On the domination number of generalized Petersen graphs

Abolfazl Poureidi* ${ }^{* 1}$
${ }^{1}$ Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood, Iran.

ABSTRACT

Let n and k be integers such that $3 \leq 2 k+1 \leq n$. The generalized Petersen graph $G P(n, k)=(V, E)$ is the graph with $V=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \cup\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E=\left\{u_{i} u_{i+1}, u_{i} v_{i}, v_{i} v_{i+k}: 1 \leq i \leq n\right\}$, where addition is in modulo n. A subset $D \subseteq V$ is a dominating set of $G P(n, k)$ if for each $v \in V \backslash D$ there is a vertex $u \in D$ adjacent to v. The minimum cardinality of a dominating set of $G P(n, k)$ is called the domination number of $G P(n, k)$.
In this paper we give a dynamic programming algorithm for computing the domination number of a given $G P(n, k)$ in $\mathcal{O}(n)$ time and space for every $k=\mathcal{O}(1)$.

Keyword: Dominating set, Algorithm, Dynamic programming, Generalized Petersen graph.

ARTICLE INFO

Article history:

Received 14, January 2020
Received in revised form 19, October 2020
Accepted 15 November 2020
Available online 30, December 2020

AMS subject Classification: 05C69, 05C85.

1 Introduction

Let $G=(V, E)$ be a graph with the vertex set V and the edge set E. Here, we study finite, simple and undirected graphs. The open neighborhood of a vertex $v \in V$ is $N_{G}(v)=$ $\{u \in V: u v \in E\}$ and the closed neighborhood of v is $N_{G}[v]=N_{G}(v) \cup\{v\}$. The degree of $v \in V$, denoted by $\operatorname{deg}_{G}(v)$, is the cardinality of $N_{G}(v)$, that is, $\operatorname{deg}_{G}(v)=\left|N_{G}(v)\right|$.

[^0]Journal of Algorithms and Computation 52 issue 2, December 2020, PP. 57-65

A dominating set (DS) of G is a set $D \subseteq V$ with the property that every vertex $v \in V \backslash D$ is adjacent to at least one vertex $u \in D$. The minimum cardinality of a dominating set of G is called the domination number of G, denoted by $\gamma(G)$.
Let n and k be integers such that $3 \leq 2 k+1 \leq n$. Watkins [5] has introduced the generalized Petersen graph $G P(n, k)=(V, E)$ as the graph with the vertex set $V=$ $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \cup\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and the edge set $E=\left\{u_{i} u_{i+1}, u_{i} v_{i}, v_{i} v_{i+k}: 1 \leq i \leq n\right\}$, where the subscripts are added modulo n.
Behzad et al. [1] have given an upper bound on, and then Yan et al. [6] and Liu and Zhang [4] have determined the exact value for the domination number of some classes of generalized Petersen graphs. The problem of finding a minimum dominating set of an arbitrary graph is NP-complete [2]. There are polynomial time algorithms to compute the domination number of some of class of graphs such as trees, interval, permutation and series-parallel graphs [3, Chapter 12]. In this paper, we give a linear time and space algorithm based on dynamic programming approach to compute the domination number of $\operatorname{GP}(n, k)$, where $k=\mathcal{O}(1)$.

2 Preliminaries

In the rest of the paper we fix integers n and k such that $3 \leq 2 k+1 \leq n$. Let $G P(n, 3)=$ (V, E) be the generalized Petersen graph with $V=\left\{u_{1}, \ldots, u_{n}\right\} \cup\left\{v_{1}, \ldots, v_{n}\right\}$ and $E=$ $\left\{u_{i} u_{i+1}, u_{i} v_{i}, v_{i} v_{i+k}: 1 \leq i \leq n\right\}$. The semi-generalized Petersen graph $\operatorname{SGP}(n, k)=$ $\left(V_{s}, E_{s}\right)$ (corresponding to $G P(n, k)$) is a graph with the vertex set

