

journal homepage: http://jac.ut.ac.ir

More On λ_{κ} -closed sets in generalized topological

spaces

^{1,2}Research Center, Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur-628 215, Tamil Nadu, India.
³Bassensh Center, Department of Mathematics, Aditanar Cellege of Arts and Ceiman

³Research Center, Department of Mathematics, Aditanar College of Arts and Science,, Tiruchendur - 628 216, Tamil Nadu, India

ABSTRACT

ARTICLE INFO

In this paper, we introduce λ_{κ} -closed sets and study its properties in generalized topological spaces.

Article history: Received 2, February 2014 Received in revised form 10, July 2014 Accepted 19, December 2014 Available online 30, December 2014

Keyword: Generalized topology, μ -open set, μ -closed set, quasi-topology, strong space, Λ_{κ} -set, λ_{κ} -open set, λ_{κ} -closed set.

AMS subject Classification: Primary 54 A 05.

1 Introduction

The theory of generalized topology was introduced by Császár in [1]. The properties of generalized topology, basic operators, generalized neighborhood systems and some con-

```
*Email: jamunarani1977@gmail.com
†E-mail: jeyajeyanthi@rediffmail.com
```

structions for generalized topologies have been studied by the same author in [1, 2, 3, 4, 5, 6]. It is well known that generalized topology in the sense of Császár [1] is a generalization of topology on a nonempty set. On the other hand, many important collections of sets related with topology on a set form a generalized topology. In this paper we define several subsets in a generalized topological spaces and study their properties.

A nonempty family μ of subsets of a set X is said to be a generalized topology [2] if $\emptyset \in \mu$ and arbitrary union of elements of μ is again in μ . The pair (X, μ) is called a *generalized* topological space and elements of μ are called μ -open sets. $A \subset X$ is μ -closed if X - Ais μ -open. By a space (X, μ) , we always mean a generalized topological space. If $X \in \mu$, (X,μ) is called a strong [3] space. Clearly, (X,μ) is strong if and only if \emptyset is μ -closed if and only if $c_{\mu}(\emptyset) = \emptyset$. In a space (X, μ) , if μ is closed under finite intersection, (X, μ) is called a quasi-topological space [5]. Clearly, every strong, quasi-topological space is a topological space. For $A \subset X$, $c_{\mu}(A)$ is the smallest μ -closed set containing A and $i_{\mu}(A)$ is the largest μ -open set contained in A. Moreover, $X - c_{\mu}(A) = i_{\mu}(X - A)$, for every subset A of X. A subset A of a space (X, μ) is said to be α -open [4] (resp. σ -open [4], π -open [4], b-open [7], β -open [4]) if $A \subset i_{\mu}c_{\mu}i_{\mu}(A)$ (resp. $A \subset c_{\mu}i_{\mu}(A)$, $A \subset i_{\mu}c_{\mu}(A)$, $A \subset i_{\mu}c_{\mu}(A) \cup c_{\mu}i_{\mu}(A)$, $A \subset c_{\mu}i_{\mu}c_{\mu}(A)$). A subset A of a space (X,μ) is said to be α -closed (resp. σ -closed, π -closed, b-closed, β -closed) if X - A is α -open (resp. σ -open, π -open, b-open, β -open). Let (X,μ) be a space and $\zeta = \{\mu, \alpha, \sigma, \pi, b, \beta\}$. For $\kappa \in \zeta$, we consider the space (X, κ) , throughout the paper. For $A \subset \mathcal{M}_{\kappa} = \bigcup \{B \subset X \mid B \in \mu\}$, the subset $\Lambda_{\kappa}(A)$ is defined by $\Lambda_{\kappa}(A) = \bigcap \{ G \mid A \subset G, G \in \kappa \}$. The proof of the following lemma is clear.

Lemma 1.1. Let A, B and $B_{\alpha}, \alpha \in \Delta$ be subsets of \mathcal{M}_{κ} in a space (X, κ) . Then the following properties are hold.

