
Journal of Algorithms and Computation

journal homepage: http://jac.ut.ac.ir

Survival analyses with dependent covariates: A
regression tree-base approach

Mostafa Boskabadi∗1, Mahdi Doostparast†2 and Majid Sarmad‡3

1, 2, 3Department of Statistics, Ferdowsi University of Mashhad, P.O. Box 91775-1159,
Khorasan Razavi, Iran

ABSTRACT ARTICLE INFO

Cox proportional hazards models are the most common
modelling framework to prediction and evaluation of co-
variate effects in time-to-event analyses. These models
usually do not account the relationship among covari-
ates which may have impacts on survival times. In this
article, we introduce regression tree models for survival
analyses by incorporating dependencies among covari-
ates. Various properties of the proposed model are stud-
ied in details. To assess the accuracy of the proposed
model, a Monte–Carlo simulation study is conducted.
A real data set from assay of serum free light chain is
also analysed to illustrate advantages of the proposed
method in medical investigations.

Article history:
Received 18,September 2019
Received in revised form 15,
April 2020
Accepted 02 May 2020
Available online 01, June 2020

Keyword: Survival tree, Cox proportional hazards model,
Dependence, Copula function.

AMS subject Classification: Primary: 62N02 , Secondary: 62J02

∗bmostafa77@yahoo.com
†Corresponding author: M. Doostparast. Email: doustparast@um.ac.ir
‡sarmad@um.ac.ir

Journal of Algorithms and Computation 52 issue 1, June 2020, PP. 105 - 129



106 M. Boskabadi / JAC 52 issue 1, June 2020, PP. 105 - 129

1 Introduction

Survival analysis contains information on time-to-event data, often death or relapse after
treatment for a disease. The literature contains rich sets of models and analytical methods
via parametric, non–parametric and semi–parametric approaches. Unlike parametric and
non–parametric methods, semi–parametric models can provide more consistent estimators
under some general conditions. One of the most important semi–parametric models in
the analyses of survival data sets is the Cox proportional hazards models which are used
to estimate covariate effects and also to prediction of future outcomes [11].
When the response is subject to censoring, regression models are often complex. Also,
there exist basic parametric assumptions imposed by these models for implementing the
regression models (such as no existence linear combinations of covariates, interactions
and high dimensional parameter spaces). Ignoring these assumptions is critical and may
cause misleading results. Therefore, various methods for regression models have been
discussed in the literature which do not need to the above mentioned conditions. For
example, Morgan[22] proposed a method, known as regression tree, which divides the
data set into homogeneous partitions. This method requires fewer assumptions than the
above-mentioned regression models. The Classification And Regression Trees (CART)
algorithm, introduced by Breiman[4], can be used for both quantitative and qualitative
responses. Specifically, suppose that Y and X = (X1, · · · , Xm) denote the response
variable and the vector of the (fixed effect) explanatory variables, respectively. In the
CART algorithm, the data set is partitioned into two regions based on a rule of the form
xj ≤ s, and then the response (quantitative) modelled using the mean of y in each region.
Therefore, we seek for j and s by minimizing:∑

i:xj≤s

(yi − ȳ)2 +
∑
i:xj>s

(yi − ȳ)2. (1.1)

The algorithm is implemented by the package “rpart” in the statistical software R. Re-
cently, it has been found that the regression trees provide more accurate estimations and
predictions in data mining and computer sciences; See, e.g., Cichosz[10] and references
therein. Table 1 summarizes well–known tree-based models with some applications.

Various methods for building tree models in the survival analysis have been proposed
in literature. The main feature that differs between proposed tree methods is the split-
ting criterion. Goldman[12] emphasized importance of tree techniques in biomedical set-
tings. Gordon[13] used distance measures between Kaplan–Meier curves and certain point
masses. It is the first paper which discussed the creation of survival trees. Segal[28] ex-
tended regression trees to right-censored observations by replacing the conventional split-
ting criteria. Ciampi[9] employed log-rank test statistics for computing between-node
heterogeneity measures and used the Akaike Information Criterion (AIC) for selecting
the tree size. Butler[6] also applied the log-rank test statistic for splitting proposes.
LeBlanc[19] splitted the covariate space based on a rule that maximizes the difference be-
tween the log-likelihood function of the saturated model and the maximized log-likelihood
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function. This method constructs a tree by representing the relative risk function. This
algorithm is a generalization of the CART algorithm for survival data. To do this, the
data set is partitioned into two regions based on a rule of the form xj ≤ s, and then the
Kaplan–Meier estimate of the the response median, denoted by v(.), is derivded in each
region. Therefore, we seek for j and s by minimizing:∑

i:xj≤s

|Yi − vL(Y )|+
∑
i:xj>s

|Yi − vR(Y )|, (1.2)

where vL(Y ) and vR(Y ) are the Kaplan–Meier estimates of the response medians for
regions in which {xj ≤ s} and {xj > s}, respectively. The node impurity measure for the
j-th terminal node in a survival tree model is defined as

Qj(T ) =
1

nj

nj∑
i=1

|Yi − vj(Y )|, (1.3)

when nj and vj(Y ) are, respectively, the number of uncensored observations observations
and the Kaplan–Meier estimate of the the response median in the j-th node. The cost-
complexity criterion for a survival tree structure with k terminal nodes is formularized
as