$$
V_{s}=V \cup V_{l} \cup V_{r},
$$

where $V_{l}=\left\{v_{1-k}, v_{2-k}, \ldots, v_{0}, u_{0}\right\}$ and $V_{r}=\left\{u_{n+1}, v_{n+1}, v_{n+2}, \ldots, v_{n+k}\right\}$ and the edge set

$$
E_{s}=\left(E \backslash\left\{u_{1} u_{n}, v_{n-k+i} v_{i}: 1 \leq i \leq k\right\}\right) \cup E_{l} \cup E_{r},
$$

where $E_{l}=\left\{v_{1-k} v_{1}, v_{2-k} v_{2}, \ldots, v_{0} v_{k}, u_{0} u_{1}, u_{0} v_{0}\right\}$ and $E_{r}=\left\{u_{n+1} v_{n+1}, u_{n} u_{n+1}\right.$, $\left.v_{n-k+1} v_{n+1}, v_{n-k+2} v_{n+2}, \ldots, v_{n} v_{n+k}\right\}$. See Fig. 1.
We have $\operatorname{deg}_{S G P(n, k)}(v)=3$ for every vertex $v \in V$ and $\operatorname{deg}_{S G P(n, k)}(v)<3$ for every vertex $v \in V_{l} \cup V_{r}$.
Let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be a connected subgraph of $S G P(n, k)$. A subset $D \subseteq V^{\prime}$ is a semi dominating set (SDS) of G^{\prime} if for each vertex $v \in V^{\prime} \backslash D$ with $\operatorname{deg}_{G^{\prime}}(v)=3$ there is a vertex $u \in D$ adjacent to v. Let G_{i}^{k} be the subgraph of $\operatorname{SGP}(n, k)$ induced by $V_{i}=V_{l} \cup\left\{u_{1}, \ldots, u_{i}\right\} \cup\left\{v_{1}, \ldots, v_{i}, v_{i+1}, v_{i+k-1}\right\}$ for each $1 \leq i \leq n+1$. We obtain $G_{n+1}^{k}=S G P(n, k)$. See Fig. 1(b). Let $b_{1}, b_{2}, \ldots, b_{2 k+2} \in\{0,1\}$ and let $i \in\{1,2, \ldots, n+$ $1\}$. In the following we define $\gamma^{b_{2 k+2} b_{2 k+1} \cdots b_{1}}\left(G_{i}^{k}\right)$. Here, $b_{2 k+2}, b_{2 k+1}, \ldots, b_{1}$ are corresponding to vertices $v_{i-k}, v_{i-k+1}, \ldots, v_{i-1}, u_{i-1}, u_{i}, v_{i}, v_{i+1}, \ldots, v_{i+k-1}$, respectively. Let $j \in\{1, \ldots, 2 k+2\}$. The value $\gamma^{b_{2 k+2} \cdots b_{1}}\left(G_{i}^{k}\right)$ is the minimum cardinality of a SDS D of G_{i}^{k} such that if $b_{j}=0$, then the corresponding vertex of b_{j} is not in D and if $b_{j}=1$, then the corresponding vertex of b_{j} is in D. Since there are $2^{2 k+2}=4^{k+1}$ different cases for defining $\gamma^{b_{2 k+2} \cdots b_{1}}\left(G_{j}^{k}\right)$, in the following we give the complete formal definition of some cases.

(a)

(b)

Figure 1: Illustrating (a) $G P(8,3)$ and (b) $\operatorname{SGP}(8,3)$ and G_{7}^{3}.