(a) $B \subset \Lambda_{\kappa}(B)$. (b) If $A \subset B$ then $\Lambda_{\kappa}(A) \subset \Lambda_{\kappa}(B)$. (c) $\Lambda_{\kappa}(\Lambda_{\kappa}(B)) = \Lambda_{\kappa}(B)$. (d) If $A \in k$, then $A = \Lambda_{\kappa}(A)$. (e) $\Lambda_{\kappa}(\cup\{B_{\alpha} \mid \alpha \in \Delta\}) = \cup\{\Lambda_{\kappa}(B_{\alpha}) \mid \alpha \in \Delta\}$. (f) $\Lambda_{\kappa}(\cap\{B_{\alpha} \mid \alpha \in \Delta\}) \subset \cap\{\Lambda_{\kappa}(B_{\alpha}) \mid \alpha \in \Delta\}$.

2 More on λ_{κ} -closed sets

In a space (X, κ) , a subset B of \mathcal{M}_{κ} is called a Λ_{κ} -set if $B = \Lambda_{\kappa}(B)$. We state the following theorem without proof.

Theorem 2.1. For subsets A and A_{α} , $\alpha \in \Delta$ of \mathcal{M}_{κ} in a space (X, κ) , the following hold.

(a) $\Lambda_{\kappa}(A)$ is a Λ_{κ} -set.

(b) If $A \in \kappa$, then A is a Λ_{κ} -set.

(c) If A_{α} is a Λ_{κ} -set for each $\alpha \in \Delta$, then $\cap \{A_{\alpha} \mid \alpha \in \Delta\}$ is a Λ_{κ} -set.

(d) If A_{α} is a Λ_{κ} - set for each $\alpha \in \Delta$, then $\cup \{A_{\alpha} \mid \alpha \in \Delta\}$ is a Λ_{κ} -set.

A subset A of \mathcal{M}_{κ} in a space (X, κ) is said to be a λ_{κ} -closed set if $A = T \cap C$, where T is a Λ_{κ} -set and C is a κ -closed set. The complement of a λ_{κ} -closed set is called a λ_{κ} -open set. We denote the collection of all λ_{κ} -open (resp., λ_{κ} -closed) set of X by $\lambda_{\kappa}O(X)$ (resp., $\lambda_{\kappa}C(X)$). The following theorem gives the characterization of λ_{κ} -closed sets.

Lemma 2.2. Let $A \subset \mathcal{M}_{\kappa}$ be a subset in a space (X, κ) . Then the following are equivalent.

(a) A is a λ_{κ} -closed set.

(b) $A = T \cap c_{\kappa}(A)$, where T is a Λ_{κ} -set.

(c) $A = \Lambda_{\kappa}(A) \cap c_{\kappa}(A)$.

Let (X, κ) be a space. A point $x \in \mathcal{M}_{\kappa}$ is called a λ_{κ} -cluster point of A if for every λ_{κ} -open set U of \mathcal{M}_{κ} containing x we have $A \cap U \neq \emptyset$. The set of all λ_{κ} -cluster points of A is called the λ_{κ} -closure of A and is denoted by $c_{\lambda_{\kappa}}(A)$.

Lemma 2.3 gives some properties of $c_{\lambda_{\kappa}}$, the easy proof of which is omitted.

Lemma 2.3. Let (X, κ) be a space and $A, B \subset \mathcal{M}_{\kappa}$. Then the following properties hold. (a) $A \subset c_{\lambda_{\kappa}}(A)$.

(b) $c_{\lambda_{\kappa}}(A) = \cap \{F \mid A \subset F \text{ and } F \text{ is } \lambda_{\kappa} - closed\}.$

(c) If $A \subset B$, then $c_{\lambda_{\kappa}}(A) \subset c_{\lambda_{\kappa}}(B)$.

(d) A is a λ_{κ} -closed set if and only if $A = c_{\lambda_{\kappa}}(A)$.

(e) $c_{\lambda_{\kappa}}(A)$ is a λ_{κ} -closed set.

Let (X, κ) be a space and $A \subset \mathcal{M}_{\kappa}$. A point $x \in \mathcal{M}_{\kappa}$ is said to be a κ -limit point of A if for each κ -open set U containing $x, U \cap \{A - \{x\}\} \neq \emptyset$. The set of all κ -limit points of A is called a κ -derived set of A and is denoted by $D_{\kappa}(A)$.