Ck(T ) =
∑
k

nkQk(T ) + η|T |, (1.4)

where |T | denotes the number of terminal nodes in the tree and η stands for the tuning
parameter or error.
Hothorn[15] implemented an unbiased survival tree using the log-rank test as a method
for splitting data sets. The algorithm is implemented in the statistical software R with
package “partykit”. Bertolet[2] extended it for partitioning a data set based on time-
varying Cox models. Other proposed methods include Huang[16], Xu[32] and Wallace[31].
Boskabadi[3] dealt with a new approach for regression trees which considers the depen-
dency structures among covariates for splitting the data set. Hereafter, it is called “De-
pendence And Regression Trees” and abbreviated by DART. When linear models and
the CART model are fitted in leaves, the DART algorithm is called LM-DART and C-
DART, respectively. In this paper, the DART approach is studied in details for analysing
lifetime data sets where the Cox proportional hazards model are fitted in terminal nodes
(Cox-DART). Therefore, the rest of this paper is organized as follows. Section 2 defines
formally the DART algorithm and a non–parametric algorithm for deriving the respective
optimal splitting points. The DARTs with Cox proportional hazards models in terminal
nodes (leaves) are studied in Section 3 with more details. Indeed, the assessment and
accuracy criterion for the model selection and the problem of hypotheses testing are dis-
cussed. In Section 4, a simulation study is conducted to carry out the performance of the
proposed DART model. A real data set on an “Assay of serum free light chain” study is
also analysed using the obtained results in Section 4. Finally, Section 5 gives conclusions
and further remarks.
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2 DART algorithm in survival data

In this section, the DART approach is extended for survival data sets in the presence
of censored observations. Suppose that T denotes the failure time of primary interest,
C is the censoring time, and X = (X1, · · · , Xm) stands for a vector of covariates. Let
Y = min(T,C) and δ = I(T ≤ C), where I(E) is the indicator function for event E,
that is, I(E) = 1 if E occurs and I(E) = 0 otherwise. Suppose that the covariates Xi

and Xj are dependent and the dependency among them changes in different regions of
SX1 × SX2 × · · · × SXk (the Cartesian products of SX1 , SX2 · · · SXk). Here, SX stands for
the support of the random variable X; See Figure 1.

Figure 1: Some possible scatter plot between (Xi, Xj)

In practice, change in the kind of the dependency among covariates may impose some
impacts on the failure time T . Then, the estimate of the survival function (SF) may
be misleading if one does not consider the dependency among covariates (See Subsection
4.3). The DART model considers the dependency among covariates and produce a suitable
regression tree.
For a motivation about the DART approach, let A

[strong]
k :={ Area of (Xi, Xj) with strong

(either positive or negative) dependency }, A[weak]
l :={ Area of (Xi, Xj) with weak de-

pendency or independence }, for k, l = 1, . . . , n. The process of fitting a DART algorithm
is to find l and k that divide the area into more homogeneous areas. Assuming square
error loss for prediction proposes, it minimizes∑
k

E[(Y−fk(XA
[strong]
k

))2 | A[strong]
k ]P (A

[strong]
k )+

∑
l

E[(Y−fl(XA
[weak]
l

))2 | A[weak]
l ]P (A

[weak]
l ).

where XA stands for the covariates of the data set restricted to the area A. If covari-
ates impact on the survival function vary in various regions, then we expect this oc-
curs in regions of (Xi, Xj) that maximize τ

Xi,Xj |A
[strong]
k

and minimize τ
Xi,Xj |A

[weak]
l

, where

τ
X1,X2|A[strong]

k
(τ
X1,X2|A[weak]

l
) stands for the Kendall’s tau correlation among Xi and Xj

over the set A
[strong]
k (A

[weak]
l ) provided that |A[strong]| ≥ 2 and |A[weak]| ≥ 2 where |A|

stands for the number of samples falling in region A; See Appendix 1.
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Therefore, one should maximize τ
Xi,Xj |A

[strong]
k

and minimize τ
Xi,Xj |A

[weak]
l

. There is a multi–

object optimization problem (MOP). Various approaches may be used for solving this
problem. In the DART approach, we suggest to transform the mentioned MOP into a
single-object optimization problem. That is, one should maximize the object function
(OF) as given by

OF (k, l) :=
∑
k

|τ
X1,X2|A[strong]

k
| −
∑
l

|τ
X1,X2|A[weak]

l
|.

Remark 2.1. The Kendall’s tau correlation for splitting the data set is used, since it uses
the ranks of observations and hence it does not depend on the marginal distributions of
covariates.

The following steps is given for implementing the DART model in survival data analyses:

1: Enter the survival time Y and affecting vector of covariates X = (X1, · · · , Xm).

2: Is there any change of dependency between covariates (This can be done with scatter
plot between the two covariates. Such as Figures 1)? If no then exit from the DART
algorithm and fit the other appropriate model. In this step, one can do clustering
based on the same of dependency structure in various regions between covariates.

