Vertex Equitable Labelings of Transformed Trees

P. Jeyanthi1 and A. Maheswari2

1Govindammal Aditanar College for Women Tiruchendur-628 215, Tamil Nadu, India.
2Department of Mathematics Kamaraj College of Engineering and Technology Virudhunagar- 626 001, Tamil Nadu, India.

ABSTRACT

Let G be a graph with p vertices and q edges and let $A = \{0, 1, 2, \ldots, \left\lceil \frac{q}{2} \right\rceil \}$. A vertex labeling $f : V(G) \rightarrow A$ induces an edge labeling f^* defined by $f^*(uv) = f(u) + f(v)$ for all edges uv. For $a \in A$, let $v_f(a)$ be the number of vertices v with $f(v) = a$. A graph G is vertex equitable if there exists a vertex labeling f such that for all a and b in A, $|v_f(a) - v_f(b)| \leq 1$ and the induced edge labels are $1, 2, 3, \ldots, q$. In this paper, we prove that $TÔP_n, TÔ2P_n, TÔC_n, TÔC_n$ are vertex equitable graphs.

1 Introduction

All graphs considered here are simple, finite, connected and undirected. For the basic notations and terminology, we follow [3]. The symbols $V(G)$ and $E(G)$ denote the vertex set and the
edge set of a graph G respectively. Let $G = (p, q)$ be a graph with $p = |V(G)|$ vertices and $q = |E(G)|$ edges. A labeling f of a graph G is a mapping that assigns elements of a graph to the set of numbers (usually to positive or non-negative integers). If the domain of the mapping is the set of vertices (respectively, the set of edges) then we call the labeling vertex labeling (respectively, edge labeling). The labels of the vertices induce the labels of the edges. There are several types of labeling and a detailed survey on graph labeling can be found in [2]. A vertex labeling f is said to be a difference labeling if it induces the label $|f(x) - f(y)|$ for each edge xy which is called the weight of an edge xy. A brief summary of the definitions and known results are given below.

The total graph $T(G)$ of a graph G is a graph such that the vertex set of $T(G)$ corresponds to the vertices and the edges of G and the two vertices are adjacent in $T(G)$ if and only if their corresponding elements are either adjacent or incident in G. For each vertex v of a graph G, take a new vertex v' and join v' to the vertices of G which are adjacent to v. The graph thus obtained is called the splitting graph of G and is denoted by $S'(G)$.

Let G be a graph with p vertices and q edges. A graph H is said to be a super subdivision of G if H is obtained from G by replacing every edge e_i of G by a complete bipartite graph K_{2,m_i} for some $m_i, 1 \leq i \leq q$ in such a way that ends of e_i are merged with the two vertices of the 2-vertices part of K_{2,m_i}, after removing the edge e_i from G. A super subdivision H of G is said to be an arbitrary super subdivision of G if every edge of G is replaced by $K_{2,m}$ (m vary for each edge arbitrarily). Fusion of two cycles C_m and C_n is a graph $C(m,n)$ obtained by identifying an edge of a cycle C_m with an edge of a cycle C_n.

The concept of equitable labeling of graphs was due to Bloom and Ruiz [1]. A function $f : V(G) \rightarrow \{0, 1, \ldots, k-1\}$ is called k-equitable labeling if the conditions $|v_f(i) - v_f(j)| \leq 1$ and $|e_f(i) - e_f(j)| \leq 1$ for $i \neq j, i, j = 0, 1, 2, \ldots, k-1$ are satisfied, where f is the induced edge labeling given by $f(uv) = |f(u) - f(v)|$ and $v_f(i)$ and $e_f(i), i \in \{0, 1, \ldots, k-1\}$ are the number of vertices and edges of G respectively with label i.