- $\gamma^{0 \cdots 0}\left(G_{i}^{k}\right)=\min \left\{|D|: D\right.$ is a SDS of $G_{i}^{k}, v_{i-k} \notin D, v_{i-k+1} \notin D, \ldots, v_{i-1} \notin D$, $\left.u_{i-1} \notin D, u_{i} \notin D, v_{i} \notin D, v_{i+1} \notin D, \ldots, v_{i+k-1} \notin D\right\}$,
- $\gamma^{0 \cdots 01}\left(G_{i}^{k}\right)=\min \left\{|D|: D\right.$ is a SDS of $G_{i}^{k}, v_{i-k} \notin D, v_{i-k+1} \notin D, \ldots, v_{i-1} \notin D$, $\left.u_{i-1} \notin D, u_{i} \notin D, v_{i} \notin D, v_{i+1} \notin D, \ldots, v_{i+k-2} \notin D, v_{i+k-1} \in D\right\}$ and
- $\gamma^{1 \cdots 1}\left(G_{i}^{k}\right)=\min \left\{|D|: D\right.$ is a SDS of $G_{i}^{k}, v_{i-k} \in D, v_{i-k+1} \in D, \ldots, v_{i-1} \in D$, $\left.u_{i-1} \in D, u_{i} \in D, v_{i} \in D, v_{i+1} \in D, \ldots, v_{i+k-1} \in D\right\}$.
A $\gamma^{0 \cdots 0}\left(G_{i}^{k}\right)$-set is a minimum SDS D of G_{i}^{k} such that $v_{i-k} \notin D, v_{i-k+1} \notin D, \ldots, v_{i-1} \notin D$, $u_{i-1} \notin D, u_{i} \notin D, v_{i} \notin D, v_{i+1} \notin D, \ldots, v_{i+k-1} \notin D$. Similarly, we define the others. See Fig. 2.

Figure 2: Illustrating (a) a $\gamma^{10011000}\left(G_{3}^{3}\right)$-set and (b) a $\gamma^{11000110}\left(G_{4}^{3}\right)$-set; note that the vertices of SDSs are solid.

Let $X_{n, k}$ be the set of all minimum SDS of $\operatorname{SGP}(n, k)$ such that

```
Algorithm 3.1: \(\mathrm{DT}(G P(n, k))\)
    Input: The generalized Petersen graph \(G P(n, 3)=(V, E)\).
    Output: The domination number of \(G P(n, 3)\).
    Let \(\operatorname{SGP}(n, 3)\) be the semi generalized Petersen graph corresponding to \(G P(n, 3)\).
    for \(b_{1}, \ldots, b_{2 k+2} \in\{0,1\}\) do
        \(\gamma^{b_{2 k+2} \cdots b_{1}}\left(G_{1}\right)=b_{1}+\cdots+b_{2 k+2} ;\)
        for \(\left(x_{1}, \ldots, x_{2 k+2} \in\{0,1\}\right) \wedge\left(x_{2 k+2} \cdots x_{1} \neq b_{2 k+2} \cdots b_{1}\right)\) do
            \(\gamma^{x_{2 k+2} \cdots x_{1}}\left(G_{1}\right)=\infty ;\)
        for \(i=1\) to \(n+1\) do
            for \(x_{1}, \ldots, x_{2 k+2} \in\{0,1\}\) do
                    Compute \(\gamma^{x_{2 k+2} \cdots x_{1}}\left(G_{i}\right)\) by Lemma 3.
            \(\left|X_{b_{2 k+2} \cdots b_{1}}\right|=\gamma^{b_{2 k+2} \cdots b_{1}}\left(G_{n+1}\right) ;\)
    \(\gamma=\min \left\{\left|X_{b_{2 k+2} \cdots b_{1}}\right|-\left(b_{1}+\cdots+b_{2 k+2}\right): b_{1}, \ldots, b_{k} \in\{0,1\}\right\} ;\)
    return \(\gamma\);
```

(i) $u_{j} \in D$ if and only if $u_{n+j} \in D$ for each $j \in\{0,1\}$, and
(ii) $v_{j} \in D$ if and only if $v_{n+j} \in D$ for each $j \in\{-k+1,-k+2, \ldots, k\}$.