Let (X, κ) be a space and $A \subset \mathcal{M}_{\kappa}$. A point $x \in \mathcal{M}_{\kappa}$ is said to be a λ_{κ} -limit point of A if for each λ_{κ} -open set U containing $x, U \cap \{A - \{x\}\} \neq \emptyset$. The set of all λ_{κ} -limit points of A is called a λ_{κ} -derived set of A and is denoted by $D_{\lambda_{\kappa}}(A)$.

Theorem 2.4 gives some properties of λ_{κ} -derived sets and Theorem 2.5 gives the characterization of λ_{κ} -derived sets.

Theorem 2.4. Let (X, κ) be a space and $A, B \subset \mathcal{M}_{\kappa}$. Then the following hold.

(a) $D_{\lambda_{\kappa}}(A) \subset D_{\kappa}(A)$. (b) If $A \subset B$, then $D_{\lambda_{\kappa}}(A) \subset D_{\lambda_{\kappa}}(B)$.

(c) $D_{\lambda_{\kappa}}(A) \cup D_{\lambda_{\kappa}}(B) \subset D_{\lambda_{\kappa}}(A \cup B)$ and $D_{\lambda_{\kappa}}(A \cap B) \subset D_{\lambda_{\kappa}}(A) \cap D_{\lambda_{\kappa}}(B)$.

$$(\mathrm{d})D_{\lambda_{\kappa}}D_{\lambda_{\kappa}}(A) - A \subset D_{\lambda_{\kappa}}(A).$$

(e) $D_{\lambda_{\kappa}}(A \cup D_{\lambda_{\kappa}}(A)) \subset A \cup D_{\lambda_{\kappa}}(A).$

Proof. (a) Since every κ -open set is a λ_{κ} -open set, it follows.

(b) Let $x \in D_{\lambda_{\kappa}}(A)$. Let U be any λ_{κ} -open set containing x. Then $U \cap \{A - \{x\}\} \neq \emptyset$ and so $V \cap \{B - \{x\}\} \neq \emptyset$, since $A \subset B$. Therefore, $x \in D_{\lambda_{\kappa}}(B)$.

(c) Since $A \cap B \subset A, B$ we have $D_{\lambda_{\kappa}}(A \cap B) \subset D_{\lambda_{\kappa}}(A) \cap D_{\lambda_{\kappa}}(B)$. Since $A, B \subset A \cup B$,

we have $D_{\lambda_{\kappa}}(A) \cup D_{\lambda_{\kappa}}(B) \subset D_{\lambda_{\kappa}}(A \cup B)$.

(d) Let $x \in D_{\lambda_{\kappa}} D_{\lambda_{\kappa}}(A) - A$ and U be a λ_{κ} -open set containing x. Then $U \cap (D_{\lambda_{\kappa}}(A) - \{x\}) \neq \emptyset$. Let $y \in U \cap (D_{\lambda_{\kappa}}(A) - \{x\})$. Since $y \in D_{\lambda_{\kappa}}(A)$ and $x \neq y \in U$, $U \cap (A - \{y\}) \neq \emptyset$. Let $z \in U \cap (A - \{y\})$. Then $z \in U \cap (A - \{y\})$ implies that $z \in U$ and $z \in A - \{y\}$ and so $z \neq y$. Since $x \notin A$, $z \in U \cap (A - \{x\})$ and so $U \cap (A - \{x\}) \neq \emptyset$. Therefore, $x \in D_{\lambda_{\kappa}}(A)$. (e) Let $x \in D_{\lambda_{\kappa}}(A \cup D_{\lambda_{\kappa}}(A))$. If $x \in A$, the result is clear. Suppose $x \notin A$. Since $x \in D_{\lambda_{\kappa}}(A \cup D_{\lambda_{\kappa}}(A)) - A$, then for λ_{κ} -open set U containing $x, U \cap ((A \cup D_{\lambda_{\kappa}}(A)) - \{x\}) \neq \emptyset$. Thus $U \cap (A - \{x\}) \neq \emptyset$ or $U \cap (D_{\lambda_{\kappa}}(A) - \{x\}) \neq \emptyset$. Now it follows from (d) that $U \cap (A - \{x\}) \neq \emptyset$. Hence, $x \in D_{\lambda_{\kappa}}(A)$. Therefore, in all the cases $D_{\lambda_{\kappa}}(A \cup D_{\lambda_{\kappa}}(A)) \subset A \cup D_{\lambda_{\kappa}}(A)$.

