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Here are many situations in real applications of decision
making where we deal with uncertain conditions. Due
to the different sources of uncertainty, since its original
definition of fuzzy sets in 1965 [45], different generaliza-
tions and extensions of fuzzy sets have been introduced:
Type-2 fuzzy sets [11, 39], Intuitionistic fuzzy sets [1],
fuzzy multi-sets [44] and etc. However, in such cases,
it is suitable for experts to provide their preferences or
assessments by using linguistic information rather than
quantitative values.
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1 Introduction

There are many situations in real applications of decision making where we deal with
uncertain conditions. Due to the different sources of uncertainty, since its original defini-
tion of fuzzy sets in 1965 [45], different generalizations and extensions of fuzzy sets have
been introduced: Type-2 fuzzy sets [11, 39], Intuitionistic fuzzy sets [1], fuzzy multi-sets
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[44] and etc. However, in such cases, it is suitable for experts to provide their prefer-
ences or assessments by using linguistic information rather than quantitative values. The
complexity of real world decision problems is often induced by the uncertainties of the
alternatives. For managing these uncertainties, the use of linguistic terms has provided
successful results in many decision making problems. However, the linguistic models usu-
ally use one linguistic term to describe such uncertainties and so experts may not reflect
exactly what they mean. These situations happen, for instance, when experts hesitate
among several values to assess a linguistic variable.
The topic of operations on Hesitant Fuzzy Linguistic Term Sets has been studied by some
authors. Below is a brief review of some studies relevant to the present work. Rodŕıguez et
al. [36] introduced the concept of Hesitant Fuzzy Linguistic Term Sets (briefly, HFLTSs)
to increase the flexibility and richness of linguistic elicitation based on the fuzzy linguistic
approach and the use of context-free grammars to support the elicitation of linguistic in-
formation obtained by experts in hesitant situations under qualitative settings. They also
presented some computational functions for ranking HFLTS. Then, they presented a
multicriteria linguistic decision-making model in which experts provide their assessments
by using linguistic expressions based on comparative terms and applied it to a decision-
making problem to show the usefulness of the HFLTS in decision making. In addition,
they [37] presented a group decision making model that is capable of dealing with compar-
ative linguistic expressions based on HFLTSs. Lee et al. [23] also extended a similar type
of Rodŕıguez et al.’s preference degree and a similarity measure for HFLTSs. Beg et al.
[2] modified the TOPSIS method for solving decision-making problems under the opinion
of finite experts and multiple criteria represented by HFLTSs. Based on a proposed dis-
tance measure between HFLTSs, they compared alternatives using a proposed closeness
coefficient. Liao et al. [24] suggested some family of distance and similarity measures
for HFLTSs and applied them to multi-criteria decision making problems. Liu et al.
[26] suggested a representation of the HFLTSs by means of a fuzzy envelope for fuzzy
multicriteria decision making applications. Liu et al. [27] proposed the linguistic fuzzy
preference relations based on the comparative linguistic expressions for HFLTSs. They
transformed the linguistic fuzzy preference relations into linguistic 2-tuple fuzzy preference
relations, and introduced an iterative method to measure and improve the additive consis-
tency of the linguistic 2-tuple fuzzy preference relations. Wei [40] investigated the hesitant
fuzzy multiple attribute decision making problem in which the attributes are in different
priority levels. He developed some prioritized aggregation operators for aggregating hesi-
tant fuzzy information including hesitant fuzzy prioritized weighted average operator and
hesitant fuzzy prioritized weighted geometric operator. Liao et al. [25] extended the
classical VIKOR method to accommodate hesitant fuzzy circumstances. They developed
the hesitant normalized Manhattan Lp-metric, the hesitant fuzzy group utility measure,
the hesitant fuzzy individual regret measure and the hesitant fuzzy compromise measure.
Zhu [48] developed a concept of hesitant fuzzy linguistic preference relations as a tool to
collect and present the decision makers preferences. He extended some consistency mea-
sures for hesitant fuzzy linguistic preference relations to ensure that the decision makers
are neither random nor illogical. Wei et al. [41] defined some operations on HFLTSs and
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proposed some possibility degree formulas for comparing HFLTSs. They also proposed
two aggregation operators for HFLTSs.
An important issue in real life applications is consists in evaluating the relationship be-
tween two variables. The measures of association refer to a wide variety of coefficients
that measure the statistical strength of the relationship on the variables of interest. These
measures of strength can be described in several ways, depending on the analysis. The
correlation coefficient is one of the most broadly applied indices in many fields and also
an important measure in data analysis and classification, pattern recognition, decision
making and so on. It is typically a number between 0 and 1. This measure tells us
how closely one object is related to the other, i.e. if there is no relationship between the
objects the correlation coefficient is 0 or very low and it increases toward 1 when the
strength of the relationship between the the objects increases. As it mentioned above, in
real life phenomena, we usually come across many characteristics and attributes which are
reported by imprecise information instead of crisp ones. During the last decades, the con-
cept of correlation coefficients has been extended for imprecise data by some authors (see
[6, 12, 13, 16, 17, 18, 19, 20, 28, 39, 43] for fuzzy data, [5, 13, 15, 17, 19, 21, 30, 35, 38, 42]
for intuitionistic fuzzy sets, and [7, 29] for Hesitant Fuzzy Sets). On the other hand,
as it mentioned above, the analysis of relationships between linguistic terms is a vital
importance in many applications of decision making. Therefore, for investigating the
relationship between this type of imprecise data, it needs to aggregate soft statistical
methods and theory of HFLTSs.
In this paper, some formulas for correlation coefficients of HFLTSs are suggested and
discussed. These derived correlation coefficients are also applied to do clustering analysis
for HFLTSs. An applied example is also presented to illustrate the effectiveness and
reasonability of the proposed methods.
The rest of the paper is organized as follows. In Section 2 some preliminary concepts and
operations of HFLTSs is briefly reviewed. Then some definitions and relevant properties
with respect to correlation coefficients for HFLTS will be introduced and discussed. Sec-
tion 3 applies a clustering algorithm based on HFLTSs and a real case study is developed
to demonstrate an application of the proposed method for HFLTSs. Concluding remarks
are finally made in Section 4.

