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1 Introduction

In this paper, we study the following fuzzy system in which the constraints consist
of the intersection of two types fuzzy relational inequalities defined by “Fuzzy Or”
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Operator:
A∇x ≤ b1

D∇x ≥ b2

x ∈ [0,1]n
(1)

where I1 = {1,2, ..,m1}, I2 = {m1 + 1,m1 + 2, ..,m1 +m2} and J = {1,2, ..,n}. A = (aij)m1×n
and D = (dij)m2×n are fuzzy matrices such that 0 ≤ aij ≤ 1 (∀i ∈ I1 and ∀j ∈ J) and
0 ≤ dij ≤ 1 (∀i ∈ I2 and ∀j ∈ J). b1 = (b1

i )m1×1 is an m1–dimensional fuzzy vector in
[0,1]m1 (i.e., 0≤b1

i ≤1,∀i ∈ I1) and b2 = (b2
i )m2×1 is an m2–dimensional fuzzy vector in

[0,1]m2 (i.e., 0≤b2
i ≤1,∀i ∈ I2). Moreover, “∇” is the max-∇ composition where ∇ is “Fuzzy

Or” Operator, that is,

∆ (x,y) = γmax {x,y}+
(1−γ)(x+ y)

2

in which γ ∈ [0,1]. Furthermore, let S(A,b1) and S(D,b2) denote the feasible solutions
sets of inequalities type1A∇x ≤ b1 and type2D∇x ≥ b2, respectively, that is, S(A,b1) ={
x ∈ [0,1]n : A∇x ≤ b1

}
and S(D,b2) =

{
x ∈ [0,1]n : D∇x ≥ b2

}
. Also, let S(A,D,b1,b2)

denote the feasible solutions set of problem (1). Based on the foregoing notations, it is
clear that S(A,D,b1,b2) = S(A,b1)

⋂
S(D,b2).

By these notations, problem (1) can be also expressed as follows:

max
j∈J
{∇ (aij ,xj)} ≤ b1

i , i ∈ I1
max
j∈J
{∇ (dij ,xj)} ≥ b2

i , i ∈ I2
x ∈ [0,1]n

(2)

Especially, by settingA =D and b1 = b2, the above problem is converted to max-“Fuzzy
Or” fuzzy relational equations.
The theory of fuzzy relational equations (FRE) was firstly proposed by Sanchez and
applied in problems of the medical diagnosis [54]. Nowadays, it is well known that
many issues associated with a body knowledge can be treated as FRE problems [50].
In addition to the preceding applications, FRE theory has been applied in many fields,
including fuzzy control, discrete dynamic systems, prediction of fuzzy systems, fuzzy
decision making, fuzzy pattern recognition, fuzzy clustering, image compression and
reconstruction, fuzzy information retrieval, and so on. Generally, when inference rules
and their consequences are known, the problem of determining antecedents is reduced
to solving an FRE [40,48]. The solvability determination and the finding of solutions
set are the primary (and the most fundamental) subject concerning with FRE prob-
lems. Actually, The solution set of FRE is often a non-convex set that is completely
determined by one maximum solution and a finite number of minimal solutions [5].
This non-convexity property is one of two bottlenecks making major contribution to
the increase of complexity in problems that are related to FRE, especially in the op-
timization problems subjected to a system of fuzzy relations. The other bottleneck
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is concerned with detecting the minimal solutions for FREs [2]. Markovskii showed
that solving max-product FRE is closely related to the covering problem which is an
NP-hard problem [47]. In fact, the same result holds true for a more general t-norms
instead of the minimum and product operators [2,3,12,13,22 – 30,43,44,47].
Over the last decades, the solvability of FRE defined with different max-t composi-
tions have been investigated by many researchers [22–30,49,51,52,55,57,58,60,63,66].
Moreover, some researchers introduced and improved theoretical aspects and applica-
tions of fuzzy relational inequalities (FRI)[12,13,15 –20,21,31,32,41,65].
The problem of optimization subject to FRE and FRI is one of the most interesting and
on-going research topic among the problems related to FRE and FRI theory [1,8,9,11
– 30,38,42,45,53,56,59,61,65]. The topic of the linear optimization problem was also
investigated with max-product operation [11,34,46]. Moreover, some generalizations
of the linear optimization with respect to FRE have been studied with the replacement
of max-min and max-product compositions with different fuzzy compositions such
as max-average composition [14,37,61], max-Discontinuous t-norms composition [29],
max-monotone operators composition [30] and max-t-norm composition [15 – 20, 22
– 28,35,42,56].
Recently, many interesting generalizations of the linear programming subject to a sys-
tem of fuzzy relations have been introduced and developed based on composite op-
erations used in FRE, fuzzy relations used in the definition of the constraints, some
developments on the objective function of the problems and other ideas [4,6,10,22 –
28,32,39,45,62].
The optimization problem subjected to various versions of FRI could be found in the
literature as well [12,13,15 – 21,29 – 32,64,65]. Yang [64] applied the pseudo-minimal
index algorithm for solving the minimization of linear objective function subject to FRI
with addition-min composition. Xiao et al. [65] introduced the latticized linear pro-
gramming problem subject to max-product fuzzy relation inequalities. Ghodousian
et al. [12] introduced a system of fuzzy relational inequalities with fuzzy constraints
(FRI-FC) in which the constraints were defined with max-min composition.
It is well – known that for any membership values µA(x) and µB(x) of arbitrary fuzzy
sets A and B, the membership value of their union A