The following proposition is clear.
proposition $1\left|X_{n, k}\right|=4^{k+1}$.
Let $j \in\{-k+1,-k+2, \ldots, k\}$ and $l \in\{0,1\}$ and assume $a_{j}, d_{l} \in\{0,1\}$. Let a_{j} be corresponding to vertices v_{j}, v_{n+j} and let d_{l} be corresponding to vertices u_{l}, u_{n+l}. We define $X_{a_{-k+1} a_{-k+2} \cdots a_{0} d_{0} d_{1} a_{1} a_{2} \cdots a_{k}}$ as a minimum SDS of $\operatorname{SGP}(n, k)$ such that if $a_{j}=0$ (respectively, $d_{l}=0$), then their corresponding vertices are not in $X_{a_{-k+1} \cdots a_{0} d_{0} d_{1} a_{1} \cdots a_{k}}$ and if $a_{j}=1$ (respectively, $d_{k}=1$), then their corresponding vertices are in $X_{a_{-k+1} \cdots a_{0} d_{0} d_{1} a_{1} \cdots a_{k}}$. We obtain $X_{n, k}=\left\{X_{b_{2 k+2} \cdots b_{1}}: b_{1}, \ldots, b_{2 k+2} \in\{0,1\}\right\}$.

3 Algorithm

In this section we give an algorithm (Algorithm 3.1) to compute the domination number of the generalized Petersen graph $G P(n, k)$. In order to prove that Algorithm 3.1 works correctly we need the following lemmas. The main idea of our algorithm is the following lemma.
Lemma 1. Let $G P(n, k)=(V, E)$ and let D be a set of $X_{n, k}$ such that $|D \cap V| \leq|S \cap V|$ for every set $S \in X_{n, k}$. Then, $D \cap V$ is a minimum DS of $G P(n, k)$. Proof. Recall $V_{l}=\left\{v_{1-k}, \ldots, v_{0}, u_{0}\right\}$ and $V_{r}=\left\{u_{n+1}, v_{n+1}, \ldots, v_{n+k}\right\}$. Let $D^{\prime}=D \cap V$. We first prove that D^{\prime} is a DS of $G P(n, k)$. By Note ??, we have $\operatorname{deg}_{S G P(n, k)}(v)=3$ for every vertex $v \in V$. Assume $v \in V \backslash D^{\prime}$. Since D is a SDS of $\operatorname{SGP}(n, k)$, there is a vertex $u \in D$ adjacent to v. If $N_{S G P(n, k)}(v) \cap D^{\prime} \neq \emptyset$, then there is nothing to be proven. If $N_{S G P(n, k)}(v) \cap D^{\prime}=\emptyset$, then $N_{S G P(n, k)}(v) \cap D \subseteq V_{l} \cup V_{r}$. Assume without loss of generality
that $u=v_{j} \in N_{S G P(n, k)}(v) \cap D$ for some $1-k \leq j \leq 0$. By the definition of $\operatorname{SGP}(n, k)$, $N_{S G P(n, 3)}\left(v_{j}\right)=\left\{v_{j+k}\right\}$ if $j \neq 0$ and $N_{S G P(n, 3)}\left(v_{0}\right)=\left\{v_{k}, u_{0}\right\}$ and so $v=v_{j+k}$. Because $D \in X_{n, k}$ and $v_{j} \in D$, we deduce $v_{n+j} \in D$. Since $v_{n+j} \in N_{G P(n, k)}\left(v_{j+k}\right)$, hence D^{\prime} is a DS of $G P(n, k)$.
Suppose for a contradiction that D^{\prime} is a not a minimum DS of $G P(n, k)$. Assume that Z^{\prime} is a DS of $G P(n, k)$ with $\left|Z^{\prime}\right|<\left|D^{\prime}\right|$. We construct the set Z as follows. Initialize Z to be Z^{\prime}. If $u_{1} \in Z^{\prime}$, then we add u_{n+1} to Z, if $u_{n} \in Z^{\prime}$, then we add u_{0} to Z, if $v_{j} \in D$ for some $j \in\{1,2, \ldots, k\}$, then we add v_{n+j} to Z and if $v_{j} \in D$ for some $j \in\{n-k+1, n-k+2, \ldots, n\}$, then we add v_{j-n} to Z. So, $Z \in X_{n, k}$ with $|Z \cap V|=$ $\left|Z^{\prime}\right|<\left|D^{\prime}\right|=|D \cap V|$, a contradiction.
In order to compute all sets of $X_{n, k}$ we need the following lemma.
Lemma 2. Let $b_{1}, b_{2}, \ldots, b_{2 k+2} \in\{0,1\}$, let $i \in\{1,2, \ldots, n+1\}$ and let either $b_{k+3}+$ $b_{k+2} \geq 1$ or $b_{k+1}=b_{1}=1$. Then,
(i) $\gamma^{b_{2 k+2} \cdots b_{k+4} 000 b_{k} \cdots b_{2} 0}\left(G_{i+1}^{k}\right)=\gamma^{1 b_{2 k+2} \cdots b_{k+4} 100 b_{k} \cdots b_{2}}\left(G_{i}^{k}\right)$,
(ii) $\gamma^{b_{2 k+2} \cdots b_{k+4} 000 b_{k} \cdots b_{2} 1}\left(G_{i+1}^{k}\right)=\min \left\{\gamma^{0 b_{2 k+2} \cdots b_{k+4} 100 b_{k} \cdots b_{2}}\left(G_{i}^{k}\right), \gamma^{1 b_{2 k+2} \cdots b_{k+4} 100 b_{k} \cdots b_{2}}\left(G_{i}^{k}\right)\right\}$ +1,
(iii) $\gamma^{b_{2 k+2} \cdots b_{k+4} 001 b_{k} \cdots b_{2} 0}\left(G_{i+1}^{k}\right)=\min \left\{\gamma^{1 b_{2 k+2} \cdots b_{k+4} 000 b_{k} \cdots b_{2}}\left(G_{i}^{k}\right), \gamma^{1 b_{2 k+2} \cdots b_{k+4} 100 b_{k} \cdots b_{2}}\left(G_{i}^{k}\right)\right\}$ +1,
(iv) $\gamma^{b_{2 k+2} \cdots b_{1}}\left(G_{i+1}^{k}\right)=\min \left\{\gamma^{0 b_{2 k+2} \cdots b_{k+4} 0 b_{k+2} b_{k+3} b_{k} \cdots b_{2}}\left(G_{i}^{k}\right), \gamma^{0 b_{2 k+2} \cdots b_{k+4} 1 b_{k+2} b_{k+3} b_{k} \cdots b_{2}}\left(G_{i}^{k}\right)\right.$, $\left.\gamma^{1 b_{2 k+2} \cdots b_{k+4} 0 b_{k+2} b_{k+3} b_{k} \cdots b_{2}}\left(G_{i}^{k}\right), \gamma^{1 b_{2 k+2} \cdots b_{k+4} 1 b_{k+2} b_{k+3} b_{k} \cdots b_{2}}\left(G_{i}^{k}\right),\right\}+b_{k+1}+b_{1}$.

