 2019
Available online 01, June 2019

Keyword: diffusion equation, finite difference method, con-
vergence and stability.

AMS subject Classification: 05C88.

1 Introduction

Analytical solution of partial differential equations (PDEs) can be laborious or impossible
in many cases, particularly when the domain of the problem is complex. Therefore, vari-
ous numerical methods (e.g., finite difference methods, finite element methods, boundary

∗shojaei.iman@uky.edu
†Corresponding author: H. Rahami. Email:hrahami@ut.ac.ir

Journal of Algorithms and Computation 51 issue 1, June 2019, PP. 71 - 77



72 H. Rahami / JAC 51 issue 1, June 2019, PP. 71 - 77

element methods, ...) have been developed to solve PDEs. These numerical methods are
different in their complexity of formulation, rate of convergence, accuracy, and numerical
stability. Specifically, finite difference methods are considered among the simplest numer-
ical methods (i.e., in terms of formulation) that are extensively used for solving PDEs.
Finite difference methods, however, are inferior to other numerical methods for the rate of
convergence. As such, advanced algorithms like Crank-Nicolson method [1, 2] have been
developed and used (e.g., wave, heat, and Laplace equations) to improve the conventional
finite difference solutions. Crank-Nicolson method is an implicit finite difference method
that is numerically stable and uses a time step of second order accuracy.
Sweilam et al. (2012) and Jankowska (2012) used Crank-Nicolson method to solve time
fractional diffusion equation and one-dimension heat equation with Robin boundary con-
dition, respectively [5, 8]. Also, Crank-Nicolson method has been used to by Umair et al.
(2017) to solve two-dimensional fractional sub-diffusion equation [10].
When employing Crank-Nicolson method to solve, for instance, wave equation of first
order, implicit equations involving three different time steps are obtained. As such, to
find unknown of the problem in a specific time step, we need to know it in the other two
earlier time steps. Therefore, it is convenient to find unknown of the problem in the first
two time steps using another method and then apply Crank-Nicolson method to solve
the problem in other time steps. The unknown of the problem at the beginning is found
using the initial condition and at the next step is found using a method like Backward
difference. While using Crank-Nicolson method, matrices of tridiagonal form are gained
solution of which is obtained using Gauss-Seidel or Thomas algorithms.
In following sections we first elaborate on formulating diffusion equation using Crank-
Nicolson method and then, given the specific form of obtained matrices, develop a closed-
form solution for this equation using eigenvalues and eigenvectors [3, 4, 6, 7, 9].

2 Finite Difference Formulation of Diffusion Equa-

tion

Developing a simple algorithm for the vibration analysis of global near-regular mechanical
systems from available vibration solution of their corresponding regular A wide range of
diffusion equations can be solved using analytical solutions (e.g., separation of variables,
integral transformation, etc.). However, in more complicated cases numerical solution
techniques are required to solve the problem. For instance, the problem systems

α2uxx = ut, (0 < x < L, 0 < t <∞)

u (0, t) = p (t) , (0 < t <∞)

u (L, t) = q (t) , (0 < t <∞)

u (x, 0) = f (x) , (0 < x < L)

(1)

is difficult to be solved using analytical solutions if p(t) and q(t) are not constant, but
can readily be solved using a numerical solution like finite difference method.



73 H. Rahami / JAC 51 issue 1, June 2019, PP. 71 - 77

Discretizing the problem using grid points and approximating ut(x, t) and uxx(x, t) as

ut (x, t) ≈ u (x, t+ ∆t)− u (x, t)

∆t

uxx (x, t) ≈
u(x+∆x, t)−u(x, t)

∆x
− u(x, t)−u(x−∆x, t)

∆x

∆x

(2)

result in finite-difference approximation as follows

Uj,k+1 = rUj−1,k + (1− 2r)Uj,k + rUj+1,k (3)

where

r = α2 ∆t

(∆x)2 (4)

Using Eq. 3 we can calculate U (time k+1) at a grid point as a linear combination of U’s
at the preceding time (k). As the equations are decoupled, the method is computationally
efficient. However, the finite difference method (2) is convergent and stable only if ∆t
and ∆x satisfy the equation

r = α2 ∆t

(∆x)2 ≤
1

2
(5)

Satisfying the condition in Eq. 5 may result in high computational cost if we choose a
small ∆x, for the sake of accuracy, that in turn requires a very small ∆t (i.e., many time
steps). To remove such a restriction, the finite difference formulation can be modified.