A. Lourdusamy and M. Seenivasan introduced the concept of vertex equitable labeling in [7]. Let G be a graph with p vertices and q edges and let $A = \{0, 1, 2, \ldots, \lceil \frac{q}{2} \rceil \}$. A vertex labeling $f : V(G) \rightarrow A$ induces an edge labeling f^* defined by $f^*(uv) = f(u) + f(v)$ for all edges uv. For $a \in A$, let $v_f(a)$ be the number of vertices v with $f(v) = a$. A graph G is said to be vertex equitable if there exists a vertex labeling f such that for all a and b in A, $|v_f(a) - v_f(b)| \leq 1$ and the induced edge labels are $1, 2, 3, \ldots, q$. They proved that the graphs like path, bistar $B(n,n)$, comb graph, cycle C_n if $n \equiv 0$ or $3(mod\ 4)$, $K_{2,n}, C_{3(t)}$ for $t \geq 2$, quadrilateral snake, $K_2 + mK_1, K_{1,n} \cup K_{1,n+k}$ if and only if $1 \leq k \leq 3$, ladder, arbitrary super division of any path and cycle C_n with $n \equiv 0$ or $3(mod\ 4)$ are vertex equitable. Also they proved that the graphs $K_{1,n}$ if $n \geq 4$, any Eulerian graph with n edges where $n \equiv 1$ or $2(mod\ 4)$, the wheel W_n, the complete graph K_n if $n > 3$ and triangular cactus with $q \equiv 0$ or 6 or $9(mod\ 12)$ are not vertex equitable. In addition, they proved that if G is a graph with p vertices and q edges, q is even and $p < \frac{q}{2} + 2$ then G is not vertex equitable.

P. Jeyanthi and A. Maheswari [5, 6] proved that T_p-trees, $T \odot K_n$ where T is a T_p-tree with an
even number of vertices, the bistar $B(n, n + 1)$, the caterpillar $S(x_1, x_2, \ldots, x_n)$, $C_n \odot \overline{K}_1, P_n^{2}$, tadpoles, $C_m \oplus C_n$, armed crowns, $[Pm; C^n_2]$, $\langle P_n \odot K_{1,n} \rangle$, the graphs obtained by duplicating an arbitrary vertex and an arbitrary edge of a cycle C_n, total graph of P_n, splitting graph of P_n and $C(m, n)$ are vertex equitable graphs.

In this paper, we prove that $T\hat{O}P_n, T\hat{O}2P_n, T\hat{O}C_n, T\hat{O}C_n$ are vertex equitable graphs. We use the following definitions.

Definition 1.1. [4] Let T be a tree and u_0 and v_0 be two adjacent vertices in T. Let u and v be two pendant vertices of T such that the length of the path u_0-u is equal to the length of the path v_0-v. If the edge u_0v_0 is deleted from T and u and v are joined by an edge uv, then such a transformation of T is called an elementary parallel transformation (ept) and the edge u_0v_0 is called transformable edge.

If by the sequence of ept’s, T can be reduced to a path, then T is called a T_p-tree (transformed tree) and such a sequence regarded as a composition of mappings (ept’s) denoted by P, is called a parallel transformation of T. The path, the image of T under P is denoted as $P(T)$. A T_p-tree and a sequence of two ept’s reducing it to a path are illustrated in Figure-1.

![Figure 1: A T_p-tree and a sequence of two ept’s reducing it to a path](image)

Definition 1.2. Let G_1 be a graph with p vertices and G_2 be any graph. A graph $G_1 \hat{o} G_2$ is obtained from G_1 and p copies of G_2 by identifying one vertex of i^{th} copy of G_2 with i^{th} vertex of G_1.

Definition 1.3. Let G_1 be a graph with p vertices and G_2 be any graph. A graph $G_1 \hat{o} G_2$ is obtained from G_1 and p copies of G_2 by joining one vertex of i^{th} copy of G_2 with i^{th} vertex of G_1 by an edge.

2 Main Result

In this paper, we prove that $T\hat{O}P_n, T\hat{O}2P_n, T\hat{O}C_n, T\hat{O}C_n$ are vertex equitable graphs.

Theorem 2.1. Let T be a T_p-tree on m vertices. Then the graph $T\hat{o}P_n$ is a vertex equitable graph.
Proof. Let T be a T_p-tree with m vertices. By the definition of a transformed tree there exists a parallel transformation P of T such that for the path $P(T)$ we have (i) $V(P(T)) = V(T)$ (ii) $E(P(T)) = (E(T)E_{d})\Box E_{p}$ where E_{d} is the set of edges deleted from T and E_{p} is the set of edges newly added through the sequence $P = (P_1, P_2, \ldots, P_k)$ of the epts used to arrive at the path $P(T)$. Clearly, E_{d} and E_{p} have the same number of edges.