Theorem 2.5. Let (X, κ) be space and $A \subset X$. Then $c_{\lambda_{\kappa}}(A) = A \cup D_{\lambda_{\kappa}}(A)$.

Proof. Since $D_{\lambda_{\kappa}}(A) \subset c_{\lambda_{\kappa}}(A)$, $A \cup D_{\lambda_{\kappa}}(A) \subset c_{\lambda_{\kappa}}(A)$. On the other hand, let $x \in c_{\lambda_{\kappa}}(A)$. If $x \in A$, the proof is complete. If $x \notin A$, then each λ_{κ} -open set U containing x intersects A at a point distinct from x. Therefore, $x \in D_{\lambda_{\kappa}}(A)$. Thus, $c_{\lambda_{\kappa}}(A) \subset A \cup D_{\lambda_{\kappa}}(A)$ and so $c_{\lambda_{\kappa}}(A) = A \cup D_{\lambda_{\kappa}}(A)$ which completes the proof.

Let (X, κ) be a space and $A \subset X$. Then $i_{\lambda_{\kappa}}(A)$ is the union of all λ_{κ} -open set contained in A.

Theorem 2.6 gives some properties of $i_{\lambda_{\kappa}}$.

Theorem 2.6. Let (X, κ) be a space and $A, B \subset X$. Then the following hold.

(a) A is a λ_{κ} -open set if and only if $A = i_{\lambda_{\kappa}}(A)$.

(b) $i_{\lambda_{\kappa}}(i_{\lambda_{\kappa}}(A)) = i_{\lambda_{\kappa}}(A).$

(c) $i_{\lambda_{\kappa}}(A) = A - D_{\lambda_{\kappa}}(X - A).$

(d) $X - i_{\lambda_{\kappa}}(A) = c_{\lambda_{\kappa}}(X - A).$

(e) $X - c_{\lambda_{\kappa}}(A) = i_{\lambda_{\kappa}}(X - A).$

(f) $A \subset B$ then $i_{\lambda_{\kappa}}(A) \subset i_{\lambda_{\kappa}}(B)$.

(g) $i_{\lambda_{\kappa}}(A) \cup i_{\lambda_{\kappa}}(B) \subset i_{\lambda_{\kappa}}(A \cup B)$ and $i_{\lambda_{\kappa}}(A) \cap i_{\lambda_{\kappa}}(B) \supset i_{\lambda_{\kappa}}(A \cap B)$.

Proof. (c) If $x \in A - D_{\lambda_{\kappa}}(X - A)$, then $x \notin D_{\lambda_{\kappa}}(X - A)$ and so, there exists a λ_{κ} -open set U containing x such that $U \cap (X - A) = \emptyset$. Then $x \in U \subset A$ and hence $x \in i_{\lambda_{\kappa}}(A)$. That is, $A - D_{\lambda_{\kappa}}(X - A) \subset i_{\lambda_{\kappa}}(A)$. On the other hand, if $x \in i_{\lambda_{\kappa}}(A)$, then $x \notin D_{\lambda_{\kappa}}(X - A)$, since $i_{\lambda_{\kappa}}(A)$ is a λ_{κ} -open set and $i_{\lambda_{\kappa}}(A) \cap (X - A) = \emptyset$. Hence, $i_{\lambda_{\kappa}}(A) = A - D_{\lambda_{\kappa}}(X - A)$. (d) $X - i_{\lambda_{\kappa}}(A) = X - (A - D_{\lambda_{\kappa}}(X - A)) = (X - A) \cup D_{\lambda_{\kappa}}(X - A) = c_{\lambda_{\kappa}}(X - A)$.

Let (X, κ) be a space and $A \subset X$. Then $b_{\kappa}(A) = A - i_{\kappa}(A)$ is said to be κ -border of A. Let (X, κ) be a space and $A \subset X$. Then $b_{\lambda_{\kappa}}(A) = A - i_{\lambda_{\kappa}}(A)$ is said to be λ_{κ} -border of A.