3 Implicit Finite Difference Method: Crank-Nicolson

Formulation

In construction of Eq. 3 we have approximated uxx(x, t) using Eq. 2. However, this is
not the only possible way of approximation of uxx(x, t). For instance, if we use some
weighted average over the time interval, we will have

uxx (x, t) ≈ (1− θ) u (x+ ∆x, t)− 2u (x, t) + u (x−∆x, t)

(∆x)2

+ θ
u (x+ ∆x, t+ ∆t)− 2u (x, t+ ∆t) + u (x−∆x, t+ ∆t)

(∆x)2

(6)

where θ is a number in interval [0, 1]. The finite difference formulation will be

α2

[
(1− θ) Uj−1, k − 2Uj,k + Uj+1,k

(∆x)2 + θ
Uj−1, k+1 − 2Uj,k+1 + Uj+1,k+1

(∆x)2

]
=
Uj,k+1 − Uj,k

∆t

(7)



74 H. Rahami / JAC 51 issue 1, June 2019, PP. 71 - 77

which will reduce to Eq. 3 for θ = 1. It can be shown that if θ ≥ 1
2

, Eq. 7 is both
convergent and stable for all values of r > 0 (i.e., the condition in Eq. 5 is discarded). If
we set θ = 1

2
, we will have

− rUj−1,k+1 + 2 (1 + r)Uj,k+1 − rUj+1,k+1 = rUj−1,k + 2 (1− r)Uj,k + rUj+1,k

j = 1, 2, . . . , N − 1 and k = 0, 1, 2, . . .
(8)

that is the Crank-Nicolson scheme. Expressing Eq. 8 in matrix form and moving boundary
and U values from step k (i.e., U(j, k)) to the right hand side of the matrix equation lead
to 

2 (1 + r) −r · · · 0

−r 2 (1 + r) −r ...

−r . . . −r
... −r 2 (1 + r) −r
0 · · · −r 2 (1 + r)




U1,k+1

U2,k+1
...

UN−2,k+1

UN−1,k+1

 =


rpk+1 + rpk + 2 (1− r)U1,k + rU2,k

rU1,k + 2 (1− r)U2,k + rU3,k
...

rUN−3,k + 2 (1− r)UN−2,k + rUN−1,k

rUN−2,k + 2 (1− r)UN−1,k + rqk+1 + rqk



(9)

or in a compact form
AUk+1 = c (10)

Now starting with k = 0, we can solve the matrix equation for unknowns in the first time
step (i.e., U1,1, U2,1, ..., U(N−1,1)). Then setting k = 1 and solving the matrix equation,
the next line of unknowns is found (i.e., U1, 2, U2, 2, , U(N − 1, 2)). The procedure is
repeated until unknowns in all time steps are calculated [2]. The conventional method of
solving Eq. 10 is through an iterative algorithm outlined below:

1. Rewriting A and matrix equation as

A =


2 (1 + r) 0 · · · 0

0 2 (1 + r) 0
...

0
. . . 0

... 0 2 (1 + r) 0
0 · · · 0 2 (1 + r)

+


0 −r · · · 0

−r 0 −r ...

−r . . . −r
... −r 0 −r
0 · · · −r 0

 = 2 (1 + r) I + A′

(11)



75 H. Rahami / JAC 51 issue 1, June 2019, PP. 71 - 77

and
[2 (1 + r) I + A′] Uk+1 = c (12)

or

Uk+1 =
1

2 (1 + r)
c− 1

2 (1 + r)
A′Uk+1 (13)

2. Setting an initial approximation as U0
k+1 = 1

2(1+r)
c and obtaining a solution

U1
k+1 =

1

2 (1 + r)
c− 1

2 (1 + r)
A′U

0
k+1 (14)

3. Repeating the procedure to define an iterative algorithm

Un+1
k+1 =

1

2 (1 + r)

[
c−A′U

n
k+1

]
and n = 0, 1, 2, . . . (15)

It can be shown that the solution in Eq. 15 converges to exact solution of AUk+1 = c.
However, due to the iterative nature of the algorithm, achieving an accurate enough
solution can be time-consuming. In the next section an efficient closed-from solution for
Eq. 10 is presented.