Now denote the vertices of $P(T)$ successively by v_1, v_2, \ldots, v_m starting from one pendant vertex of $P(T)$ right up to the other one. Let $u^i_1, u^i_2, \ldots, u^i_m(1 \leq j \leq m)$ be the vertices of j^{th} copy of P_n. Then $V(T\hat{o}P_n) = \{u^i_j : 1 \leq i \leq n, 1 \leq j \leq m \}$ with $u^i_m = v_j$. The graph $T\hat{o}P_n$ has mn vertices and $mn - 1$ edges. Let $A = \{0, 1, 2, \ldots, \left\lceil \frac{mn-1}{2} \right\rceil \}$.

We define a vertex labeling $f : V(T\hat{o}P_n) \to A$ as follows:

For $1 \leq i \leq n$, let $f(u^i_j) = \left\{ \begin{array}{ll} \frac{n(j-1)}{2} + \left\lfloor \frac{n}{2} \right\rfloor & \text{if } j \text{ is even, } 1 \leq j \leq m \\ \frac{n(j-1)}{2} + \left\lfloor \frac{n}{2} \right\rfloor & \text{if } j \text{ is odd, } 1 \leq j \leq m. \end{array} \right.$

Let v_iv_j be a transformed edge in T for some indices $i, j, 1 \leq i \leq j \leq m$ and let P_1 be the ept that deletes the edge v_iv_j and adds the edge $v_{i+t}v_{j-t}$ where t is the distance of v_i from v_{i+t} as also the distance of v_j from v_{j-t}. Let P be a parallel transformation of T that contains P_1 as one of the constituent epts.

Since $v_{i+t}v_{j-t}$ is an edge in the path $P(T)$, it follows that $i + t + 1 = j - t$ which implies $j = i + 2t + 1$. Therefore, i and j are of opposite parity, that is, i is odd and j is even or vice-versa.

The induced label of the edge v_iv_j is given by

$$f^*(v_iv_j) = f^*(v_{i+v_{i+2t+1}})$$
$$= f(v_i) + f(v_{i+2t+1})$$
$$= \left\{ \begin{array}{ll} \frac{n(i-1)}{2} + \left\lfloor \frac{n}{2} \right\rfloor + \frac{n(i+2t+1)}{2} - \left\lfloor \frac{n}{2} \right\rfloor & \text{if } i \text{ is odd} \\ \frac{n(i-1)}{2} + \left\lfloor \frac{n}{2} \right\rfloor + \frac{n(i+2t+1)}{2} + \left\lfloor \frac{n}{2} \right\rfloor & \text{if } i \text{ is even.} \end{array} \right.$$
$$= n(i + t) \text{ and}$$

$$f^*(v_{i+t}v_{j-t}) = f^*(v_{i+t}v_{i+t+1})$$
$$= f(v_{i+t}) + f(v_{i+t+1})$$
$$= n(i + t).$$

Therefore, $f^*(v_iv_j) = f^*(v_{i+t}v_{j-t})$.

It can be verified that the induced edge labels of $T\hat{o}P_n$ are $1, 2, 3, \ldots, mn - 1$ and for $|v_f(a) - v_f(b)| \leq 1$ for all $a, b \in A$. Hence, $T\hat{o}P_n$ is a vertex equitable graph. \hfill \square

The vertex equitable labeling of $T\hat{o}P_5$ where T is a T_p-tree with 13 vertices is given in Figure 2.
Theorem 2.2. Let T be a T_p-tree on m vertices. Then the graph $T\tilde{o}2P_n$ is a vertex equitable graph.

Proof. Let T be a T_p-tree with m vertices. By the definition of a transformed tree there exists a parallel transformation P of T such that for the path $P(T)$ we have (i) $V(P(T)) = V(T)$ (ii) $E(P(T)) = (E(T) - E_d) \square E_p$ where E_d is the set of edges deleted from T and E_p is the set of edges newly added through the sequence $P = (P_1, P_2, \ldots, P_k)$ of the epts P used to arrive at the path $P(T)$. Clearly, E_d and E_p have the same number of edges.