Theorem 2.7 gives some properties of $b_{\lambda_{\kappa}}$.

Theorem 2.7. Let (X, κ) be a space and $A \subset X$. Then the following hold.

- (a) $b_{\lambda_{\kappa}}(A) \subset b_{\kappa}(A)$. (b) $A = i_{\lambda_{\kappa}}(A) \cup b_{\lambda_{\kappa}}(A)$.
- (c) $i_{\lambda_{\kappa}}(A) \cap b_{\lambda_{\kappa}}(A) = \emptyset$.

(d) A is a λ_{κ} -open set if and only if $b_{\lambda_{\kappa}}(A) = \emptyset$. (e) $b_{\lambda_{\kappa}}(i_{\lambda_{\kappa}}(A)) = \emptyset$. (f) $i_{\lambda_{\kappa}}(b_{\lambda_{\kappa}}(A)) = \emptyset$. (g) $b_{\lambda_{\kappa}}(b_{\lambda_{\kappa}}(A)) = b_{\lambda_{\kappa}}(A).$ (h) $b_{\lambda_{\kappa}}(A) = A \cap c_{\lambda_{\kappa}}(X - A).$ (i) $b_{\lambda_{\kappa}}(A) = D_{\lambda_{\kappa}}(X - A).$ **Proof.** (f) If $x \in i_{\lambda_{\kappa}}(b_{\lambda_{\kappa}}(A))$, then $x \in b_{\lambda_{\kappa}}(A)$. On the other hand, since $b_{\lambda_{\kappa}}(A) \subset$ A, $x \in i_{\lambda_{\kappa}}(b_{\lambda_{\kappa}}(A)) \subset i_{\lambda_{\kappa}}(A)$. Hence $x \in i_{\lambda_{\kappa}}(A) \cap b_{\lambda_{\kappa}}(A)$ which contradicts (c). Thus, $i_{\lambda_{\kappa}}(b_{\lambda_{\kappa}}(A)) = \emptyset.$ (h) $b_{\lambda_{\kappa}}(A) = A - i_{\lambda_{\kappa}}(A) = A - (X - c_{\lambda_{\kappa}}(X - A)) = A \cap c_{\lambda_{\kappa}}(X - A).$ (i) $b_{\lambda_{\kappa}}(A) = A - i_{\lambda_{\kappa}}(A) = A - (A - D_{\lambda_{\kappa}}(X - A)) = D_{\lambda_{\kappa}}(X - A).$ Let (X, κ) be a space and $A \subset X$. Then $F_{\kappa}(A) = c_{\kappa}(A) - i_{\kappa}(A)$ is said to be the κ -frontier of A. Let (X,κ) be a space and $A \subset X$. Then $F_{\lambda_{\kappa}}(A) = c_{\lambda_{\kappa}(A)} - i_{\lambda_{\kappa}}(A)$ is said to be the λ_{κ} -frontier of A. Theorem 2.8 gives some properties of $F_{\lambda_{\kappa}}$. **Theorem 2.18** Let (X, κ) be a space and $A \subset X$. Then the following hold. (a) $F_{\lambda_{\kappa}}(A) \subset F_{\kappa}(A)$. (b) $c_{\lambda_{\kappa}}(A) = i_{\lambda_{\kappa}}(A) \cup F_{\lambda_{\kappa}}(A).$ (c) $i_{\lambda_{\mathcal{F}}}(A) \cap F_{\lambda_{\mathcal{F}}}(A) = \emptyset$. (d) $b_{\lambda_{\kappa}}(A) \subset F_{\lambda_{\kappa}}(A)$. (e) $F_{\lambda_{\kappa}}(A) = b_{\lambda_{\kappa}}(A) \cup D_{\lambda_{\kappa}}(A).$ (f) A is a λ_{κ} -open set if and only if $F_{\lambda_{\kappa}}(A) = D_{\lambda_{\kappa}}(A)$. (g) $F_{\lambda_{\kappa}}(A) = c_{\lambda_{\kappa}}(A) \cap c_{\lambda_{\kappa}}(X-A)$.