2 Correlation coefficients for HFLTSs

In this section, some correlation coefficients for HFLTSs are introduced and the main
properties of the proposed correlation coefficients are put into investigation. First, we
recall briefly some preliminaries of HFLTSs that we need in this work.
Throughout this paper, the following definitions and notations are used for extending
some utility concepts concerned with HFLTSs based on [36].
Definition 1 Assume L consists of finite linguistic terms called a linguistic term set
denoted by L =

{
l1, . . . , ln

}
. A HFLTS is an ordered finite subset H of consecutive

linguistic terms of L. The set of all such subsets of L is denoted by H(L).
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Example 1 [2] Consider an investment company which wants to invest money in the best
option based on some possible alternatives to invest the money and some criteria based
on some risk factors. In such cases, to make a optimum decision, the possible evaluations
of alternatives is usually reported by decision makers in some linguistic term sets such as:

L =
{
l1 : “exteremly poor”, l2 : “very poor”, l3 : “poor”, l4 : “medium”, l5 : “goog”,

l6 : “very good”, l7 : “extremely good”
}
.

Due to different levels of skills, experience and etc, different evaluations of the alternatives
are often made by the experts. These differences of the opinions may be reported by the
following HFLTSs, for instance:

H1 =
{
l1
}
, H2 =

{
l2, l3

}
, H3 =

{
l2, l3, l4

}
.

Definition 2 Let L =
{
l1, . . . , ln

}
be a linguistic term set. Then,

1) the empty HFLTS is defined as the HFLTS, H = ∅,

2) the intersection between two HFLTSs, H1 and H2 is defined as the HFLTS:

H1 ∩H2 =
{
l ∈ L : l ∈ H1 and l ∈ H2

}
.