Now denote the vertices of $P(T)$ successively by v_1, v_2, \ldots, v_m starting from one pendant vertex of $P(T)$ right up to the other one. Let $u_{i,1}^j, u_{i,2}^j, \ldots, u_{i,n}^j$ and $u_{2,1}^j, u_{2,2}^j, \ldots, u_{2,n}^j$ $(1 \leq j \leq m)$ be the vertices of the two vertex disjoint paths joined by the j^{th} vertex of T such that $v_j = u_{1,n}^j = u_{2,n}^j$. Then $V(T\tilde{o}2P_n) = \{v_j, u_{i,1}^j, u_{i,n}^j : 1 \leq i \leq n, 1 \leq j \leq m \text{ with } u_{1,n}^j = u_{2,n}^j = v_j\}$.

Let $A = \left\{0, 1, 2, \ldots, \left\lfloor \frac{m(2n-1)-1}{2} \right\rfloor \right\}$. Define a vertex labeling $f : V(T\tilde{o}2P_n) \rightarrow A$ as follows:

For $1 \leq i \leq n$, let $f(u_{1,i}^j) = \left\{ \begin{array}{ll}
\frac{(2n-1)j}{2} - n + \left\lfloor \frac{i}{2} \right\rfloor & \text{if } j \text{ is even, } 1 \leq j \leq m \\
\frac{(2n-1)(j-1)}{2} + \left\lfloor \frac{i}{2} \right\rfloor & \text{if } j \text{ is odd, } 1 \leq j \leq m
\end{array} \right.$

and $f(u_{2,i}^j) = \left\{ \begin{array}{ll}
\frac{(2n-1)j}{2} - \left\lfloor \frac{i}{2} \right\rfloor & \text{if } j \text{ is even, } 1 \leq j \leq m \\
\frac{(2n-1)(j-1)}{2} + n - \left\lfloor \frac{i}{2} \right\rfloor & \text{if } j \text{ is odd, } 1 \leq j \leq m
\end{array} \right.$

Let v_iv_j be the transformed edge in T for some indices $i, j, 1 \leq i \leq j \leq m$ and let P_t be the ept that deletes the edge v_iv_j and adds the edge $v_{i+t}v_{j-t}$ where t is the distance of v_i from v_{i+t} as
also the distance of \(v_j \) from \(v_{j-t} \). Let \(P \) be a parallel transformation of \(T \) that contains \(P_1 \) as one of the constituent ept's.

Since \(v_{i+t}v_{j-t} \) is an edge in the path \(P(T) \), it follows that \(i + t + 1 = j - t \) which implies \(j = i + 2t + 1 \). Therefore \(i \) and \(j \) are of opposite parity, that is, \(i \) is odd and \(j \) is even or vice-versa.

The induced label of the edge \(v_iv_j \) is given by

\[
\begin{align*}
f^*(v_iv_j) &= f^*(v_iv_{i+2t+1}) \\
&= f(v_i) + f(v_{i+2t+1}) \\
&= (2n - 1)(i + t) \quad \text{and} \\
f^*(v_{i+t}v_{j-t}) &= f^*(v_{i+t}v_{i+t+1}) \\
&= f(v_{i+t}) + f(v_{i+v_{i+t+1}}) \\
&= (2n - 1)(i + t).
\end{align*}
\]

Therefore, \(f^*(v_iv_j) = f^*(v_{i+t}v_{j-t}) \).

It can be verified that the induced edge labels of \(T\delta 2P_n \) are 1, 2, 3, \ldots, \(m(2n - 1) - 1 \) and \(|vf(a) - vf(b)| \leq 1 \) for all \(a, b \in A \). Hence, \(T\delta 2P_n \) is a vertex equitable graph.

The vertex equitable labeling of \(T\delta 2P_4 \) where \(T \) is a \(T_p \)-tree with 10 vertices is given in Figure 3.