(h) $F_{\lambda_{\kappa}}(A) = F_{\lambda_{\kappa}}(X-A)$. (i) $F_{\lambda_{\kappa}}(A)$ is a λ_{κ} -closed set. (j) $F_{\lambda_{\kappa}}(F_{\lambda_{\kappa}}(A)) \subset F_{\lambda_{\kappa}}(A)$. (k) $F_{\lambda_{\kappa}}(i_{\lambda_{\kappa}}(A)) \subset F_{\lambda_{\kappa}}(A).$ (1) $F_{\lambda_{\kappa}}(c_{\lambda_{\kappa}}(A)) \subset F_{\lambda_{\kappa}}(A).$ (m) $i_{\lambda_{\kappa}}(A) = A - F_{\lambda_{\kappa}}(A).$ **Proof.** (b) $i_{\lambda_{\kappa}}(A) \cup F_{\lambda_{\kappa}}(A) = i_{\lambda_{\kappa}}(A) \cup (c_{\lambda_{\kappa}}(A) - i_{\lambda_{\kappa}}(A)) = c_{\lambda_{\kappa}}(A).$ (c) $i_{\lambda_{\kappa}}(A) \cap F_{\lambda_{\kappa}}(A) = i_{\lambda_{\kappa}}(A) \cap (c_{\lambda_{\kappa}}(A) - i_{\lambda_{\kappa}}(A)) = \emptyset.$ (e) Since $i_{\lambda_{\kappa}}(A) \cup F_{\lambda_{\kappa}}(A) = i_{\lambda_{\kappa}}(A) \cup b_{\lambda_{\kappa}}(A) \cup D_{\lambda_{\kappa}}(A), \ F_{\lambda_{\kappa}}(A) = b_{\lambda_{\kappa}}(A) \cup D_{\lambda_{\kappa}}(A).$ (g) $F_{\lambda_{\kappa}}(A) = c_{\lambda_{\kappa}}(A) - i_{\lambda_{\kappa}}(A) = c_{\lambda_{\kappa}}(A) \cap c_{\lambda_{\kappa}}(X - A).$ $(\mathbf{i})c_{\lambda_{\kappa}}(F_{\lambda_{\kappa}}(A)) = c_{\lambda_{\kappa}}(c_{\lambda_{\kappa}}(A) \cap c_{\lambda_{\kappa}}(X-A)) \subset c_{\lambda_{\kappa}}(c_{\lambda_{\kappa}}(A)) \cap c_{\lambda_{\kappa}}(c_{\lambda_{\kappa}}(X-A)) = F_{\lambda_{\kappa}}(A).$ Hence $F_{\lambda_{\kappa}}(A)$ is a λ_{κ} -closed set. (j) $F_{\lambda_{\kappa}}(F_{\lambda_{\kappa}}(A)) = c_{\lambda_{\kappa}}(F_{\lambda_{\kappa}}(A) \cap c_{\lambda_{\kappa}}(X - F_{\lambda_{\kappa}}(A)) \subset c_{\lambda_{\kappa}}(F_{\lambda_{\kappa}}(A)) = F_{\lambda_{\kappa}}(A).$ (1) $F_{\lambda_{\kappa}}(c_{\lambda_{\kappa}}(A)) = c_{\lambda_{\kappa}}((c_{\lambda_{\kappa}}(A)) - i_{\lambda_{\kappa}}(c_{\lambda_{\kappa}}(A))) = c_{\lambda_{\kappa}}(A) - i_{\lambda_{\kappa}}(c_{\lambda_{\kappa}}(A)) \subset c_{\lambda_{\kappa}}(A) - i_{\lambda_{\kappa}}(A) = c_{\lambda_{\kappa}}(A) - c_{\lambda_{\kappa}}(A) = c_{\lambda_{\kappa}}(A) - c_{\lambda_{\kappa}}(A) F_{\lambda_{\kappa}}(A).$ (m) $A - F_{\lambda_{\kappa}}(A) = A - (c_{\lambda_{\kappa}}(A) - i_{\lambda_{\kappa}}(A)) = i_{\lambda_{\kappa}}(A).$

Let (X, κ) be a space and $A \subset X$. Then $E_{\kappa}(A) = i_{\kappa}(X - A)$ is said to be κ -exterior of A.