3) two HFLTSs, H1 and H2 are said to be equal, i.e. H1 = H2, if H1 ⊆ H2 and
H2 ⊆ H1.

For more operations on HFLTSs see [36].
In the sequel, we will propose some formulas to evaluate the correlation between HFLTSs.
Definition 3 Let L be a given linguistic term set. A function ρ : H(L)×H(L)→ [0,∞) is
called a correlation coefficient if for all H1, H2 in H(L), it satisfies the following conditions:
1) ρ(H1, H2) ∈ [0, 1],
2) ρ(H1, H2) = 1 if and only if H1 = H2,
3) ρ(H1, H2) = ρ(H2, H1),
4) ρ(H1, H2) = 0 if and only if H1 ∩H2 = ∅.
Theorem 1 Given a linguistic term set L = {l1, . . . , ln}, the function defined for all
nonempty H1, H2 ∈ H(L) by

ρ1(H1, H2) =
∑

i∈{1,2,...,n}

√
aH1(i)aH2(i), (2.1)

is a correlation coefficient, where for all H ∈ H(L)

aH(i) =
IH(i)

|H|
, IH(i) =

{
1 if i ∈ Ins(H),
0 if i /∈ Ins(H),

Ins(H) =
{
i ∈ {1, 2, . . . , n} : li ∈ H

}
,
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and |H| denotes the cardinal number of H.
Proof. To proof the theorem, we need to verify the conditions 1)-4) in Definition 2.
let ai = aH1(i) and bi = bH2(i) for i = 1, 2, . . . , n. Here, we recall that all nonnegative
sequences of real numbers {ai}ni=1 and {bi}ni=1 where

∑n
i=1 ai =

∑n
i=1 bi = 1 satisfy 0 ≤∑n

i=1

√
aibi ≤ 1. The equality holds if and only if ai = bi for any i = 1, 2, . . . , n [4]. So,

the conditions 1), 3) and 4) are easily verified. Now, let H1, H2 ∈ H(L) where H1 = H2,
therefore it is easily seen that ρ(H1, H2) = 1. In reverse, assume ρ(H1, H2) = 1, i.e.
aH1(i) = aH2(i) for all i ∈ Ins(L), then it follows that H1 = H2. If not, i.e. H1 6= H2,
there exist at least one element i ∈ Ins(L) such that i ∈ Ins(H1) but i /∈ Ins(H2).
Therefore, it concludes that 1

|H1| = aHl
(i) 6= aH2(i) = 0 which is a contradiction. So the

condition 2) is verified and thus the proof is completed.
Theorem 2 Let L = {l1, . . . , ln} be a linguistic term set. Then the function defined by

ρ1(H1, H2) =

∑
i∈{1,2,...,n} kH1(i)kH2(i)√(∑

i∈{1,2,...,n} (kH1(i))
2
)(∑

i∈{1,2,...,n} (kH2(i))
2
) , (2.2)

where for H ∈ H(L),

kH(i) =

{
1 if i ∈ Ins(H),
0 if i /∈ Ins(H),

is a correlation coefficient.
Proof. Similar to the previous theorem, based on the properties of Cauchy-Schwarz
inequality [4], the proof is easily verified.
Example 2 Let L = {l1, . . . , l7} be a linguistic term set and H1 = {l3, l4, l5}, H2 = {l4, l5}
be two HFLTSs on H(L). Then, from Eq. (2.1), we get

ρ1(H1, H2) =

√
0

2
× 0

3
+

√
0

2
× 0

3
+

√
1

3
× 0

2
+

√
1

2
× 1

3
+

√
1

2
× 1

3
+

√
0

2
× 0

3
= 0.8165.

In addition, from Eq. (2.2), we obtain

ρ2(H1, H2) =
4× 4 + 5× 5√

(32 + 42 + 52)× (42 + 52)
= 0.9055.