![Figure 3](image)

Theorem 2.3. Let \(T \) be a \(T_p \)-tree on \(m \) vertices. Then the graph \(T\delta C_n \) is a vertex equitable graph if \(n \equiv 0, 3(\text{mod } 4) \).
Proof. Let T be a T_p-tree with m vertices. By the definition of a transformed tree there exists a parallel transformation P of T such that for the path $P(T)$ we have (i) $V(P(T)) = V(T)$ (ii) $E(P(T)) = (E(T) - E_d) \square E_p$ where E_d is the set of edges deleted from T and E_p is the set of edges newly added through the sequence $P = (P_1, P_2, \ldots, P_k)$ of the EPTs P used to arrive at the path $P(T)$. Clearly, E_d and E_p have the same number of edges.

Now denote the vertices of $P(T)$ successively by v_1, v_2, \ldots, v_m starting from one pendant vertex of $P(T)$ right up to the other one. Let $u^j_1, u^j_2, \ldots, u^j_n (1 \leq j \leq m)$ be the vertices of j^{th} copy of P_n.

Then $V(T \diamond C_n) = \{ u^j_i : 1 \leq i \leq n, 1 \leq j \leq m \}$ with $u^j_1 = v_j$. Let $A = \{0, 1, 2, \ldots, \left\lfloor \frac{m(n+1)-1}{2} \right\rfloor \}$. Define a vertex labeling $f : V(T \diamond C_n) \rightarrow A$ as follows:

Case (i) $n \equiv 3 (mod \ 4)$.

For $1 \leq j \leq m$ and j is odd,

let $f(u^j_1) = \left\lceil \frac{n}{2} \right\rceil j$,

$f(u^j_2) = \left\lceil \frac{n}{2} \right\rceil (j-1) + \left\lfloor \frac{i}{2} \right\rfloor$ if i is odd, $2 \leq i \leq n$,

$f(u^j_3) = \left\lceil \frac{n}{2} \right\rceil (j-1) + \left\lfloor \frac{i}{2} \right\rfloor$ if i is even, $\left\lceil \frac{n}{2} \right\rceil + 1 \leq i \leq n$.

For $1 \leq j \leq m$ and j is even,

let $f(u^j_1) = \left\lceil \frac{n}{2} \right\rceil (j-1)$,

$f(u^j_2) = \left\lceil \frac{n}{2} \right\rceil (j-1) + \left\lfloor \frac{i}{2} \right\rfloor$ if i is even, $2 \leq i \leq n$,

$f(u^j_3) = \left\lceil \frac{n}{2} \right\rceil (j-1) + \left\lfloor \frac{i}{2} \right\rfloor$ if i is odd, $\left\lceil \frac{n}{2} \right\rceil + 1 \leq i \leq n$.

Let v_i, v_j be a transformed edge in T for some indices $i, j, 1 \leq i \leq j \leq m$ and let P_1 be the ept that deletes the edge v_i, v_j and adds the edge $v_{i+t}v_{j-t}$ where t is the distance of v_i from v_{i+t} as also the distance of v_j from v_{j-t}. Let P be a parallel transformation of T that contains P_1 as one of the constituent epts.

Since $v_{i+t}v_{j-t}$ is an edge in the path $P(T)$, it follows that $i + t + 1 = j - t$ which implies $j = i + 2t + 1$. Therefore, i and j are of opposite parity, that is, i is odd and j is even or vice-versa.

The induced label of the edge $v_i v_j$ is given by

$f^*(v_i v_j) = f^*(v_{i+2t+1}) = f(v_i) + f(v_{i+2t+1})$

$= (n+1)(i + t)$ and

$f^*(v_{i+t}v_{j-t}) = f^*(v_{i+t+1}) = f(v_{i+t}) + f(v_{i+t+1})$

$= (n+1)(i + t)$.
Therefore, $f^*(v_iv_j) = f^*(v_{i+t}v_{j-t})$.

Case (ii) $n \equiv 0 (mod \ 4)$.

