(/// ,// ,//)

ı

•

• • • •

[]

· · []

,

Email: ashjaee@ut.ac.ir

: , : : *

[]

.

. . × ×

·

mm

 $\begin{array}{ccc} & & & & \\ & & & \\ i & & & P_y & P_x \\ & & N_i & & S_y & S_x \end{array}$

·

 $_{y}$ S_x H P_x/d P_y/d ×

.

[] . . []

× × . . . []

[]

ı

.

[].

$$h_{\theta} = -k_{w} \frac{dT}{dr} \Big|_{r=0} \cdot \frac{1}{(T_{w} - T_{\infty})}$$

$$()$$

$$\theta \qquad h_{\theta}$$

$$h_{\theta}$$

$$h_{\theta}$$

()

$$:$$
 . T_w

$$Nu_{\theta} = \frac{h_{\theta}d}{k_{f}} = -\frac{k_{w}d}{k_{f}(T_{w} - T_{\infty})} \cdot \frac{dT}{dr}\Big|_{r=0}$$

()

.

.....

mm

()

$$\left(\overline{V^*} \cdot \nabla\right) \overline{V^*} = -\nabla P^* + \nabla^2 \overline{V^*} - \frac{Ra}{Pr} T^* \frac{\overline{g}}{g}$$
()

$$\left(\overline{V^*}\cdot\nabla\right)T^* = \frac{1}{Pr}\nabla^2 T^*$$

 $\begin{array}{ccc} - & & \overline{V}^* \\ T^* & \nu/d & V^* & U^* \end{array}$

$$\begin{split} P^{*} & \left(T_{w}-T_{\infty}\right) \\ \overline{g} & \rho_{\infty}\nu^{2}/d^{2} \\ Pr = \nu/\alpha & Ra = g\beta(T_{w}-T_{\infty})d^{3}/\nu\alpha \end{split}$$

$$T_{f} \qquad k_{f}$$

$$\vdots$$

$$T_{f} = \frac{T_{w} - T_{\infty}}{2}$$

$$\overline{Nu}_{o} \qquad \vdots$$

$$\overline{Nu}_{o} = \frac{1}{2\pi} \int_{0}^{2\pi} Nu_{\theta} \cdot d\theta$$
()

ASME
() % / []
. % /

()

.

· · · ·

$$(()) (()) (())$$

$$P_{y}/d = 4 \qquad P_{y}/d = 3$$

$$($$

(

.

) ()
$$P_x/d = 1$$
 $P_y/d = 2$

()
$$P_x/d = 0 \quad P_x/d = 1 \quad P_y/d = 2$$

() . () ×

·

.

(ب)

(الف)

:

$$P_{\rm x}/d=0$$
 () $P_{\rm x}/d=1$ () $P_{\rm y}/d=2$

.. $P_y/d = 4$ $P_y/d = 3$ () × $0 < P_x / d < 1$

 $P_x/d > 1$

.

$$P_x/d > 1$$

.

$$(())$$
 $(())$ (P_x/d) $(P_x/d = 0)$
 P_x/d . $()$

$$\theta = 0 \qquad P_{y}/d = 4$$

$$P_{y}/d = 2$$
Re=3.10ⁱ

$$I^{sr}_{q}$$

$$I^{sr}_{d}$$

$$I^{sr}_{$$

•

: .

d () . a-a

$$P_{y}/d = 2 \qquad \qquad P_{y}/d = 4$$

 $P_y/d = 2$

×
$$S_y/H$$

. () $P_y/d = 2$
 $\overline{Nu}_{ii}/\overline{Nu}_o$

i

$$\overline{Nu}_{ii}$$
 \overline{Nu}_{o}
.

(())

:

 $Ra=3\times10^{3}$ $P_{y}/d=2$

3rdCylinde at P_x/d=1

3rdCylinder at P_x /d=0 (Vertical)

.

	$P_x/d=1$	$P_x/d=0$	
		$P_y/d = 2$	×
$P_x/d=1$			

.

 $P_{y}/d = 5$ () $P_{y}/d = 2$ ()

:

	(m)	: d		
	(m/s^2)	: g		
	(m)	:H		
$\left(W/m^2 K\right)$		$:h_{\theta}$		

×

i	: S _y	(W/m)	к)	: k
	(m)	(N=)	: N
	(K) :T		i	: N _i
	$T^* = \frac{T - T_{\infty}}{T - T_{\infty}}$	i		$:\overline{Nu}_{ii}$
	$T_w - T_\infty$	i		$: \overline{Nu}_{iv}$
(m/s) x	:u			: Nu _o
(m/s) y	: <i>v</i>			: Nu _e
Х	$U^* = \frac{u}{v/d}$	(m)		: P _x
	· / 4	(m)		: P _y
у	$: \mathbf{v} = \frac{1}{\mathbf{v}/\mathbf{d}}$		(Pa)	:p
(m^2/s)	:α			:Pr
(l/K)	:β		$: P^* ==$	<u>p</u>
(m^2/s)	:γ			$\rho_{\infty}v^2/d^2$
(Degree)	: θ		$Ra = g\beta(T_w - T_w)$	Γ_{∞})d ³ /va
	: f			
	÷w		(m)	: r
	:∞:	i		: S _x
				(m)