⋃
B (defined by any S-norm).

lies in the interval [max
{
µA(x),µB(x)

}
,Sds

{
µA(x),µB(x)

}
]. Similarly, the membership

value of the intersection A
⋂
B (defined by any T-norm) lies in the interval[

Tdp
{
µA(x),µB(x)

}
,min

{
µA(x),µB(x)

}]
. Therefore, the union and intersection operators

cannot cover the interval between min
{
µA(x),µB(x)

}
and max

{
µA(x),µB(x)

}
. The oper-

ators that cover the interval[min
{
µA(x),µB(x)

}
,max

{
µA(x),µB(x)

}
] are called averaging

operators. Similar to the S-norms and T-norms, an averaging operator is a function
from [0,1]×[0,1] to [0,1]. Many averaging operators were proposed in the literature [7].
In this paper, problem (1) was investigated where ∇ is “Fuzzy Or” Operator. Clearly,
the ”Fuzzy Or” covers the range from (µA(x) +µB(x))

/
2 to max

{
µA(x),µB(x)

}
as the pa-

rameter γ changes from 0 to 1.
The remainder of the paper is organized as follows. In section 2, some basic properties
and the shape of the feasible solutions set of the type1 “Fuzzy Or”-Inequalities have
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been attained. It is proved that the set is formed by a unique minimum and a unique
maximum solution. Also, two necessary and sufficient conditions for the feasibility of
this type of fuzzy systems are presented. The shape of the feasible region of the type2
“Fuzzy Or”-Inequalities is investigated in section 3. It is shown that this region is de-
termined as a union of the finite number of minimal solutions and a unique maximum
solution. Moreover, two necessary and sufficient conditions for the feasibility of this
type of fuzzy systems are presented. In section4, the intersection of these two fuzzy
systems is studied. A necessary and sufficient condition is proposed to determine the
feasibility of the main problem and an algorithm is presented to resolve Problem (1).
Finally, in section 5 an example is described to illustrate.
2. Basic properties of type1 “Fuzzy Or” – Inequalities
This section describes the structural properties concerning system A∇x ≤ b1. This
fuzzy system consists of m1 inequalities max

j∈J
{∇ (aij ,xj)} ≤ b1

i (∀i ∈ I1). For this purpose,

we firstly investigate corresponding partial inequalities ∇ (aij ,xj) ≤ b1
i , i ∈ I1 and j ∈ J .

As before, for each i ∈ I1, let S(ai ,b
1
i ) =

{
x ∈ [0,1]n : max

j∈J
{∇ (aij ,xj)} ≤ b1

i

}
. Similarly,

letS(aij ,b
1
i ) =

{
xj ∈ [0,1] : ∇ (aij ,xj) ≤ b1

i

}
that is, set S(aij ,b

1
i ) includes all solutions xj ∈

[0,1] such that

∇ (aij ,xj) = γmax
{
aij ,xj

}
+

(1−γ)(aij + xj)

2
≤ b1

i , i ∈ I1 , j ∈ J

Definition 1. For each i ∈ I1 and each j ∈ J , define

W 1
ij =

2b1
i −(1+γ)aij

1−γ and W 2
ij =

2b1
i −(1−γ)aij

1+γ
The following four lemmas are easily verified for each i ∈ I1 and each j ∈ J , and are
very useful for some next proofs.
Lemma 1. Suppose that γ<1. Then, aij≤b1

i⇔aij≤W
1
ij

.
Lemma 2. aij≤b1

i⇔aij≤W
2
ij

.