Let (X, κ) be a space and $A \subset X$. Then $E_{\lambda_{\kappa}}(A) = i_{\lambda_{\kappa}}(X - A)$ is said to be λ_{κ} -exterior of A.

Theorem 2.9 gives some properties of $E_{\lambda_{\kappa}}$.

Theorem 2.9. Let (X, κ) be a space and $A \subset X$. Then the following hold.

(a) $E_{\kappa}(A) \subset E_{\lambda_{\kappa}}(A)$ where $E_{\kappa}(A)$ denotes the exterior of A. (b) $E_{\lambda_{\kappa}}(A)$ is λ_{κ} -open. (c) $E_{\lambda_{\kappa}}(A) = i_{\lambda_{\kappa}}(X - A) = X - c_{\lambda_{\kappa}}(A).$ (d) $E_{\lambda_{\kappa}}(E_{\lambda_{\kappa}}(A)) = i_{\lambda_{\kappa}}(c_{\lambda_{\kappa}}(A)).$ (e) If $A \subset B$, then $E_{\lambda_{\kappa}}(A) \supset E_{\lambda_{\kappa}}(B)$. (f) $E_{\lambda_{\kappa}}(A \cup B) \subset E_{\lambda_{\kappa}}(A) \cup E_{\lambda_{\kappa}}(B).$ $(\mathbf{g})E_{\lambda_{\kappa}}(A\cup B)\supset E_{\lambda_{\kappa}}(A)\cap E_{\lambda_{\kappa}}(B).$ (h) $E_{\lambda_{\kappa}}(X) = \emptyset$. (i) $E_{\lambda_{\kappa}}(\emptyset) = X.$ (j) $E_{\lambda_{\kappa}}(A) = E_{\lambda_{\kappa}}(X - E_{\lambda_{\kappa}}(A)).$ (k) $i_{\lambda_{\kappa}}(A) \subset E_{\lambda_{\kappa}}(E_{\lambda_{\kappa}}(A)).$ (1) $X = i_{\lambda_{\kappa}}(A) \cup E_{\lambda_{\kappa}}(A) \cup F_{\lambda_{\kappa}}(A).$ **Proof.** (d) $E_{\lambda_{\kappa}}(E_{\lambda_{\kappa}}(A)) = E_{\lambda_{\kappa}}(X - c_{\lambda_{\kappa}}(A)) = i_{\lambda_{\kappa}}(X - (X - x_{\lambda_{\kappa}}(A))) = i_{\lambda}(c_{\lambda}(A)).$ $(\mathbf{j})E_{\lambda_{\kappa}}(X - E_{\lambda_{\kappa}}(A)) = E_{\lambda_{\kappa}}(X - i_{\lambda_{\kappa}}(X - A)) = i_{\lambda_{\kappa}}(X - (X - i_{\lambda_{\kappa}}(X - A))) = i_{\lambda_{\kappa}}(i_{\lambda_{\kappa}}(X - A))$ $A)) = i_{\lambda_{\kappa}}(X - A) = E_{\lambda}(A).$ (k) $i_{\lambda_{\kappa}}(A) \subset i_{\lambda_{\kappa}}(c_{\lambda_{\kappa}}(A)) = i_{\lambda_{\kappa}}(X - i_{\lambda_{\kappa}}(X - A)) = i_{\lambda_{\kappa}}(X - E_{\lambda_{\kappa}}(A)) = E_{\lambda_{\kappa}}(E_{\lambda_{\kappa}}(A)).$

References

- [1] A. Császár, Generalized open sets, Acta Math. Hungar., 75(1-2)(1997), 65 87.
- [2] A. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96(2002), 351 - 357.
- [3] A. Császár, Extremally disconnected generalized topologies, textitAnnales Univ. Sci. Budapest., 47(2004), 91 - 96.
- [4] A. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar., 106(2005), 351 - 357.
- [5] A. Császár, Further remarks on the formula for γ -interior, Acta Math. Hungar., 113(4)(2006),325-332.
- [6] Á. Császár, Remarks on quasi-topologies, Acta Math. Hungar., 119(2007), 197-200.
- [7] P. Sivagami, Remarks on γ -interior, Acta Math. Hungar., 119(2008), 81 94.