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ABSTRACT ARTICLE INFO

The tenacity of a graph G, T (G), is defined by T (G) =

min{ |S|+τ(G−S)
ω(G−S) }, where the minimum is taken over all

vertex cutsets S of G. We define τ(G − S) to be the
number of the vertices in the largest component of the
graph G − S, and ω(G − S) be the number of compo-
nents of G − S. In this paper we consider the relation-
ship between the minimum degree δ(G) of a graph and
the complexity of recognizing if a graph is T -tenacious.
Let T ≥ 1 be a rational number. We first show that if
δ(G) ≥ Tn

T+1
, then G is T -tenacious. On the other hand,

for any fixed ε > 0, we show that it is NP -hard to de-
termine if G is T -tenacious, even for the class of graphs
with δ(G) ≥ ( T

T+1
− ε)n.
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1 Introduction

The concept of tenacity of a graph G was introduced in [2,3], as a useful measure of the
”vulnerability” of G. In [3] Cozzens et al. calculated tenacity of the first and second
case of the Harary Graphs but they didn’t show the complete proof of the third case.
In [16] we showed a new and complete proof for case three of the Harary Graphs. In
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[10], we compared integrity, connectivity, binding number, toughness, and tenacity for
several classes of graphs. The results suggest that tenacity is a most suitable measure of
stability or vulnerability in that for many graphs it is best able to distinguish between
graphs that intuitively should have different levels of vulnerability. In [1 - 38], the authors
studied more about this new invariant. We consider only graphs without loops or multiple
edges. We use V (G), α(G), and ω(G) to denote the vertex set, independence number and
number of components in a graph G, respectively. We consider only finite undirected
graphs without loops and multiple edges. Let G be a graph. We denote by V (G), E(G)
and | V (G) | the set of vertices, the set of edges and the order of G, respectively.

The tenacity of a graph G, T (G), is defined by T (G) = min{ |S|+τ(G−S)
ω(G−S) }, where the

minimum is taken over all vertex cutsets S of G. We define τ(G−S) to be the number of
the vertices in the largest component of the graph G − S, and ω(G − S) be the number
of components of G− S. A connected graph G is called T -tenacious if | S | +τ(G− S) ≥
Tω(G−S) holds for any subset S of vertices of G with ω(G−S) > 1. If G is not complete,
then there is a largest T such that G is T -tenacious; this T is the tenacity of G. On the
other hand, a complete graph contains no vertex cutset and so it is T -tenacious for every
T . Accordingly, we define T (Kp) =∞ for every p (p ≥ 1). A set S ⊆ V (G) is said to be

a T -set of G if T (G) = |S|+τ(G−S)
ω(G−S) .

The Mix-tenacity Tm(G) of a graph G is defined as

Tm(G) = min
A⊂E(G)

{| A | +τ(G− A)

ω(G− A)
}

where τ(G − A) denotes the order (the number of vertices) of a largest component of
G − A and ω(G − A) is the number of components of G − A. Cozzens et al. in [2],
called this parameter Edge-tenacity, but Moazzami changed the name of this parameter
to Mix-tenacity in [14]. It seems Mix-tenacity is a better name for this parameter. T (G)
and Tm(G) turn out to have interesting properties.
After the pioneering work of Cozzens, Moazzami, and Stueckle in [2,3], several groups of
researchers have investigated tenacity, and its related problems. In [18] and [19] Piazza
et al. used the Tm(G) as Edge-tenacity. But this parameter is a combination of cutset
A ⊂ E(G) and the number of vertices of a largest component, τ(G − A). It may be
observed that in the definition of Tm(G), the number of edges removed is added to the
number of vertices in a largest component of the remaining graph. Also this parameter
didn’t seem very satisfactory for Edge-tenacity. Thus Moazzami and Salehian introduced
a new measure of vulnerability, the Edge-tenacity, Te(G), in [14]. The Edge-tenacity
Te(G) of a graph G is defined as

Te = min
A⊂E(G)

{| A | +τ(G− A)

ω(G− A)
}

where τ(G−A) denotes the order (the number of edges) of a largest component of G−A
and ω(G−A) is the number of components of G−A. This new measure of vulnerability
involves edges only and thus is called the Edge-tenacity. Since 1992 there were several in-
teresting questions. But the question ” How difficult is it to recognize T -tenacious graphs?
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” has remained an interesting open problem for some time. The question was first raised
by Moazzami in [9]. Our purpose in [17] was to show that for any fixed positive rational
number T , it is NP -hard to recognize T -tenacious graphs. To prove this we showed that
it is NP -hard to recognize T -tenacious graphs by reducing a well-known NP -complete
variant of INDEPENDENT SET.

2 Main Results

We begin by considering the following problem. Let T ≥ 1 be any rational number.

Not T-TENACIOUS
INSTANCE: An undirected graph G.
QUESTION: Does there existX ⊆ V (G) with ω (G−X) > 1 such that Tω (G−X) >
|X|+m (G−X)

Theorem 1. Not T-TENACIOUS is NP -complete.

To prove this, we will reduce the following problem, which is known [?] to be NP-complete
for any fixed β, 0 < β < 1.

INDEPENDENT β-MAJORITY
INSTANCE: An undirected graph G on n vertices.
QUESTION: Is α (G) ≥ βn?