3: Select a pair (such as (Xi, Xj) for 1 ≤ i, j ≤ m; i 6= j) covariates that the change of de-
pendency is occurred with the greatest effect on the survival time. If there exist more
than two pairs of covariates which exhibit dependency changes, then we choose a
pair which has greater R2 (coefficient of determination) in a simple tree model when
the covariate is an indicator function which denotes that the observations belong to
respect partitions. In the DART approach recommend the coefficient of determina-
tion because it stands for the percentage change in survival times expressed by the
tree, but other refined criteria such as AIC (Akaike Information Criterion) and BIC
(Bayesian Information Criterion) can also be used.

4: Find thresholds for selected covariates using their dependency structure. Solve the
associate MOP by maximizing the corresponding OF for the areas. Refer to Sections
2.1

5: Does the survival time on the areas differ significantly (Pre–pruning the tree using the
hypotheses testing procedures by log–rank test; See Klein & Moeschberger, 1997)?
If no then exclude these two covariates for re–categorization process and go to Step
2.

6: Is there any change of dependency among covariates in each partition? If yes then
choose a partition and go to Step 3. If no then go to the next step. For example,
assume that in the subset D1 there is another type of dependency among covariates
Xl and Xk for 1 ≤ l, k ≤ m; l 6= k. Similarly, the partition D1 is divided into two
subsets D11 and D12 = D1 −D11.
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6: Fit the appropriate models in partitions.

6: Does the fitted models on the partitions differ significantly(Post–pruning the tree using
the hypotheses testing procedures)? If no then exclude these two covariates for re–
categorization process and go to Step 2.

7: Construct the tree and then fit statistical models in leaves. By parametric, nonpara-
metric and semiparametric models we can provide a hybrid approach of the existing
methodologies in the leaves.

2.1 Determination of split points in DART

In DART approach once, the type of dependency among covariates was determined, it is
suggested to use the following technique to derive split points. First, assume that in the
scatter plot of the two covariates Xi and Xj, there exist some dependency changes.

For illustration, one can see that Aj := {(X1, X2)|X1 ≤ X
[j:n]
1 , X2 ≤ X

[j:n]
2 }, j = 1, 2 in

Figure 1(a). Also Aj := {(X1, X2)|X1 > X
[j:n]
1 , X2 > X

[j:n]
2 }, j = 1, 2 in Figure 1(b).

Here X
[1:n]
i ≤ X

[2:n]
i ≤ · · · ≤ X

[n:n]
i denote the n observations of the ith covariates in

magnitude order. Therefore, the corresponding MOP can be transformed into single-
object optimization problem in which one maximizes

OF (j) := |τX1,X2|Aj | − |τX1,X2|Acj |.

One can easily compute OF (j) for j = 1, . . . , n and then find j? := arg maxj OF (j).
Hence, the optimal partition is given byAj? andAcj? . In Figure 1(d), Aj1,j2 := {(X1, X2)|X1 ≤
j1X2 + j2} the corresponding MOP is also transformed to maximizing

OF (j1, j2) := |τX1,X2|Aj1,j2 |+ |τX1,X2|Acj1,j2
|,

Then, we divide the data set (D) into partitions Di = {(Y,X) | (X1, X2) ∈ Ai} for
i = 1, 2, . . .. Finally, one can fit various models on the subsets Di. This method may be
extended to more than two regions. For more information about the various dependency,
see Boskabadi[3].

2.2 Dependency structure and thresholds

In this section, we use the dependency structure distribution function among covariates for
determining split points. Sometimes, visually inspection of scatter plot is difficult to detect
the dependency structures among covariates. One can use the “Copula” function among
covariates and the corresponding contour diagram and the scatter plot of (F̂Xi(.), F̂Xj(.)),

where F̂X(.) is the empirical marginal distribution X. To do this, we use the concept of
“Copula” function.
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Definition 2.2 (Nelsen[23]). A two-dimensional function C : [0, 1]2 → [0, 1] with the
following properties is called Copula:
(i) C(u, 0) = C(0, v) = 0; ∀u, v ∈ [0, 1],
(ii) C(u, 1) = u; C(1, v) = v; ∀u, v ∈ [0, 1],
(iii) for every B = [u1, u2]× [v1, v2] in [0, 1] such that v1 < v2 and u1 < u2,

C(u2, v2) + C(u1, v1)− C(u1, v2)− C(u2, v1) ≥ 0.

In a DART model, one can use various methods for determining thresholds. For example,
previous similar researches and the researcher’s knowledge on the subject may be used.
Scatter plots among covariates X1, · · · , Xm provide an insight for deriving thresholds.
Moreover, according to (Xi, Xj) dependency structure, one can use quantiles of covariates
as follow:

1: If the dependency structures do not change in various areas, then it is not necessary to
use a DART model. Example includes, linear dependencies occur known as collinear-
ity problems. Also, some well–known copulas including Frank, FGM, Normal and
Ali–Mikhail–Hag (AMH) exhibit neither upper nor lower tail dependency.

2: If the dependency is not uniform (same) in all areas, Boskabadi[3] suggested a heuris-
tic approach for deriving split points (See Subsection 2.1). Some copulas such as
Joe, Clayton and Gumbel which have a tail dependency and the split points may
be derived with this approach. The tail dependency coefficients are discussed in
Appendix 1.