For $1 \leq j \leq m$ and j is odd.

let $f(u'_i) = \left\lfloor \frac{(n+1)j}{2} \right\rfloor$,

$f(u'_i) = \left\lfloor \frac{(n+1)(j-1)}{2} + \left\lfloor \frac{i}{2} \right\rfloor \right\rfloor$ if i is odd, $2 \leq i \leq n$,

$f(u'_i) = \begin{cases}
\left\lfloor \frac{(n+1)(j-1)}{2} + \left\lfloor \frac{i}{2} \right\rfloor \right\rfloor & \text{if } i \text{ is even, } 2 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor \\
\left\lfloor \frac{(n+1)(j-1)}{2} + \left\lceil \frac{i}{2} \right\rceil \right\rfloor & \text{if } i \text{ is even, } \left\lceil \frac{n}{2} \right\rceil + 1 \leq i \leq n.
\end{cases}$

For $1 \leq j \leq m$ and j is even.

let $f(u'_i) = \left\lfloor \frac{(n+1)(j-1)}{2} \right\rfloor$,

$f(u'_i) = \left\lfloor \frac{(n+1)(j-1)}{2} + \left\lfloor \frac{i}{2} \right\rfloor \right\rfloor$ if i is odd, $2 \leq i \leq n$,

$f(u'_i) = \begin{cases}
\left\lfloor \frac{(n+1)(j-1)}{2} + \left\lfloor \frac{i}{2} \right\rfloor \right\rfloor & \text{if } i \text{ is even, } 2 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor \\
\left\lfloor \frac{(n+1)(j-1)}{2} + \left\lceil \frac{i}{2} \right\rceil \right\rfloor & \text{if } i \text{ is even, } \left\lceil \frac{n}{2} \right\rceil + 1 \leq i \leq n.
\end{cases}$

Let v_iv_j be a transformed edge in T for some indices $i,j, 1 \leq i \leq j \leq m$ and let P_1 be the ept that deletes the edge v_iv_j and adds the edge $v_{i+t}v_{j-t}$ where t is the distance of v_i from v_{i+t} as also the distance of v_j from v_{j-t}. Let P be a parallel transformation of T that contains P_1 as one of the constituent epts.

Since $v_{i+t}v_{j-t}$ is an edge in the path $P(T)$, it follows that $i + t + 1 = j - t$ which implies $j = i + 2t + 1$. Therefore, i and j are of opposite parity, that is, i is odd and j is even or vice-versa.

The induced label of the edge v_iv_j is given by

$$f^*(v_iv_j) = f^*(v_{i+2t+1}) = f(v_i) + f(v_{i+2t+1}) = (n + 1)(i + t)$$ and

$$f^*(v_{i+t}v_{j-t}) = f^*(v_{i+t}v_{i+t+1}) = f(v_{i+t}) + f(v_{i+t+1}) = (n + 1)(i + t).$$

Therefore, $f^*(v_i v_j) = f^*(v_{i+t} v_{j-t})$.

It can be verified that the induced edge labels of $T\hat{o}C_n$ are $1, 2, 3, \ldots, m(n+1) - 1$ and $|v_f(a) - v_f(b)| \leq 1$ for all $a, b \in A$. Hence $T\hat{o}C_n$ is a vertex equitable graph.

The vertex equitable labeling pattern of $T\hat{o}C_7$, where T is a T_p-tree with 8 vertices, is given in Figure 4.
Theorem 2.4. Let T be a T_p-tree on m vertices. Then the graph $T\tilde{o}C_n$ is a vertex equitable graph if $n \equiv 0, 3 \mod 4$.

Proof. Let T be a T_p-tree with m vertices. By the definition of a transformed tree there exists a parallel transformation P of T such that for the path $P(T)$ we have (i) $V(P(T)) = V(T)$ (ii) $E(P(T)) = (E(T) - E_d) \cup E_p$ where E_d is the set of edges deleted from T and E_p is the set of edges newly added through the sequence $P = (P_1, P_2, \ldots, P_k)$ of the ept’s P used to arrive at the path $P(T)$. Clearly, E_d and E_p have the same number of edges.