3 Clustering algorithm for HFLTSs

Cluster analysis is a major technique for classifying a set of information into manageable
meaningful piles. Cluster analysis, in fact, is a data reduction tool that creates subgroups
that are more manageable than individual datum by examining the full complement of
inter-relationships between objects. Clustering methods for vague data, however, allow
the objects to belong to several clusters simultaneously. As one of the widely-adopted
tools in handling imprecise information, it has been applied to many fields of decision
making such as pattern recognition [44], data mining [14], information retrieval [31, 33],
and other real world problems concerning social, medical, biological, climatic, financial
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systems [8, 22, 34, 46, 47]. As it is mentioned by Chen et al. [7], under the group decision
making situations, however, the evaluation information provided by different experts may
have an obvious difference and the fuzzy clustering schemes mentioned above are unable
to incorporate the differences in the opinions of different experts. This is the reason
that we apply the clustering algorithm introduced by Chen et al. [7] in this paper. In
the sequel, based on the correlation coefficient formulas for HFLTSs proposed in the
previous section, we develop the algorithm proposed by Chen et al. [7] to do clustering
under HFLTSs as follows:
(Step 1.) Let {H1, H2, . . . , Hm} be a set of HFLTSs in L = {l1, l2, . . . , ln}. Using Eq.
(2.1) or Eq. (2.2), the correlation coefficients of the HFLTSs are calculated leading to a
correlation matrix C = [ρij]mm, where ρij = ρ(Hi, Hj).
(Step 2.) Check whether C = [ρij]mm is an equivalent correlation matrix, i.e. check
whether it satisfies C2 ⊆ C, where

C2 = [ρij]mm, ρij = max
k
{min(ρik, ρkj)}, i, j = 1, 2, . . . ,m,

if it does not hold, the equivalent correlation matrix C2k is constructed as follows:

C → C2 → C4 → . . . C2k → . . . , until C2k = C2(k+1)

.

(Step 3.) For a confidence level α ∈ [0, 1], a α-cutting matrix Cα = [ραij]mm is constructed
where

ραij =

{
1 if ρij ≥ α,
0 if ρij < α,

in order to classify the HFLTSs, Hj (j = 1, 2, . . . ,m). If all elements of the ith line
(column) in Cα are the same as the corresponding elements of the jth line (column) in Cα,
then the HFLTSs Hi and Hj are of the same type. Using this principle, all HFLTSs, Hj
(j = 1, 2, . . . ,m) can be classified. Here an numerical example is employed to illustrate
the possible application of the clustering algorithm based on HFLTSs:
Example [41] A practical application of the proposed approaches involves the evaluation
of university faculty for tenure and promotion. The criteria used at some universities are
teaching (u1), research (u2), and service (u3). Suppose there are five candidates xi (i =
1, 2, 3, 4, 5, 6) to be evaluated by three experts dk (k = 1, 2, 3) under these three attributes.
Assume that the possible evaluating values of attributes is labeled as a linguistic term set
S = {l1 : “nothing”, l2 : “very low”, l3 : “low”, l4 : “medium”, l5 : “high”, l6 : “very high”,
l7 : “perfect”}. The experts who make such an evaluation have different backgrounds and
levels of knowledge, skills, experience and personality, etc. So, this leads to a difference
in the evaluation of the alternatives ui (i = 1, 2, 3). To clearly reflect the differences of
the opinions of different experts, assume that the evaluation information are represented
by the HFLTSs listed bellow:

H1 =
{
l1, l2

}
, H2 =

{
l2, l3, l4

}
,

H3 =
{
l3, l4

}
, H4 =

{
l3, l4, l5

}
,

H5 =
{
l5
}
, H6 =

{
l5, l6, l7

}
,
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To better evaluate the evaluation of tenure and promotion Hi (i = 1, 2, 3, 4, 5, 6) for the
university faculty, we perform the following clustering algorithm according to the at-
tributes u1-u3.