Proof Let $j \in\{2, \ldots, k-1, k, k+4, \ldots, 2 k+1,2 k+2\}$. We first prove (i). Let D be a $\gamma^{b_{2 k+2} \cdots b_{k+4} 000 b_{k} \cdots b_{2} 0}\left(G_{i+1}^{k}\right)$-set. So, all vertices $v_{i}, u_{i}, u_{i+1}, v_{i+k}$ are not in D and the corresponding vertex to b_{j} is in D if $b_{j}=1$ and is not in D if $b_{j}=0$. See Fig. 3(a). Since $N_{G_{i+1}^{k}}\left(v_{i}\right)=\left\{u_{i}, v_{i-k}, v_{i+k}\right\}, N_{G_{i+1}^{k}}\left(u_{i}\right)=\left\{u_{i-1}, u_{i+1}, v_{i}\right\}$ and D is a SDS of G_{i+1}^{k}, we deduce that both vertices v_{i-k} and u_{i-1} are in D. Hence, D is a SDS of G_{i}^{k} such that the corresponding vertex to b_{j} is in D if $b_{j}=1$ and is not in D if $b_{j}=0, v_{i-k} \in D, u_{i-1} \in D$, $u_{i} \notin D$ and $v_{i} \notin D$ and so $\gamma^{1 b_{2 k+2} \cdots b_{k+4} 100 b_{k} \cdots b_{2}}\left(G_{i}^{k}\right) \leq|D|$, that is,

$$
\begin{equation*}
\gamma^{1 b_{2 k+2} \cdots b_{k+4} 100 b_{k} \cdots b_{2}}\left(G_{i}^{k}\right) \leq \gamma^{b_{2 k+2} \cdots b_{k+4} 000 b_{k} \cdots b_{2} 0}\left(G_{i+1}^{k}\right) \tag{1}
\end{equation*}
$$