Remark 2.3. Note that, to identify approximately regions in which the dependency struc-
tures among Xi and Xj are the same, one can use the empirical joint distribution function

among Xi and Xj and the corresponding contour diagram as well the scatter plot of F̂Xi(.)

and F̂Xj(.); See Figure 2

Figure 2: Some possible scatter plot and contour diagram for F̂Xi(.) and F̂Xj(.).
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With this in mind, Boskabadi[3] derived split points for the Clayton copula

C(u, v) = [max(u−θ + v−θ − 1), 0]−
1
θ , u, v ∈ [0, 1], (2.1)

where θ ∈ [−1,∞). Notice that in Table 2, we have the down tail dependency λL = 2−1/θ

and upper tail dependency λU = 0.

Table 2: Simulation-based average optimal split points for a DART model with Clayton
copula for covariates (Parentheses denote the standard deviations of generated j?s for
1000 iterations).

θ 3 4 5 6 7 8 9

j?
68.3 73.9 77.8 80.1 82.3 84.3 85.7
(2.5) (2.6) (2.9) (2.2) (2.1) (1.9) (2)

3 Cox-DART: Cox proportional hazards model in

DART

In this section, the DART model is implemented in which the Cox proportional hazards
models are fitted in terminal nodes. The derived model is abbreviated by Cox-DART. To
assess the performance of the Cox-DART model and model selection, some criteria are
also proposed. To do this, an alternative representation for the DART model is presented.
Suppose that T denotes the failure time of primary interest, C is the censoring time, and
X = (X1, . . . , Xm) is a vector of covariates. Let Y = min(T,C) and δ = I(T ≤ C), where
I(E) is the indicator function for event E, that is, I(E) = 1 if E occurs and I(E) = 0
otherwise. Consider the well–known Cox model

λX(y) = λ0(y) exp{βTX}, (3.1)

where λ0 and λX are the baseline hazard function and the with covarietes hazard function,
respective. Also, βi (i = 1, . . . ,m) are the coefficients (Klein[18]). Assume that a given
Cox-DART model consists two branches with two subsets D1 and D2 as follows:
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A unified version for the above Cox-DART model is

λX(y) = λ0(y)e(β
T
1 X)IA+(βT

2 X)IAc (3.2)

= λ0(y)e(β1IA+β2IAc )
T

X

= λ0(y)eβ
?TX ,

where β? = β1IA +β2IAc . In the jth terminal node, the probability that the event is due
to failure at the fixed point time ti is given by

Pj(yi) =
λj(yi |Xi)

Σj∈R(yi)λj(yi |Xj)
(3.3)

=
eβ

T
j Xi

Σj∈R(yi)e
βT
j Xj

,

where j = 1, 2 and R(ti) is the set of all individuals who are still under study at a time
just prior to ti. Notice that R(ti) is also called “the number at risk” in time ti. From
(3.3), the partial likelihood function (LF) is obtained as

L(βj ;Dj) =
∏

i|δij=1

eβ
T
j Xi

Σj∈R(yi)e
βT
j Xj

, j = 1, 2. (3.4)

The maximum (partial) likelihood estimates (MLEs) are derived by maximizing (3.4) in
the jth terminal node. In general, the failure probability at the fixed time point ti in the
Cox-DART model (3.2) is

Ptree(yi) =
e(β

T
1 Xi)IA+(βT

2 Xi)IAc

Σj∈R(yi)e
(βT

1 Xj)IA+β
T
2 Xj)IAc

.

Therefore, the overall partial LF in the Cox-DART model (3.2) is obtained from (3.4) as

L(β1,β2;D) =
∏

i|δtree=1

e(β
T
1 Xi)IA+(βT

2 Xi)IAc

Σj∈R(yi)e
(βT

1 Xi)IA+(βT
2 Xi)IAc

(3.5)

=
∏

i|δtree=1

e(β
T
1 Xi)IAe(β

T
2 Xi)IAc

Σj∈R(yi)yi∈A
e(β

T
1 Xi)IAΣj∈R(yi)yi∈Ac

e(β
T
2 Xi)IAc

= L(β1;D1)L(β2;D2).

Similarly, the partial LF in the Cox-DART model with k terminal nodes is

L(β1, . . . ,βk;D) =
k∏
j=1

L(βj ;Dj), (3.6)

where D =
⋃k
j=1Dj and D1, . . . , Dk is a portion of the data set D.
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3.1 Model selection and assessment

There are different criteria for selecting and comparing statistical models. In this section,
the Akaike Information Criterion (AIC), the coefficient of determination based on the
Schoenfeld residuals (R2

sch) and the root mean squared error (RMSE) criterion in the
proposed DART approach are explained.

3.1.1 AIC criterion

The Akaike’s information criterion (AIC) in a given model with the LF L(θ; X) is defined
as (Burnham[5])

AIC = −2 ln(L(θ̂; X)) + 2m,

when m is the number of the model parameters and θ̂ is the MLE of the parameter vector
θ. As mentioned by Klein[18], one may use the partial LF (3.6) instead of the (full)
LF. Suppose that in a given regression tree model, there exist k terminal nodes and each
terminal node includes a sample of size ni (i = 1, 2, . . . , k). Then

AICtree = −2 ln(L(β1, · · · , βk;D)) + 2

j∑
i=1

mi (3.7)

= −2 ln(
k∏
j=1

L(βj;Dj)) + 2

j∑
i=1

mi

=
k∑
j=1

(−2 ln(L(βj;Dj) + 2mj)

= AICnod1 + AICnod2 + · · ·+ AICnodk.