(Step 1.) Calculate the correlation coefficients of the HFLTSs Hi (i = 1, 2, . . . , 6) by
using Eq. (2.2). So, the derived correlation matrix is:

C =


1.0000 0.4082 0 0 0 0
0.4082 1.0000 0.8165 0.6667 0 0

0 0.8165 1.0000 0.6667 0 0
0 0.6667 0.8165 1.0000 0.5774 0.3333
0 0 0 0.5774 1.0000 0.5774
0 0 0 0.3333 0.5774 1.0000


(Step 2.) Construct the equivalent correlation matrix and calculate:

C2 =


1.0000 0.4082 0.4082 0.4082 0 0
0.4082 1.0000 0.8165 0.6667 0.5774 0.3333
0.4082 0.8165 1.0000 0.6667 0.5774 0.3333
0.4082 0.8165 0.8165 1.0000 0.5774 0.5774

0 0.5774 0.5774 0.5774 1.0000 0.5774
0 0.3333 0.3333 0.5774 0.5774 1.0000


It can be seen that C2 ⊆ C does not hold. therefore, the correlation matrix C is not an
equivalent correlation matrix. So, we further calculate:

C4 =


1.0000 0.4082 0.4082 0.4082 0.4082 0.4082
0.4082 1.0000 0.8165 0.6667 0.5774 0.5774
0.4082 0.8165 1.0000 0.6667 0.5774 0.5774
0.4082 0.8165 0.8165 1.0000 0.5774 0.5774
0.4082 0.5774 0.5774 0.5774 1.0000 0.5774
0.4082 0.5774 0.5774 0.5774 0.5774 1.0000


It is observed that C4 ⊆ C2 is not an equivalent correlation matrix. Therefore, we further
calculate:

C8 =


1.0000 0.4082 0.4082 0.4082 0.4082 0.4082
0.4082 1.0000 0.8165 0.6667 0.5774 0.5774
0.4082 0.8165 1.0000 0.6667 0.5774 0.5774
0.4082 0.8165 0.8165 1.0000 0.5774 0.5774
0.4082 0.5774 0.5774 0.5774 1.0000 0.5774
0.4082 0.5774 0.5774 0.5774 0.5774 1.0000

 = C4.

Hence, it is observed that C8 is an equivalent correlation matrix. (Step 3.) For a
confidence level α, to do clustering for HFLTSs, by constructing the α-cutting matrix
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Cα = (ρα1,ij)mm, we get all possible classifications of Hi (j = 1, 2, . . . , 6) as follows:
(1) If 0 ≤ α ≤ 0.4082, then Hi (j = 1, 2, . . . , 6) are of the same type:

{H1, H2, H3, H4, H5, H6}.

(2) If 0.4082 < α ≤ 0.5774, then Hi (j = 1, 2, . . . , 6) are classified into two types:

{H1}, {H2, H3, H4, H5, H6}.

(3) If 0.5774 < α ≤ 0.8165, then Hi (j = 1, 2, . . . , 6) are classified into four types:

{H1}, {H2, H3, H4}, {H5}, {H6}.

(4) If 0.8165 < α ≤ 1, then Hi (j = 1, 2, . . . , 6) are classified into five types:

{H1}, {H2}, {H3}, {H4}, {H5}, {H6}.

4 Conclusion

The theory of HFLTSs is a convenient and flexible tool to reflect the decision maker’s
preferences in decision making in case where there are situations in which there is hesi-
tancy in providing linguistic assessments. As a tool for further applications of HFLTSs
in decision making, in this paper, some formulas of correlation coefficients for HFLTSs
are introduced in which an HFLTS consists of finite linguistic terms. The properties of
these correlation coefficient was also investigated and discussed. An approach to clustering
analysis under HFLTSs is also developed and the assessment of a multicriteria decision-
making problem is selected to illustrate the actual application of clustering algorithm
under HFLTSs. The application clearly indicates the need of evaluations of correlation
coefficients based on HFLTSs, since such a clustering algorithm can automatically ac-
count for the differences of the evaluation linguistic term sets given by different experts.
The correlation coefficients under HFLTSs is therefore of considerable practicality in
many fields of decision making and consequently it constitutes a potentially useful tool
to handle those decision issues involving HFLTSs.
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