Now denote the vertices of $P(T)$ successively by v_1, v_2, \ldots, v_m starting from one pendant vertex of $P(T)$ right up to the other one. Let $u^j_1, u^j_2, \ldots, u^j_m$ ($1 \leq j \leq m$) be the vertices of jth copy of P_n then $V(T\tilde{o}C_n) = \{v_i, u_{ij} : 1 \leq i \leq n, 1 \leq j \leq m\}$ and $E(T\tilde{o}C_n) = E(T) \cup E(C_n) \cup \{v_i u^j_i : 1 \leq j \leq m\}$. Let $A = \{0, 1, 2, \ldots, \left\lfloor \frac{m(n+2)-1}{2} \right\rfloor \}$. Define a vertex labeling $f : V(T\tilde{o}C_n) \to A$ as follows:

Case 1: $n \equiv 3 \mod 4$.

For $1 \leq j \leq m$, let $f(v_i) = \left\{ \begin{array}{ll}
\frac{(i-1)(n+2)}{2} + \frac{n}{2} & \text{if } i \text{ is odd} \\
\frac{(i-2)(n+2)}{2} + 1 + \frac{n}{2} & \text{if } i \text{ is even}
\end{array} \right.$ if i is even and $f(u^j_i) = f(v_i)$.

For $1 \leq j \leq m$ and j is odd,

\[
\begin{align*}
\text{let } f(u^j_i) &= \left\{ \begin{array}{ll}
\frac{(n+2)(j-1)}{2} + \frac{i-1}{2} & \text{if } i \text{ is even, } 2 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor \\
\frac{(n+2)(j-1)}{2} + \frac{i}{2} & \text{if } i \text{ is even, } \left\lceil \frac{n}{2} \right\rceil + 1 \leq i \leq n,
\end{array} \right. \\
f(u^j_i) &= \frac{(n+2)(j-1)}{2} + \frac{i}{2} \text{ if } i \text{ is odd, } 2 \leq i \leq n.
\end{align*}
\]
For $1 \leq j \leq m$ and j is even,
\[
\begin{aligned}
&\text{let } f(u'_j) = \begin{cases}
\frac{(n+2)(j-2)}{2} + 1 + \left\lfloor \frac{n}{2} \right\rfloor + \left\lfloor \frac{i-1}{2} \right\rfloor & \text{if } i \text{ is odd, } 2 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor \\
\frac{(n+2)(j-2)}{2} + 1 + \left\lfloor \frac{n}{2} \right\rfloor + \left\lfloor \frac{i}{2} \right\rfloor & \text{if } i \text{ is even, } \left\lfloor \frac{n}{2} \right\rfloor + 1 \leq i \leq n,
\end{cases}
\end{aligned}
\]
\[
\begin{aligned}
f(u'_j) = \frac{(n+2)(j-2)}{2} + 1 + \left\lfloor \frac{n}{2} \right\rfloor + i & \text{ if } i \text{ is even, } 2 \leq i \leq n.
\end{aligned}
\]

Let v_iv_j be a transformed edge in T for some indices i and j, $1 \leq i \leq j \leq m$ and let P_1 be the ept that deletes this edge v_iv_j and adds the edge $v_{i+t}v_{j-t}$ where t is the distance of v_i from v_{i+t} as also the distance of v_j from v_{j-t}. Let P be a parallel transformation of T that contains P_1 as one of the constituent epts.

Since $v_{i+t}v_{j-t}$ is an edge in the path $P(T)$, it follows that $i + t + 1 = j - t$ which implies $j = i + 2t + 1$. Therefore, i and j are of opposite parity, that is, i is odd and j is even or vice-versa.

The induced label of the edge v_iv_j is given by
\[
\begin{aligned}
f^*(v_iv_j) &= f^*(v_iv_{i+2t+1}) = f(v_i) + f(v_{i+2t+1}) \\
&= (n+2)(i+t) \text{ and }
\end{aligned}
\]
\[
\begin{aligned}
f^*(v_{i+t}v_{j-t}) &= f^*(v_{i+t}v_{i+t+1}) = f(v_{i+t}) + f(v_{i+t+1}) \\
&= (n+2)(i+t).
\end{aligned}
\]

Therefore, $f^*(v_iv_j) = f^*(v_{i+t}v_{j-t})$.

Case (ii) $n \equiv 0(\text{mod } 4)$.