Also, Lemmas 1 and 2 are true if “≤” is replaced by “<”, “≥” or “>”.

Lemma 3. Suppose that γ<1. Then,
W 1
ij≥0⇔aij=0 or 0≤γ≤

2b1
i −aij
aij

.

Lemma 4. (a)
W 2
ij≥0⇔aij=0 or

aij−2b1
i

aij
≤γ≤1

.

(b)
W 2
ij≤1⇔aij=1 or

2b1
i −aij−1
1−aij

≤γ≤1
.

Lemma 5 below determines set S(aij ,b
1
i ) where aij ≤ b1

i .

Lemma 5. Suppose that aij ≤ b1
i . Then, S(aij ,b

1
i ) =

[
0 , min

{
W 2

ij ,1
}]

.

Proof. Since aij ≤ b1
i , Lemma2 implies 0≤aij≤W 2

ij
. Thus, W 2

ij≥0. Now, assume that xj ∈[
0 , min

{
W 2

ij ,1
}]

. If aij=1 or γ≥(2b1
i −aij−1)

/
(1−aij), then by Lemma4(b), xj ∈

[
0 , min

{
W 2

ij ,1
}]
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means xj ∈
[
0 , W 2

ij

]
.

Therefore, in this case we have ∇ (aij ,xj) ≤ ∇ (aij ,W
2
ij) = γW 2

ij+(1−γ)(aij +W 2
ij)

/
2 = b1

i ,

i.e., xj ∈ S(aij ,b
1
i ). If aij<1 and γ<(2b1

i −aij−1)
/
(1−aij), then by Lemma4(b), xj ∈

[
0 , min

{
W 2

ij ,1
}]

means xj ∈ [0 , 1]. In this case, we have

∇ (aij ,xj) ≤ ∇ (aij ,1) = γ +
(1−γ)(aij+1)

2 =
(

1−aij
2

)
γ +

aij+1
2

<
(

1−aij
2

)(
2b1
i −aij−1
1−aij

)
+
aij+1

2 = b1
i

Thus, xj ∈ S(aij ,b
1
i ). On the other hand, if xj < 0, then clearly xj < S(aij ,b

1
i ). If xj >

min
{
W 2

ij ,1
}

= 1, then obviously xj < S(aij ,b
1
i ). Finally, if xj > min

{
W 2

ij ,1
}

= W 2
ij , then

we have b1
i = ∇ (aij ,W

2
ij) < ∇ (aij ,xj) that implies xj < S(aij ,b

1
i ). ?

Lemma 6 below determines set S(aij ,b
1
i ) where aij > b

1
i .

Lemma 6. Suppose that aij > b
1
i . Then,

S(aij ,b
1
i ) =

{ [
0 , W 1

ij

]
, 0 ≤ γ ≤

(
2b1

i − aij
)/
aij

∅ , otherwise

Proof. Note that in this case we have aij > 0 and
(
2b1

i − aij
)/
aij < 1. Since aij > b

1
i

and γ < 1, Lemma1 implies that W 1
ij<aij≤1. Thus, W 1

ij<1. Also, by γ < 1 and Lemma3

we have W 1
ij≥0. Now, assume that 0 ≤ γ ≤

(
2b1

i − aij
)/
aij and xj ∈

[
0 , W 1

ij

]
. Hence,

∇ (aij ,xj) ≤ ∇ (aij ,W
1
ij) = γ aij + (1−γ)(aij +W 1

ij)
/
2 = b1

i that means xj ∈ S(aij ,b
1
i ). On

the other hand, if xj < 0, then xj < S(aij ,b
1
i ). If 0 ≤ γ ≤

(
2b1

i − aij
)/
aij and xj >W

1
ij , then

b1
i = ∇ (aij ,W

1
ij) < ∇ (aij ,xj), i.e., xj < S(aij ,b

1
i ). Finally, if γ >

(
2b1

i − aij
)/
aij , then we

have

∇ (aij ,xj) ≥ ∇ (aij ,0) =
γaij

2
+
aij
2
>

2b1
i − aij
aij

 aij2
+
aij
2

= b1
i

that implies xj < S(aij ,b
1
i ). ?