Remark 3.1. Note that the AIC of the DART model in (3.7) is equal to the sum of the
AIC for every terminal node.

3.1.2 Coefficient of determination based on Schoenfeld residuals

The well–known regression coefficient of determination R2 is defined by

R2 = 1−

(
L(0)

L(θ̂)

) 2
n

, (3.8)

where L(0) and L(θ̂) are the null and the full LFs, respectively. A measure for goodness-
of-fit assessment is defined on the basis of the squared residuals (Schoenfeld[27]). The
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Schoenfeld residuals for the jth terminal node are

rsckij(β) = Xij − E[Xij | β] (3.9)

= Xij −
∑

j|j∈R(j)

XijPjk(β; ti)

= Xij −
∑

j|j∈R(j)

Xij

(
eβ

T
j Xi

Σj∈R(yi)e
βT
j Xj

)
,

for 1 ≤ i ≤ nj and 1 ≤ j ≤ k. Therefore, residuals for the null model (without covariates,
that is for βj = 0) in jth terminal node are obtained by replacing the probability Pj(β; yi)
with

Pj(0; yi) =
1

|R(i)|
. (3.10)

So the coefficient of determination R2 on the basis of the Schoenfeld residuals is

R2
Schj

=

∑nj
i=1 δi{βTj r2sckij(0)} −

∑nj
i=1 δi{βTj r2sckij(β)}∑nj

i=1 δi{βTj r2sckij(0)}
(3.11)

= 1−
∑nj

i=1 δi{βTj r2sckij(β)}∑nj
i=1 δi{βTj r2sckij(0)}

.

An overall coefficient of determination for the Cox-DART model (3.2) can be defined by

R2
Schtree = 1−

∑k
j=1

∑n
i=1 δi{βTj r2sckij(β)}∑k

j=1

∑n
i=1 δi{βTj r2sckij(0)}

. (3.12)

3.1.3 Root Mean Squared Error (RMSE) criterion

The root mean squared error (RMSE) measures the expected squared distance between
the fitted survival function (SF) predicted at a specific value and the corresponding true
SF. Following Ambler[1], we use the RMSE in deference models for uncensored data, say
y1, . . . , yn, that is,

RMSE(S, Ŝ) =

√√√√ 1

n

n∑
i=1

(
Ŝ(yi)− S(yi)

)2
, (3.13)

where Ŝ(yi) stands for the fitted SF at the point yi (1 ≤ i ≤ n) and S(yi) is the true

SF. For the Cox model, we have Ŝ(yi) = exp{−Λ0(yi)}exp{β̂
TXi}. In this paper, it is

assumed that Λ0(yi) = yαi (the Weibull commulative hazard function) and then S(yi) =
exp{− exp(βTXi)y

α
i }.
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Remark 3.2. Note that the true SF S(yi) in (3.13) is usually unknown. So, one may use
some non–parametric estimators for S(yi) such as the Kaplan–Meier ŜKM(yi) estimator
to calculate RMSE (3.13). Therefore

RMSE(ŜKM , Ŝ) =

√√√√ 1

n

n∑
i=1

(
Ŝ(yi)− ŜKM(yi)

)2
. (3.14)

Remark 3.3. Notice that the RMSE may be used for every parameter of interest; See
Subsection 4.3.

3.2 Tree post–pruning

In the preceding sections, we consider classification of data sets for deriving better and
more reasonable models by examining dependencies among predictors. Here a questions
may arise in mind: When is the obtained Cox-DART model more efficient than a standard
Cox proportional hazards model? In this subsection, we study the problem of hypotheses
testing for the this question, which leads to the tree pruning for the obtained Cox-DART
model. To do this, suppose that a given Cox-DART model consists two terminal nodes
with m predictors as in Model (3.2). The answer to the above question is equivalent to
the following problem of hypotheses testing

H0 : ∀j : β1j = β2j versus H1 : ∃j : β1j 6= β2j (3.15)

Here, the data set D is partitioned into two subsets D1 and D2, that is D = D1 ∪D2 and
D1∩D2 = φ, where φ stands for the empty set. To answer the above mentioned question,
we used deviances of models. The deviance for the root model is

DRoot = 2[L(saturated)− Lroot(θ̂; X)], (3.16)

where L(saturated) is the log-likelihood function of the saturated model and Lroot(θ̂; X)
is the maximized log-likelihood function for the root model. Under H0 in (3.15), DRoot

follows the chi-square distribution with n − m degrees of freedom (df) (Hosmer[14]).
Similarly, the deviance for the Cox-DART model is defined by

DCox−DART = 2[L(saturated)− LCox−DART (θ̂; X)], (3.17)

where LCox−DART (θ̂; X) is the maximized log-likelihood function for the Cox-DART model.
Therefore DCox−DART follows the chi-square distribution with n−2m df. So, the deviance
criterion for splitting is

D = DRoot −DCox−DART (3.18)

= 2[L(saturated)− Lroot(θ̂; X)]− 2[L(saturated)− LCox−DART (θ̂; X)]

= 2[LCox−DART (θ̂; X)− Lroot(θ̂; X)],

where D has the chi-square distribution with m(= 2m−m) df. Equivalently, the hypoth-
esis H0 in (3.15) is rejected if D > χm,α, where χm,α stands for the upper αth quantile of
the chi-square distribution with m df.
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4 Numerical studies

For illustration purposes, we analyse a simulated sample and a real data set using the
results obtained in the preceding sections. Moreover, a simulation study is conducted to
carry out the performance of the proposed Cox-DART model.