Proof of theorem 1. We reduce INDEPENDENT β-MAJORITY to Not T-TENACIOUS.
Let T = a

b
≥ 1 for positive integers a and b, and fix β where 0 < β < 1. Let G be a graph

with vertex set {v1, v2, . . . , vn} and let k = dβne. Construct G′ from G as follow. First
we add a set A includes n complete graphs A1, . . . , An with

|V (Ai)| = h = dTne − n+ k, i = 1 . . . n,

to G and join vi to any vertex in Ai, 1 ≤ i ≤ n. Then add another set C of br independent
vertices to G, where r > 2 is an integer. Now add a set B of ar− 2 vertices which induces
a complete graph, and join each vertex of B to every vertex of V (G) ∪A ∪ C. It suffices
to show that α (G) ≥ k if and only if G′ is not T-tenacious.
First suppose that G contains an independent set I with |I| = k. Define X ′ ⊆ V (G′) by
X ′ = (V (G)− I) ∪B. Then

ω (G′ −X ′) = n+ |C| = n+ br

|X ′| = n− k + |B| = n− k + ar − 2

m (G′ −X ′) = h+ 1 = dTne − n+ k + 1

↓
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Tω (G′ −X ′) = Tn+ ar > (dTne − 1) + ar

= (dTne − n+ k + 1) + (n− k + ar − 2)

= m (G′ −X ′) + |X ′|

Therefore G′ is not T-tenacious.

Conversely, suppose G′ is not T-tenacious. Then exists X ′ ⊆ V (G′) with ω (G′ −X ′) > 1
such that Tω (G′ −X ′) > |X ′|+m (G′ −X ′). Clearly B ⊆ X ′.

Claim 1. |X ′|+m (G′ −X ′) ≥ |X ′ − (A ∪ C)|+m (G′ − (X ′ − (A ∪ C))).

Proof. Suppose X ′′ = X ′ − (A ∪ C) and M (G′ −X ′′) is a largest component of G′ −X ′′
. Then M (G′ −X ′′)− (X ′ −X ′′) is a component of G′ −X ′ and

m (G′ −X ′) ≥ |M (G′ −X ′′)− (X ′ −X ′′)|
≥ |M (G′ −X ′′)| − |X ′ −X ′′|
= m (G′ −X ′′)− |X ′|+ |X ′′|

→ |X ′|+m (G′ −X ′) ≥ |X ′′|+m (G′ −X ′′)

We may also assume X ′ ∩ (A ∪ C) = φ; otherwise

Tω (G′ − (X ′ − (A ∪ C))) ≥ ω (G′ −X ′)
> |X ′|+m (G′ −X ′)
≥ |X ′ − (A ∪ C)|+m (G′ − (X ′ − (A ∪ C)))

And we could use X ′ − (A ∪ C) instead of X ′.

Let
X = X ′ ∩ V (G) , x = |X| , x′ = |X ′|

m′ = m (G′ −X ′) , w = ω (G−X) , w′ = ω (G′ −X ′)

Then

x′ = x+ |B| = x+ ar − 2

w′ = w + x+ |C| = w + x+ br

m′ ≥ h+ 1

Claim 2. dTne − x−m′ + 1 ≥ 0.
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Proof.
w′ ≤ n+ |C| = n+ br

x′ +m′ < Tw′ ≤ T (n+ br) = Tn+ ar

→ Tn+ ar − x′ −m′ > 0

→ dTn+ ar − x′ −m′e ≥ 1

→ dTne+ ar − x′ −m′ − 1 ≥ 0

→ dTne − x−m′ + 1 ≥ 0

Tw′ > x′ +m′

→ Tw + Tx+ ar > x+ ar − 2 +m′

↓

Tw > x− Tx+m′ − 2

= (T − 1) (dTne − x−m′ + 1)− (T − 1) (dTne −m′ + 1) +m′ − 2

≥ − (T − 1) (dTne −m′ + 1) +m′ − 2

= Tm′ − (T − 1) dTne − T − 1

≥ T (h+ 1)− (T − 1) dTne − T − 1

= T (dTne − n+ k + 1)− (T − 1) dTne − T − 1

= dTne − Tn+ Tk − 1

≥ Tk − 1

→
w > k − 1

T
w ≥ k

Since it is possible to form an independent set in G by choosing one vertex from each
component of G−X, we conclude α (G) ≥ k.

Define Ω (r) to be the class of all graphs with δ (G) ≥ rn, where n = |V (G)|. We can
prove the following two results for any rational number T ≥ 1.

Theorem 2. Let G be a graph in Ω
(

T
T+1

)
. Then G is T-tenacious.

Theorem 3. For any fixed ε > 0 it is NP -hard to recognize T-tenacious graphs in
Ω
(

T
T+1
− ε

)
.
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A decision problem C is NP -complete if C is in NP , and every problem in NP is reducible
to C in polynomial time. When a decision version of a combinatorial optimization problem
is proved to belong to the class of NP -complete problems, then the optimization version
is NP -hard. By theorems 1 and 2 we proved that it is NP -complete to solve decision
problem of T -tenacious graphs for any fixed positive rational number T , and therefore
finding tenacity of a graph is NP -hard.
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