Corollary 1. For each i ∈ I1 and each j ∈ J ,

S(aij ,b
1
i ) =


[
0 , min

{
W 2

ij ,1
}]
, aij ≤ b1

i[
0 , W 1

ij

]
, aij > b

1
i , 0 ≤ γ ≤

(
2b1

i − aij
)/
aij

∅ , aij > b
1
i , γ >

(
2b1

i − aij
)/
aij

The following theorem gives a necessary and sufficient condition for the feasibility of
inequality.
Theorem 1. Let i ∈ I1. S(ai ,b

1
i ) , ∅ iff either aij ≤ b1

i or γ ≤
(
2b1

i − aij
)/
aij , ∀j ∈ J .
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Proof. For an arbitrary x ∈ [0,1]n, x ∈ S(ai ,b
1
i ) if and only if max

j∈J
{∇ (aij ,xj)} ≤ b1

i .

Also, the last inequality holds true iff ∇ (aij ,xj) ≤ b1
i , ∀j ∈ J . Therefore, S(ai ,b

1
i ) , ∅

iff S(aij ,b
1
i ) , ∅, ∀j ∈ J . Now, the result follows from Corollary1. ?

Definition 2. Suppose that S(ai ,b
1
i ) , ∅.

We define X(i) =
[
X(i)1,X(i)2, ...,X(i)n

]
where

X(i)j =

 min
{
W 2

ij ,1
}
, aij ≤ b1

i

W 1
ij , aij > b

1
i , 0 ≤ γ ≤

(
2b1

i − aij
)/
aij

By Theorem2 below, the solutions set S(ai ,b
1
i ) is completely determined. The theorem

shows that S(ai ,b
1
i ) has actually the unique maximum solution, X(i), and the unique

minimum solution, 0, where 0 is an n–dimensional zero vector.
Theorem 2. Suppose that S(ai ,b

1
i ) , ∅. Then, S(ai ,b

1
i ) =

[
0 , X(i)

]
, ∀i ∈ I1.

Proof. Similar to the proof of Theorem1, for each x ∈ [0,1]n, x ∈ S(ai ,b
1
i ) iff xj ∈

S(aij ,b
1
i ), ∀j ∈ J . Thus, from Corollary1 and Definition2, for each j ∈ J we have

xj ∈
[
0 , X(i)j

]
. Therefore, x ∈

[
0 , X(i)1

]
×
[
0 , X(i)2

]
× · · · ×

[
0 , X(i)n

]
=

[
0 , X(i)

]
. ?

Definition 3. Let X(i) be as in Definition2, ∀i ∈ I1. We define X = min
i∈I1

{
X(i)

}
.

According to Theorem2 and the fact that S(A,b1) =
⋂
i∈I1 S(ai ,b

1
i ), the following theo-

rem is attained.
Theorem 3. Suppose that S(ai ,b

1
i ) , ∅, ∀i ∈ I1. Then, S(A,b1) =

[
0 , X

]
.

Proof. by Theorem2, we have S(A,b1) =
⋂
i∈I1 S(ai ,b

1
i ) =

⋂
i∈I1

[
0 , X(i)

]
=

[
0 ,min

i∈I1

{
X(i)

}]
.

Now, the result is obtained from Definition3. ?
Theorem3 determines the solutions set S(A,b1) as an n–dimensional interval

[
0 , X

]
with 0 as the unique minimum and X as the unique maximum solutions. The follow-
ing Corollary gives a necessary and sufficient condition for the feasibility of general
inequalities A∇x ≤ b1.
Corollary 2. S(A,b1) , ∅ iff 0 ∈ S(A,b1).
3. Basic properties of type2 “Fuzzy Or” – Inequalities
In this section, the properties of system D∇x ≥ b2are investigated. This fuzzy system
consists of m2 inequalities max

j∈J
{∇ (dij ,xj)} ≥ b2

i (∀i ∈ I2). As the previous section, we

firstly investigate corresponding partial inequalities ∇ (dij ,xj) ≥ b2
i , i ∈ I2 and j ∈ J .

For each i ∈ I2, let S(di ,b
2
i ) =

{
x ∈ [0,1]n : max

j∈J
{∇ (dij ,xj)} ≥ b2

i

}
. Also, letS(dij ,b

2
i ) ={

xj ∈ [0,1] : ∇ (dij ,xj) ≥ b2
i

}
.