4.1 A simulated illustrative example

Suppose that D = (Y,X) be data set and X = (X1, · · · , X5) be covariates. The Clayton
copula function by parameter θ = 3 is assumed for the pair (X1, X2) corresponding to
a down tail dependency. Also, The Clayton copula function by parameter θ = 5 is
assumed for the pair (X3, X4); See Table 2. Suppose X5 = F−1X5

(U), where U follows the
standard uniform distribution, where Xi ∼ FXi , 1 ≤ i ≤ 5. The marginal distributions
of X1, X2 and X5 are assumed to be the standard exponential distribution. Therefore,
the change point is derived from Section 2.2 as (qX1 , qX2) = (1.139, 1.139) where qX1 =
qX2 is equal to 68th percentile of the standard exponential distribution and hence A =
{X1 < 1.139, X2 < 1.139}. The marginal distributions of X3 and X4 are the standard
uniform distribution. Therefore, the change point is similarly derived from Section 2.2 as
(qX3 , qX4) = (0.78, 0.78) and hence B = {X3 < 0.78, X4 < 0.78}. Consider the hazard
model

λX(y) = λ0(y)eβ
?TX , ∀y > 0, (4.1)

where λ0(y) is the baseline hazard function of the Weibull distribution with the shape
parameter α = 2 and the scale parameter λ = 1. The model parameters are given by


βT1X = 0.9X1 + 0.001X2 + 0.8X3 + 0.5X4 + 0.6X5 for(Y,X) ∈ {(X1, X2) ∈ A}
βT2X = 0.8X1 + 0.9X2 + 0.003X3 + 0.7X4 + 0.2X5 for(Y,X) ∈ {(X1, X2) ∈ Ac ∩B}
βT2X = 0.0012X1 + 0.5X2 + 0.4X3 + 0.9X4 + 0.001X5 for(Y,X) ∈ {(X1, X2) ∈ Ac ∩Bc}

By the above mentioned assumptions, a sample of size n = 1000 is generated from the Cox-
DART model and then survival times T1, . . . , Tn are simulated using Equation (4.1). Then,
the censoring times C1, . . . , Cn are generated from the standard exponential distribution.
Finally, we computed Yi = min(Ti, Ci) and δi = I(Ti ≤ Ci). Figure 3 displays a scatter
plot between the empirical distributions for the observed (X1, X2) and (X3, X4).
As mentioned in Subsection 2.1, the desired quantiles of (X1, X2) for fitting a Cox–DART
are 68th sample percentiles observed data for (X1, X2), i.e. q̂X1 = 1.142 and q̂X2 = 1.138.
So, the whole data set D is partitioned into two subsets with Â = {X1 < 1.142, X2 <
1.138}. Thus, D = D1 ∪D2, where

D1 = {(Y,X) | (X1, X2) ∈ Â} and D2 = {(Y,X) | (X1, X2) ∈ Âc}.

Similarly, the desired quantiles of (X3, X4) are derived as q̂X3 = 0.773 and q̂X4 = 0.799.
So B̂ = {X3 < 0.773, X4 < 0.799} and the data set D2 is partitioned into two subsets as
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Figure 3: The scatter plot and the contour diagrams between the empirical distributions
of (X1, X2) and (X3, X4)

D21 = {(Y,X) | (X3, X4) ∈ Â} and D22 = {(Y,X) | (X3, X4) ∈ Âc}.

Notice that log–rank test of the split by (X3, X4) for survival times is not significance
in the data set D1 and therefore it is not partitioned according to the DART approach.
The Cox proportional hazards models is fitted to the data set in terminal nodes by the
survival package in the statistical software R. Therefore, the Cox-DART models is fitted
to the data set.
In Table 3, the performance criteria AIC, R2

sch and RMSE(S,Ŝ) of the fitted models are
presented.

Table 3: Various criteria for the illustration example.

Model RMSE(S,Ŝ) R2 AIC
Cox(Root) 0.29 0.19 11562
Cox-DART 0.24 0.52 9320

From Table 3, we see that the proposed Cox-DART model dominates the Cox proportional
hazards model without dividing the data set (the root model). It is very important to
compare the estimated model coefficients β?j . One can see that the coefficients estimates
at the terminal nodes are very close to the corresponding coefficients in the true model,
while estimated model coefficient, in the root of the tree, are unrealistic and misleading.