- 1 Saitoh, T., Sajiki, T. and Maruhara, K. (1993). "Bench mark solutions to natural convection heat transfer problem around a horizontal circular cylinder." *Int. J. Heat Mass Transfer*, Vol. 36, PP.1251-1259.
- 2 Wang, P., Kahawita, R. and Nguyen, T.H. (1990). "Numerical computation of the natural convection flow about a horizontal cylinder using splines." *Numer. Heat Transfer*, Vol. 17, PP. 191-215.
- 3 Kuehn, T.H. and Goldstein, R.J. (1980). "Numerical solution to the Navier-Stokes equations for laminar natural convection about a horizontal isothermal circular cylinder." *Int. J. Heat Mass Transfer*, Vol. 23, PP. 971-979.
- 4 Massimo Corcione, (2005). "Correlating equations for free convection heat transfer from horizontal isothermal cylinders set in a vertical array." *Int. J. Heat Mass Transfer* Vol. 48, PP.3660-3673.
- 5 Morgan, V.T. (1975). "The overall convective heat transfer from smooth circular cylinders." *Adv. Heat Transfer 11*, PP. 199-264.
- 6 Raithby, G. D. and Hollands, K. G. T. (1976). "Laminar and turbulent free convection from elliptic cylinders with a vertical plate and horizontal circular cylinder as special cases." *J. Heat transfer*, Vol. 98, PP.72-80.
- 7 Eckert, E. R. G. and Soehngen, E. E. (1948). "Studies on heat transfer in laminar free convection with the Zehnder-Mach interferometer." *AF Technical Report, 5747, USAF Air Material Command, Wright-Paterson Air Force Base, Ohio.*
- 8 Lieberman, J. and Gebhart, B. (1969). "Interaction in natural convection from an array of heated elements, experimental." *Int. J. Heat Mass Transfer*, Vol. 12, PP.1385-1396.

- 9 Gebhart, B., Pera, L. and Schorr, A. W. (1970). "Steady laminar natural convection plumes above a horizontal line heat source." *Int. J. Heat Mass Transfer*, Vol. 13, PP.161-171.
- 10 Marsters, G. F. (1972). "Array of heated horizontal cylinders in natural convection." Int. J. Heat Mass Transfer, Vol. 15, PP. 921-933.
- Sparrow, E. M. and Niethammer, J. E. (1981). "Effect of vertical separation distance and cylinder-tocylinder temperature imbalance on natural convection for a pair of horizontal cylinders." *J. Heat Transfer*, Vol. 103, PP. 638-644.
- 12 Sparrow, E. M. and Boessneck, D. S. (1983). "Effect of transverse misalignment on natural convection from a pair of parallel, vertically stacked, horizontal cylinders." *J. Heat Transfer*, Vol. 105, PP.241-247.
- 13 Tokura, I., Saito, H., Kisinami, K. and Muramoto, K. (1983). "An experimental study of free convection heat transfer from a horizontal cylinder in a vertical array set in free space between parallel walls." *J. heat Transfer*, Vol. 105, PP. 102-107.
- 14 Sadeghipour, M. S. and Asheghi, M. (1994). "Free convection heat transfer from arrays of vertically separated horizontal cylinders at low Rayleigh numbers." *Int. J. Heat Mass Transfer*, Vol. 37, PP. 103-109.
- 15 Chouikh, R., Guizani, A., Maalej, M. and Belghith, A. (1999). "Numerical study of the laminar natural convection flow around an array of two horizontal isothermal cylinders." *Int. Comm. Heat Mass Transfer*, Vol. 26, PP.329-338.
- 16 Chouikh, R., Guizani, A., Maalej, M. and Belghith, A. (2000). "Experimental study of the natural convection flow around an array of heated horizontal cylinders." *Renewable Energy*, Vol. 21, PP.65-78.
- 17 Hauf, W. and Grigull, U. (1970). "Optical Methods in Heat Transfer." *In Advances in Heat Transfer*, Vol. 6, Academic Press, New York, PP. 133-366.
- 18 JHT Editorial Board, (1993). "Journal of Heat Transfer Policy on Reporting Uncertainties in Experimental Measurements and Results." ASME J. Heat Transfer, Vol. 115, PP.5-6.