Definition 4. For each i ∈ I2 and each j ∈ J , define
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W
1
ij =

2b2
i −(1+γ)dij

1−γ and W
2
ij =

2b2
i −(1−γ)dij

1+γ
The following four lemmas are easily verified for each i ∈ I2 and each j ∈ J , and are
very useful for some next proofs.
Lemma 7. Suppose that γ<1. Then,

dij≤b2
i⇔dij≤W

1
ij

.

Lemma 8.
dij≤b2

i⇔dij≤W
2
ij

.

Also, Lemmas 7 and 8 are true if “≤” is replaced by “<”, “≥” or “>”.

Lemma 9. Suppose that γ<1. Then,
W

1
ij≥0⇔dij=0 or 0≤γ≤

2b2
i −dij
dij

.

Lemma 10. (a)
W

2
ij≥0⇔dij=0 or

dij−2b2
i

dij
≤γ≤1

.

(b)
W

2
ij≤1⇔dij=1 or

2b2
i −dij−1

1−dij
≤γ≤1

.

Lemma 11 below determines set S(dij ,b
2
i ) where dij < b

2
i .

Lemma 11. Suppose that dij < b
2
i . Then,

S(dij ,b
2
i ) =


[
W

2
ij , 1

]
,
(
2b2

i − dij − 1
)/(

1− dij
)
≤ γ ≤ 1

∅ , otherwise

Proof. It is easy to verify that dij < 1 and
(
2b2

i − dij − 1
)/(

1− dij
)
< 1. Also, by dij < b

2
i

and Lemma8 we have
0≤dij<W

2
ij

. Thus,
W

2
ij≥0

. Additionally, Lemma10(b) implies
W

2
ij≤1

.

Now, assume that
(
2b2

i − dij − 1
)/(

1− dij
)
≤ γ ≤ 1 and xj ∈

[
W

2
ij , 1

]
. So, b2

i = ∇ (dij ,W
2
ij) ≤

∇ (dij ,xj), i.e., xj ∈ S(dij ,b
2
i ). On the other hand, if xj > 1, then xj does not clearly belong

toS(dij ,b
2
i ).

If
(
2b2

i − dij − 1
)/(

1− dij
)
≤ γ ≤ 1 and xj <W

2
ij , then it can be easily calculated∇ (dij ,xj) <

∇ (dij ,W
2
ij) = γW

2
ij + (1−γ)(dij +W

2
ij)

/
2 = b2

i that implies xj < S(dij ,b
2
i ). Moreover, if

γ <
(
2b2

i − dij − 1
)/(

1− dij
)
, then

∇ (dij ,xj) ≤ ∇ (dij ,1) = γ + (1−γ)(dij + 1)
/
2 =

(
(1− dij)γ + dij + 1

)/
2

<
((

1− dij
)/

2
)((

2b2
i − dij − 1

)/
(1− dij)

)
+
(
dij + 1

)/
2 = b2

i

, that is, xj < S(dij ,b
2
i ). ?

Lemma 12 below determines set S(dij ,b
2
i ) where dij ≥ b2

i .
Lemma 12. Suppose that dij ≥ b2

i . Then,

S(dij ,b
2
i ) =


[
max

{
0, W

1
ij

}
, 1

]
, 0 ≤ γ < 1

[0 , 1] , γ = 1
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Proof. Since dij ≥ b2
i and γ < 1, Lemma7 implies that

W
1
ij≤dij≤1

. Thus,
W

1
ij≤1

. As-

sume that xj ∈
[
max

{
0, W

1
ij

}
, 1

]
. If either dij = 0 or 0 ≤ γ ≤

(
2b2

i − dij
)/
dij , then by

Lemma9, xj ∈
[
max

{
0, W

1
ij

}
, 1

]
means xj ∈

[
W

1
ij , 1

]
. In this case, we have ∇ (dij ,xj) ≥

∇ (dij ,W
1
ij) = γ dij + (1−γ)(dij +W

1
ij)

/
2 = b2

i that means xj ∈ S(dij ,b
2
i ). Furthermore, if

dij > 0 and γ >
(
2b2

i − dij
)/
dij , xj ∈

[
max

{
0, W

1
ij

}
, 1

]
means xj ∈ [0 , 1] from Lemma9.