4 Closed-Form Solution of AUk+1 = c in Implicit Fi-

nite Difference Method

Eigenvalues and eigenvectors of a tridiagonal matrix, of dimension N - 1, of the form

M =


b c · · · 0

a b c
...

a
. . . c

... a b c
0 · · · a b

 (16)

are calculated [4, 8] using

λn = b+ 2
√
ac cos

nπ

N
and n = 1, 2 , . . . , N − 1

vnj = ρj−1 sin
njπ

N
; ρ =

√
a

c
; j = 1, 2 , . . . , N − 1

vn =
[
vn1 , v

n
2 , . . . , v

n
N−1

]t
(17)

Therefore, for matrix A we will have

λn = 2 (1 + r) + 2r cos
nπ

N
and n = 1, 2 , . . . , N − 1

vnj = sin
njπ

N
and j = 1, 2 , . . . , N − 1

vn =
[
vn1 , v

n
2 , . . . , v

n
N−1

]t (18)



76 H. Rahami / JAC 51 issue 1, June 2019, PP. 71 - 77

Since A is a symmetric matrix (of dimension N − 1), its eigenvectors (v1, v2, ..., v(N−1))
provide an orthogonal basis for N-1 space. Therefore, we can expand Uk+1 and c in terms
of (v1, v2, ..., v(N−1)) basis:

Uk+1 =
N−1∑
i=1

aiv
i and c =

N−1∑
i=1

civ
i (19)

where ci’s are known (i.e., can readily be computed)

ci =
(
vi
)t
c (20)

and ai’s are our unknowns that should be computed through substitution in Uk+1 = c

A
N−1∑
i=1

aiv
i =

N−1∑
i=1

civ
i (21)

where we can write

A
N−1∑
i=1

aiv
i =

N−1∑
i=1

aiAv
i =

N−1∑
i=1

aiλiv
i (22)

We can now re-express Eq. 21 as

N−1∑
i=1

λiaiv
i =

N−1∑
i=1

civ
i (23)

Because vi’s are linearly independent (they form a basis), we will have

λiai = ci → ai =
ci
λi

and i = 1, 2, . . . , N − 1 (24)

Therefore,

Uk+1 =
N−1∑
i=1

ci
λi
vi =

N−1∑
i=1

vi
ci
λi

=
N−1∑
i=1

vi(vi)
t

λi
c (25)

Finally,

Uk+1 =
N−1∑
i=1

[
sin iπ

N
, sin 2iπ

N
, . . . , sin (N−1)iπ

N

]t [
sin iπ

N
, sin 2iπ

N
, . . . , sin (N−1)iπ

N

]
2 (1 + r) + 2r cos iπ

N

c (26)

References

[1] Crank J. , Nicolson Ph., A practical method for numerical evaluation of solutions of
partial differential equations of the heat-conduction type, Advances in Computational
Mathematics, 6(1) (1996) 207-226.



77 H. Rahami / JAC 51 issue 1, June 2019, PP. 71 - 77

[2] Greenberg M.D., Advanced engineering mathematics, volume 2, Prentice Hall Upper
Saddle River, NJ, (1998).

[3] Kaveh A. and Rahami H., Tri-diagonal and penta-diagonal block matrices for efficient
eigensolutions of problems in structural mechanics, Acta Mechanica, 192(1-4) (2007)
77-87.

[4] Kaveh A. and Shojaei I. and Rahami H., New developments in the optimal analysis
of regular and near-regular structures: decomposition, graph products, force method,
Acta Mechanica, 226(3) (2015) 665-681.

[5] Malgorzata J., An interval finite difference method of crank-nicolson type for solving
the one-dimensional heat conduction equation with mixed boundary conditions, In
International Workshop on Applied Parallel Computing, Springer (2010) 157-167.

[6] Shojaei I. and Rahami H. and Kaveh A., A numerical solution for Laplace and
Poisson’s equations using geometrical transformation and graph products, Applied
Mathematical Modelling, 40(17-18) (2016) 7768-7783.

[7] Shojaei I. and Rahami H. and Kaveh A., Efficient finite element solution of regular
and near-regular systems using graph products, Acta Mechanica, 226(7) (2015) 2393-
2405.

[8] Sweilam NH. and Khader MM. and Mahdy AMS., Crank-Nicolson finite difference
method for solving time-fractional diffusion equation, Journal of Fractional Calculus
and Applications, 2(2) (2012) 1-9.

[9] Yueh W.C., Eigenvalues of several tridiagonal matrices, Applied mathematics e-
notes,5(66-74) (2005) 210-230.

[10] Umair A. and Farah Aini A. and Ahmad Izani I., Crank-Nicolson finite difference
method for two-dimensional fractional sub-diffusion equation, Journal of Interpola-
tion and Approximation in Scientific Computing, 2 (2017) 18-29.


	Introduction
	Finite Difference Formulation of Diffusion Equation
	Implicit Finite Difference Method: Crank-Nicolson Formulation
	Closed-Form Solution of AUk+1=c in Implicit Finite Difference Method