Conversely, let S be a $\gamma^{1 b_{2 k+2} \cdots b_{k+4} 100 b_{k} \cdots b_{2}}\left(G_{i}^{k}\right)$-set. So, $v_{i-k} \in S, u_{i-1} \in S, u_{i} \notin S, v_{i} \notin S$ and the corresponding vertex to b_{j} is in S if $b_{j}=1$ and is not in S if $b_{j}=0$. See Fig. 3(b). Since both vertices v_{i-k} and u_{i-1} are in S, we deduce that S is a SDS of G_{i+1}^{k} such that $v_{i+k} \notin S, u_{i+1} \notin S, u_{i} \notin S, v_{i} \notin S$ and the corresponding vertex to b_{j} is in S if $b_{j}=1$ and is not in S if $b_{j}=0$ and so $\gamma^{b_{2 k+2} \cdots b_{k+4} 000 b_{k} \cdots b_{2} 0}\left(G_{i+1}^{k}\right) \leq|S|$, that is, $\gamma^{b_{2 k+2} \cdots b_{k+4} 000 b_{k} \cdots b_{2} 0}\left(G_{i+1}^{k}\right) \leq \gamma^{1 b_{2 k+2} \cdots b_{k+4} 100 b_{k} \cdots b_{2}}\left(G_{i}^{k}\right)$. This, together with Inequality (1), completes the proof of (i).
Now, we prove (ii). Let D be a $\gamma^{b_{2 k+2} \cdots b_{k+4} 000 b_{k} \cdots b_{2} 1}\left(G_{i+1}^{k}\right)$-set. So, all vertices v_{i}, u_{i}, u_{i+1} are not in $D, v_{i+k} \in D$ and the corresponding vertex to b_{j} is in D if $b_{j}=1$ and is not in D if $b_{j}=0$. Since $N_{G_{i+1}^{k}}\left(v_{i}\right)=\left\{u_{i}, v_{i-k}, v_{i+k}\right\}, N_{G_{i+1}^{k}}\left(u_{i}\right)=\left\{u_{i-1}, u_{i+1}, v_{i}\right\}$ and D is a SDS

Figure 3: Illustrating the subgraph G_{i+1}^{k}.
of G_{i+1}^{k}, we deduce $u_{i-1} \in D$. Because v_{i} is dominated by $v_{i+k}(\in D)$, either $v_{i-k} \in D$ or $v_{i-k} \notin D$. In the following we consider these cases.

- Assume $v_{i-k} \in D$. Let $X=D \backslash\left\{v_{i+k}\right\}$. So, X is a SDS of G_{i}^{k} such that the corresponding vertex to b_{j} is in X if $b_{j}=1$ and is not in X if $b_{j}=0, v_{i-k} \in X$, $u_{i-1} \in X, u_{i} \notin X$ and $v_{i} \notin X$ and so $\gamma^{1 b_{2 k+2} \cdots b_{k+4} 100 b_{k} \cdots b_{2}}\left(G_{i}^{k}\right) \leq|X|=|D|-1$, that is,

$$
\begin{equation*}
\gamma^{1 b_{2 k+2} \cdots b_{k+4} 100 b_{k} \cdots b_{2}}\left(G_{i}^{k}\right)+1 \leq \gamma^{b_{2 k+2} \cdots b_{k+4} 000 b_{k} \cdots b_{2} 1}\left(G_{i+1}^{k}\right) . \tag{2}
\end{equation*}
$$