In this case, we have

∇ (dij ,xj) ≥ ∇ (dij ,0) = γ dij + (1−γ)dij
/
2 = (1 +γ)dij

/
2

>
((

2b2
i − dij

)/
dij

)(
dij

/
2
)

+
(
dij

/
2
)

= b2
i

, that is, xj ∈ S(dij ,b
2
i ). On the other hand, if xj > 1 or xj < max

{
0, W

1
ij

}
= 0, then ob-

viously xj < S(dij ,b
2
i ). If xj < max

{
0, W

1
ij

}
= W

1
ij , then ∇ (dij ,xj) < ∇ (dij ,W

1
ij) = b2

i , i.e.,

xj < S(dij ,b
2
i ). Moreover, if γ = 1, then ∇ (dij ,xj) ≥ b2

i is converted into max
{
dij ,xj

}
≥ b2

i .

In this case, we have trivially xj ∈ S(aij ,b
1
i ), ∀xj ∈ [0 , 1]. ?

Corollary 3. For each i ∈ I2 and each j ∈ J ,

S(dij ,b
2
i ) =



[
max

{
0, W

1
ij

}
, 1

]
, dij ≥ b2

i , 0 ≤ γ < 1

[0 , 1] , dij ≥ b2
i , γ = 1[

W
2
ij , 1

]
, dij < b

2
i ,

(
2b2

i − dij − 1
)/(

1− dij
)
≤ γ ≤ 1

∅ , dij < b
2
i , γ <

(
2b2

i − dij − 1
)/(

1− dij
)

The following theorem gives a necessary and sufficient condition for the feasibility of
inequality.
Theorem 4. Let i ∈ I2. S(di ,b

2
i ) , ∅ iff there exists some j ∈ J such that either

dij ≥ b2
i or

(
2b2

i − dij − 1
)/(

1− dij
)
≤ γ ≤ 1.

Proof. For an arbitrary x ∈ [0,1]n, x ∈ S(di ,b
2
i ) if and only if max

j∈J
{∇ (dij ,xj)} ≥ b2

i .

Therefore, x ∈ S(di ,b
2
i ) iff ∇ (dij ,xj) ≥ b2

i , for some j ∈ J . Therefore, S(di ,b
2
i ) , ∅ iff

S(dij ,b
2
i ) , ∅, for some j ∈ J . Now, the result follows from Corollary3. ?

Definition 5. Suppose that S(di ,b
2
i ) , ∅.

Let J1 =
{
j ∈ J : dij ≥ b2

i , γ < 1
}
, J2 =

{
j ∈ J : dij ≥ b2

i , γ = 1
}

and

J3 =
{
j ∈ J : dij < b

2
i , γ ≥

(
2b2

i − dij − 1
)/(

1− dij
)}

Definition 6. Suppose that S(di ,b
2
i ) , ∅. For each j ∈ J1

⋃
J2

⋃
J3, we define X(i, j) =
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[X(i, j)1,X(i, j)2, ...,X(i, j)n] where

X(i, j)k =


max

{
0, W

1
ij

}
, k = j , j ∈ J1

0 , k = j , j ∈ J2
W

2
ij , k = j , j ∈ J3

0 , otherwise

By Theorem5 below, the solutions set S(di ,b
2
i ) is completely determined. The theorem

shows that S(di ,b
2
i ) has actually the finite number of minimal solutions, X(i, j), and the

unique maximum solution, 1, where 1 is an n–dimensional unite vector.
Theorem 5. Suppose that S(di ,b

2
i ) , ∅.

Then, S(di ,b
2
i ) =

⋃
j∈J1

⋃
J2

⋃
J3 [X(i, j) , 1], ∀i ∈ I2.

Proof. According to the proof of Theorem4, for each x ∈ [0,1]n, x ∈ S(di ,b
2
i ) iff xj ∈

S(dij ,b
2
i ), for some j ∈ J . Therefore, S(di ,b

2
i ) =

⋃
j∈J S(dij ,b

2
i ). Thus, from Corollary3

and Definition5, we have S(di ,b
2
i ) =

⋃
j∈J1

⋃
J2

⋃
J3
S(dij ,b

2
i ). Now, the result is attained

from Corollary3 and Definition6. ?

Definition 7. Let e : I2 → J1
⋃
J2

⋃
J3 so that e(i) = j ∈ J1

⋃
J2

⋃
J3, ∀i ∈ I2, and let ED

be the set of all vectors e. For the sake of convenience, we represent each e ∈ ED as an
m2–dimensional vector e = [j1, j2, ..., jm2

] in which jk = e(k), k = 1,2, ...,m2.
Definition 8. Let e = [j1, j2, ..., jm2

] ∈ ED . Let X(e) = [X(e)1,X(e)2, ...,X(e)n], where
X(e)j = max

i∈I2

{
X(i, e(i))j

}
= max

i∈I2

{
X(i, ji)j

}
, ∀j ∈ J .