For $1 \leq i \leq m$, let $f(v_i) = \begin{cases}
\frac{i(n+2)}{2} & \text{if } i \text{ is odd} \\
\frac{i(n+2)}{2} & \text{if } i \text{ is even},
\end{cases}$

For $1 \leq j \leq m$ and j is odd,
\[
\begin{aligned}
&\text{let } f(u'_j) = \frac{j(n+2)}{2} - 1 \\
&\text{let } f(u'_j) = \begin{cases}
\frac{(n+2)(j-1)}{2} + \left\lfloor \frac{i-1}{2} \right\rfloor & \text{if } i \text{ is even, } 2 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor \\
\frac{(n+2)(j-1)}{2} + \left\lfloor \frac{i}{2} \right\rfloor & \text{if } i \text{ is even, } \left\lfloor \frac{n}{2} \right\rfloor + 1 \leq i \leq n,
\end{cases}
\end{aligned}
\]
\[
\begin{aligned}
f(u'_j) = \frac{(n+2)(j-1)}{2} + \left\lfloor \frac{i}{2} \right\rfloor & \text{ if } i \text{ is odd, } 2 \leq i \leq n.
\end{aligned}
\]

For $1 \leq j \leq m$ and j is even,
\[
\begin{aligned}
&\text{let } f(u'_j) = \frac{(j-1)(n+2)}{2} + 1, \\
&\text{let } f(u'_j) = \begin{cases}
\frac{(n+2)(j-1)}{2} + \left\lceil \frac{i}{2} \right\rceil & \text{if } i \text{ is even, } 2 \leq i \leq \left\lceil \frac{n}{2} \right\rceil \\
\frac{(n+2)(j-1)}{2} + \left\lceil \frac{i+1}{2} \right\rceil & \text{if } i \text{ is even, } \left\lceil \frac{n}{2} \right\rceil + 1 \leq i \leq n,
\end{cases}
\end{aligned}
\]
\[
\begin{aligned}
f(u'_j) = \frac{(n+2)(j-1)}{2} + \left\lceil \frac{i}{2} \right\rceil & \text{ if } i \text{ is odd, } 2 \leq i \leq n.
\end{aligned}
\]
Let \(v_i v_j \) be a transformed edge in \(T \) for some indices \(i, j, 1 \leq i \leq j \leq m \) and let \(P_1 \) be the ept that deletes the edge \(v_i v_j \) and adds the edge \(v_{i+t} v_{j-t} \) where \(t \) is the distance of \(v_i \) from \(v_{i+t} \) as also the distance of \(v_j \) from \(v_{j-t} \). Let \(P \) be a parallel transformation of \(T \) that contains \(P_1 \) as one of the constituent epts.

Since \(v_{i+t} v_{j-t} \) is an edge in the path \(P(T) \), it follows that \(i + t + 1 = j - t \) which implies \(j = i + 2t + 1 \). Therefore \(i \) and \(j \) are of opposite parity, that is, \(i \) is odd and \(j \) is even or vice-versa.

The induced label of the edge \(v_i v_j \) is given by

\[
\begin{align*}
 f^*(v_i v_j) &= f^*(v_i v_{i+2t+1}) = f(v_i) + f(v_{i+2t+1}) \\
 &= (n + 2)(i + t) \quad \text{and} \\
 f^*(v_{i+t} v_{j-t}) &= f^*(v_{i+t} v_{i+t+1}) = f(v_{i+t}) + f(v_{i+t+1}) \\
 &= (n + 2)(i + t).
\end{align*}
\]

Therefore, \(f^*(v_i v_j) = f^*(v_{i+t} v_{j-t}) \).

It can be verified that the induced edge labels of \(T\tilde{o}C_n \) are \(1, 2, 3, \ldots, m(n + 1) - 1 \) and for all \(a, b \in A \). Hence \(T\tilde{o}C_n \) is a vertex equitable graph.

The vertex equitable labeling pattern of \(T\tilde{o}C_n \), where \(T \) is a \(T_p \)-tree with 8 vertices, is given in Figure 5.

![Figure 5](image-url)
Acknowledgement

The authors thank the referee for the critical comments to improve the presentation of the paper and guidance for the future work.

References