4.2 A MCMC simulation study

One sample does not tell us so much. So, we conducted a simulation study to assess
the performance of the proposed Cox-DART model with N = 104 iterations for X =
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(X1, X2, X3) covariates, some selected values of model parameters and censoring rates.
The Clayton copula function by parameter θ = 3 is assumed for the pair (X1, X2). Then,
one can follow the such as Subsection 4.1. In Table 4, some criteria for comparing the
fitted Cox-DART model and the Cox proportional hazard model (the root model) are
reported.
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Table 4: Simulation-based comparing of models; Here, the true parameters in terminal
nodes are different.

α Censor rate Model RMSE(S,Ŝ) R2
sch AIC

0.25

0.1
Root 0.25 0.06 11084

Cox-DART 0.13 0.39 9372

0.2
Root 0.26 0.08 10852

Cox-DART 0.13 0.39 9175

0.5
Root 0.26 0.10 10484

Cox-DART 0.13 0.40 8864

0.5

0.1
Root 0.26 0.08 10654

Cox-DART 0.05 0.51 8797

0.2
Root 0.26 0.11 10097

Cox-DART 0.05 0.52 8324

0.5
Root 0.26 0.16 9175

Cox-DART 0.05 0.52 7544

1

0.1
Root 0.26 0.11 9679

Cox-DART 0.04 0.55 7945

0.2
Root 0.26 0.17 8458

Cox-DART 0.04 0.56 6905

0.5
Root 0.27 0.27 6506

Cox-DART 0.05 0.58 5255

2

0.1
Root 0.27 0.14 8076

Cox-DART 0.04 0.56 6571

0.2
Root 0.27 0.24 5979

Cox-DART 0.05 0.59 4798

0.5
Root 0.28 0.40 3143

Cox-DART 0.06 0.64 2436

3

0.1
Root 0.26 0.15 7052

Cox-DART 0.05 0.57 5705

0.2
Root 0.27 0.26 4534

Cox-DART 0.05 0.60 3589

0.5
Root 0.28 0.46 1652

Cox-DART 0.07 0.68 1229
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From Tables 4, one can see the following:

1: The Cox-DART model dominates the classic Cox model according to RMSE, R2
sch and

AIC criteria.

2: RMSE and R2
sch are increasing in the censor rate while AIC is decreasing in the censor

rate.

3: As we expected, the AIC decreases as the censor rate increases, since the corresponding
(partial) likelihood function decreases.

It is mentioned that the Weibull distribution with α = 1 simplifies to the exponential
distribution with the constant hazard rate function. For α > 1 (α < 1), the Weibull
hazard function increases (decreases).

4.3 Assay of serum free light chain data set analyses

In this subsection, a Cox-DART model is fitted to an assay of serum free light chain
(flchain) data set. It contains 7874 subjects and is available in the statistical software
R by package “survival” (Therneau[29]). The objective of the study is to determine
whether the free light chain (FLC) assay provides prognostic information relevant to the
general population.
The explanatory variables are sex, age (in years), kappa (serum free light chain, kappa
portion), lambda (serum free light chain, lambda portion) and creatinine (serum creati-
nine). The response “futime” is days from enrolment until death. The binary variable
death is 1 if we observe the death occurs and 0 otherwise (that is if censoring occurs). A
Cox model is fitted to this data set and the explanatory variables age, lambda and kappa
are significant at level 0.05.
Figure 4 displays the scatter plot and the contour diagram of the joint empirical distribu-
tion for kappa and lambda. One can see that the association among kappa and lambda
varies in different regions. The tail dependence estimators among kappa and lambda based
on Equations (A.2) and (A.3) are obtained as λL = 0.27 and λU = 0.57. As mentioned
in Subsection 2.2, the desired split points are equal to 20th quantiles of (kappa, lambda),
that is q̂kappa = 0.89 and q̂lambda = 1.14. Thus, the whole data set is partitioned into two
subsets as

D1 = {D | (kappa, lambda) ∈ Â}, D2 = {D | (kappa, lambda) ∈ Âc},

where Â = {kappa > 0.89, lambda > 1.14}. Using the Step 5 algorithm mentioned in
Section 2, we conducted a log–rank test on the survival time based on two subsets A and
Ac and obtained p-value≈ 0, which means that the splitting based on the regions A and
Ac is significant and must be considered in the root of the decision tree.
The Kendall’s tau correlation coefficients among kappa and lambda in the two regions Â
and Âc are obtained as τ̂(kappa,lambda)|Â = 0.81 and τ̂(kappa,lambda)|Âc = 0.07, respectively. As
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Figure 4: The scatter plot and contour diagram between empirical distribution kappa and
lambda.

one can see, there is a strong dependency in Â while a weak dependence in Âc. The result
of plot curves in the test the proportional hazards assumption for a Cox regression of the
whole data set showed that the proportional hazards assumption model is appropriate.
Therefore, a Cox–DART model is fitted to the data set and reported as follows:

(4.2)

In Table 5, some criteria for comparing the fitted Cox-DART model and the Cox propor-
tional hazards model (the root model) (4.2) are given.

Table 5: Comparing Models for the assay of serum free light chain data set
Models Sample size Number of event R2

sch AIC RMSE(ŜKM , Ŝ)
Cox(Root) 7871 2166 0.30 34905 0.058
Cox-DART n1 = 5593, n2 = 2278 1792, 374 0.80 32927 0.057

We see from Table 5, the Cox-DART model dominants the root regression model.