Based on Theorem 5 and Definition8, we have the following theorem characterizing
the feasible region of the general inequalities D∇x ≥ b2.
Theorem 6. Suppose that S(di ,b

2
i ) , ∅, ∀i ∈ I2. Then, S(D,b2) =

⋃
e∈ED [X(e) , 1].

Proof. Since S(D,b2) =
⋂
i∈I2 S(di ,b

2
i ), Theorem5 implies that

S(D,b2) =
⋂
i∈I2

⋃
j∈J1

⋃
J2

⋃
J3 [X(i, j) , 1]. Therefore, we have

S(D,b2) =
⋃

j∈J1
⋃
J2

⋃
J3

⋂
i∈I2

[X(i, j) , 1] =
⋃
e∈ED

⋂
i∈I2

[X(i, e(i)) , 1] =
⋃
e∈ED

[
max
i∈I2
{X(i, e(i))} , 1

]

Now, the result follows from Definition8. ?
Theorem6 determines the solutions set S(D,b2) as the union of the finite number of n–dimensional
interval [X(e) , 1] withX(e) as the minimal and 1 as the unique maximum solutions. The follow-
ing Corollary gives a necessary and sufficient condition for the feasibility of general inequalities
D∇x ≥ b2.
Corollary 4. S(D,b2) , ∅ iff 1 ∈ S(D,b2).
4. The resolution of Problem (1)
In this section, a necessary and sufficient condition is derived to determine the feasibility of
the main problem. As is shown, the feasible region is completely found by the finite number
of closed convex cells.



28 A. Ghodousian / JAC 51 issue 2, December 2019, PP. 19 - 34

Lemma 13. S(A,D,b1,b2) , ∅ iff there exists some e ∈ ED such that [0 ,X]
⋂

[X(e),1] , ∅.
Proof. Since S(A,D,b1,b2) = S(A,b1)

⋂
S(D,b2), from Theorems 3 and 6 we have

S(A,D,b1,b2) =
[
0 , X

]⋂ ⋃
e∈ED

[X(e) , 1] =
⋃
e∈ED

( [
0 , X

]⋂
[X(e) , 1]

)
This completes the proof. ?

The following Corollary gives a necessary and sufficient condition for the feasibility of the
intersection of general inequalities A∇x ≤ b1and D∇x ≥ b2.
Corollary 5. Assume that S(A,b1) , ∅ and S(D,b2) , ∅. Then, S(A,D,b1,b2) , ∅ iff X ∈ S(D,b2).
Proof. According to Lemma13, S(A,D,b1,b2) , ∅ iff [0 ,X]

⋂
[X(e′),1] , ∅ for some e′ ∈ ED . Thus,

S(A,D,b1,b2) , ∅ iff X ∈ [X(e′),1] that means X ∈
⋃
e∈ED [X(e),1]. Therefore, S(A,D,b1,b2) , ∅ iff

X ∈ S(D,b2), from Theorem6. ?
The following theorem characterizes the feasible region of Problem (1). The theorem deter-
mines the solutions set S(A,D,b1,b2) as the union of the finite number of closed convex inter-
vals.
Theorem 7. Suppose that S(A,D,b1,b2) , ∅. Then S(A,D,b1,b2) =

⋃
e∈ED [X(e),X].

Proof.
According to the proof of Lemma13, we have S(A,D,b1,b2) =

⋃
e∈ED

( [
0 , X

]⋂
[X(e) , 1]

)
. Now,

the required equality is resulted from Corollary5. ?
We now summarize the preceding discussion as an algorithm.
Algorithm 1 (solution of problem (1))
Given problem (1):
1. If for some i ∈ I1 and j ∈ J , aij > b1

i and γ >
(
2b1
i − aij

)/
aij , then stop; S(ai ,b

1
i ) is infeasible

(Theorem1).
2. If 0 < S(A,b1), then stop; S(A,b1) is infeasible (Corollary2).
3. If for some i ∈ I2 and each j ∈ J , dij < b2

i and γ <
(
2b2
i − dij − 1

)/(
1− dij

)
, then stop; S(di ,b

2
i )

is infeasible (Theorem4).
4. If 1 < S(D,b2), then stop; S(D,b2) is infeasible (Corollary4).
5. Compute vectors X(i) (∀i ∈ I1) from Definition2, and then vector X from Definition 3.
6. If X < S(D,b2), then stop; S(A,D,b1,b2) is infeasible (Corollary5).
7. Compute vectors X(e) (∀e ∈ ED ) from Definition8.
8. Find the feasible solutions set S(A,D,b1,b2) as

⋃
e∈ED [X(e),X] (Theorem7).

5. Numerical example
Consider the following problem formed as the intersection of two fuzzy systems defined by
“Fuzzy Or”-Inequalities: 

0.4 0.8 0.4
0.7 0.4 0.5
0.5 0.5 0.3

∇x ≤


0.8
0.7
0.4


0.8 0.8 0.7
0.6 0.2 0.9
0.2 0.5 0.3

∇x ≥


0.2
0.3
0.4


x ∈ [0,1]n
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Step1: for i = 1,2 and j = 1,2,3, we have aij ≤ b1
i . Then, from Theorem1 S(a1,b

1
1) , ∅ and

S(a2,b
1
2) , ∅. Also, 0.5 = γ ≤

(
2b1

3 − a31

)/
a31 = 0.6, 0.5 = γ ≤

(
2b1

3 − a32

)/
a32 = 0.6 and a33 ≤ b1

3

that imply S(a3,b
1
3) , ∅.

Step2: The following calculation shows that 0 ∈ S(A,b1).
0.4 0.8 0.4
0.7 0.4 0.5
0.5 0.5 0.3

∇


0
0
0

 =


0.6000
0.5250
0.3750

 ≤


0.8
0.7
0.4


Therefore, S(A,b1) , ∅, from Corollary2.
Step3: Since d1j ≥ b2

1 for each j ∈ J , then S(d1,b
2
1) , ∅ from Theorem4. Also, d21 ≥ b2

2d23 ≥ b2
2,

and
−0.75=

(
2b2

2 − d22 − 1
)/

(1− d22) ≤ γ = 0.5 that imply S(d2,b
2
2) , ∅. Finally, since

−0.5=
(
2b2

3 − d31 − 1
)/

(1− d31) ≤ γ = 0.5, −0.7143=
(
2b2

3 − d33 − 1
)/

(1− d33) ≤ γ = 0.5 and d32 ≥
b2

3, then S(d3,b
2
3) , ∅.

Step4: According to the calculation below, 1 ∈ S(D,b2). Hence, from Corollary4, S(D,b2) , ∅.
0.8 0.8 0.7
0.6 0.2 0.9
0.2 0.5 0.3

∇


1
1
1

 =


0.9500
0.9750
0.8750

 ≥


0.2
0.3
0.4


Step5: From Definition2, we have

X(1) = [0.9333 0.8000 0.9333]
X(2) = [0.7000 0.8000 0.7667]
X(3) = [0.1000 0.1000 0.4333]

Therefore, from Definition3, we attain X = [0.1000 0.1000 0.4333].
Step6: From Corollary5, since X ∈ S(D,b2), then S(A,D,b1,b2) , ∅. It can be easily verified as
follows: 

0.8 0.8 0.7
0.6 0.2 0.9
0.2 0.5 0.3

∇


0.1000
0.1000
0.4333

 =


0.6333
0.7833
0.4000

 ≥


0.2
0.3
0.4


Step7: From Definition8, the feasible vectors X(e) (i.e., X(e) ≤ X) are resulted as follows:

e1 = [1 1 2] ⇒ X(e1) = [0 0.1 0]
e2 = [1 1 3] ⇒ X(e2) = [0 0 0.43333]

Vectors X(e1) and X(e2) are actually minimal solutions of the problem.
Step8: From Theorem7, we attain S(A,D,b1,b2) = [X(e1),X]

⋃
[X(e2),X].

Conclusion
In this paper, we proposed an algorithm to solve the intersection of two types of fuzzy rela-
tional inequalities defined by “Fuzzy Or” operator. The feasible solutions set of each type of
these fuzzy systems was obtained. Based on the foregoing results, the feasible region of the
problem is completely resolved and four necessary and sufficient conditions were presented to
determine the feasibility of the problem. As future works, we aim at testing our algorithm in
other type of fuzzy systems and linear optimization problems whose constraints are defined as
FRI with other averaging operators.
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