Remark 4.1. Note that one may consider various models in terminal nodes. For example,
Boskabadi[3] proposed a non–parametric method, called C-DART model, where CART
models are fitted in terminal nodes on the basis of samples without censoring observa-
tions. They approach may be used for samples including censored lifetime observations.
To do this, the data sets is partioned properly according to Subsection 2.1 and then
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the extended CART defined by Equation (1.2) is implimented. In sequel, the CART
and C-DART models were fitted to this data set with the turning parameter η = 0.001
in Equation (1.4). The results are obtained RMSECART (futime, ˆfutime) = 0.73 and
RMSEC−DART (futime, ˆfutime) = 0.72, also R2

CART = 0.46 and R2
C−DART = 0.78. So

the DART approach provides more accurate results.

5 Conclusions and future research

In this article, we extended the DART approach in survival analyses. In addition, the
Cox proportional hazards models are fitted in leaves of a regression tree with the DART
approach and studied in details. By a simulation study and analysing a real data set, we
have shown, that the DART approach can be successfully implemented in the survival
setting. A diagram for construction of a DART model is given in Figure 5. This is helpful
particularly for big data sets, where the relationship between the covariates may have
some impacts on the survival times. This paper may be extended in various directions.
Study on multivariate regression trees is another interesting topic.
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Figure 5: Process of implementing the DART approach.
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A Copula function and dependence coefficients

Definition A.1. (Nelsen[23]) Let (X1, Y1) and (X2, Y2) be two independent and iden-
tically distributed random vectors each with distribution function H. The population
version of “ Kendall’s tau correlation” is defined as the probability of concordance minus
the probability of discordance as

τX,Y = P ((X1 −X2)(Y1 − Y1) > 0)− P ((X1 −X2)(Y1 − Y1) < 0)

= E{sgn ((X1 −X2)(Y1 − Y2))}, (A.1)

where “sgn(u)” is the sign of u, −1 for u < 0, 0 for u = 0, and 1 for u > 0. Tsai[30]
introduced the conditional Kendall’s τ as

τX,Y |A = E{sgn ((X1 −X2)(Y1 − Y2)) | A}
= E{sgn ((X1 −X2)(Y1 − Y2)) IA}/P (A),

where A denotes a given event. Following Randles[25], an estimator for the conditional
Kendall’s τ over the set A is

τ̂X,Y |A =
1

M

n−1∑
i=1

n∑
j=i+1

{sgn((Xi −Xj)(Yi − Yj))}IA,

where M =
∑n−1

i=1

∑n
j=i+1 IA.

Definition A.2. Let X1 and X2 be two random variables with marginal functions F1(x) =
P (X1 ≤ x) and F2(x) = P (X2 ≤ x), respectively, with the joint distribution functions
F (x1, x2) = P (X1 ≤ x1, X2 ≤ x2). The lower and upper tail dependency coefficients are
defined by

λL = lim
t→0+

P (X1 ≤ F−11 (t) | X2 ≤ F−12 (t)) (A.2)

and

λU = lim
t→1−

P (X1 > F−11 (t) | X2 > F−12 (t)), (A.3)

respectively, where F−1i (x) = inf{t : F (t) ≥ x} (i = 1, 2) is the inverse function of the
marginal distribution Fi(x).
Here, we review some properties of copula. For more information, see Nelsen (2006).

Theorem A.3 (Sklar, 1959). Let H be a joint distribution function with margins F and
G. Then, there exists a copula C such that

H(x, y) = C(F (x), G(y)) ∀x, y ∈ R. (A.4)

If F and G are continuous, then C is unique; otherwise, C is uniquely determined on
Ran(F ) × Ran(G), where Ran(F ) and Ran(G) are ranges of distributions F and G,
respectively. Conversely, if C is a copula and F and G are distribution functions, then
the function H defined by (A.4) is a joint distribution function with margins F and G.
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Remark A.4. From (A.4), we have

C(u, v) = H(F−1(u), G−1(v)), ∀u, v ∈ [0, 1].

Theorem A.5. Let C(u, v) be the copula of X1 and X2. If the limit exists, then

λL = lim
t→0+

C(t, t)

t
, (A.5)

and

λU = 2− lim
t→1−

1− C(t, t)

1− t
. (A.6)

Remark A.6. If the copula function is unknown, one may use the non–parametric inversion
tail dependence (Schmidt[26]). Let Rx1

i and Rx2
i denote the rank of X1i and X2i, i =

1, ...,m , respectively. Then Cm is an experimental copula function. The first set of
estimators are based on Equations (A.5) and (A.6), as

λ̂L :=
m

k
Cm

(
kx

m
,
ky

m

)
≈ 1

k

n∑
i=1

I{Rx1i ≤kx,R
y1
i ≤ky}

(A.7)

and

λ̂U :=
m

k
Cm

(
(1− kx

m
, 1], (1− ky

m
, 1]

)
≈ 1

k

n∑
i=1

I{Rx1i >n−kx,Ry1i >n−ky}, (A.8)

with a parameter k ∈ {1, 2, . . . , n}, chosen by the researcher; For a greater detail, see
Schmidt[26].
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