- Assume $v_{i-k} \notin D$. Let $X=D \backslash\left\{v_{i+k}\right\}$. So, X is a SDS of G_{i}^{k} such that the corresponding vertex to b_{j} is in X if $b_{j}=1$ and is not in X if $b_{j}=0, v_{i-k} \notin X$, $u_{i-1} \in X, u_{i} \notin X$ and $v_{i} \notin X$ and so $\gamma^{0 b_{2 k+2} \cdots b_{k+4} 100 b_{k} \cdots b_{2}}\left(G_{i}^{k}\right) \leq|X|=|D|-1$, that is,

$$
\begin{equation*}
\gamma^{0 b_{2 k+2} \cdots b_{k+4} 100 b_{k} \cdots b_{2}}\left(G_{i}^{k}\right)+1 \leq \gamma^{b_{2 k+2} \cdots b_{k+4} 000 b_{k} \cdots b_{2} 1}\left(G_{i+1}^{k}\right) . \tag{3}
\end{equation*}
$$

Conversely, let S_{0} be a $\gamma^{0 b_{2 k+2} \cdots b_{k+4} 100 b_{k} \cdots b_{2}}\left(G_{i}^{k}\right)$-set and let $X_{0}=S_{0} \cup\left\{v_{i+k}\right\}$. So, $v_{i-k} \notin X_{0}$, $u_{i-1} \in X_{0}, u_{i} \notin X_{0}, v_{i} \notin X_{0}$ and the corresponding vertex to b_{j} is in X_{0} if $b_{j}=1$ and is not in X_{0} if $b_{j}=0$. Because both vertices v_{i+k} and u_{i-1} are in X_{0}, we deduce that X_{0} is a SDS of G_{i+1}^{k} such that $v_{i} \notin X_{0}, u_{i} \notin X_{0}, u_{i+1} \notin X_{0}, v_{i+k} \in X_{0}$ and the corresponding vertex to b_{j} is in X_{0} if $b_{j}=1$ and is not in X_{0} if $b_{j}=0$ and so $\gamma^{b_{2 k+2} \cdots b_{k+4} 000 b_{k} \cdots b_{2} 1}\left(G_{i+1}^{k}\right) \leq\left|X_{0}\right|=\left|S_{0}\right|+1$, that is,

$$
\begin{equation*}
\gamma^{b_{2 k+2} \cdots b_{k+4} 000 b_{k} \cdots b_{2} 1}\left(G_{i+1}^{k}\right) \leq \gamma^{0 b_{2 k+2} \cdots b_{k+4} 100 b_{k} \cdots b_{2}}\left(G_{i}^{k}\right)+1 . \tag{4}
\end{equation*}
$$

Let S_{1} be a $\gamma^{1 b_{2 k+2} \cdots b_{k+4} 100 b_{k} \cdots b_{2}}\left(G_{i}^{k}\right)$-set and let $X_{1}=S_{1} \cup\left\{v_{i+k}\right\}$. So, $v_{i-k} \in X_{1}, u_{i-1} \in X_{1}$, $u_{i} \notin X_{1}, v_{i} \notin X_{1}$ and the corresponding vertex to b_{j} is in X_{1} if $b_{j}=1$ and is not in X_{1} if $b_{j}=0$. Because both vertices v_{i+k} and u_{i-1} are in X_{1}, we deduce that X_{1} is a SDS of G_{i+1}^{k} such that $v_{i} \notin X_{1}, u_{i} \notin X_{1}, u_{i+1} \notin X_{1}, v_{i+k} \in X_{1}$ and the corresponding vertex to b_{j} is in X_{1} if $b_{j}=1$ and is not in X_{1} if $b_{j}=0$ and so $\gamma^{b_{2 k+2} \cdots b_{k+4} 000 b_{k} \cdots b_{2} 1}\left(G_{i+1}^{k}\right) \leq\left|X_{1}\right|=$
$\left|S_{1}\right|+1$, that is, $\gamma^{b_{2 k+2} \cdots b_{k+4} 000 b_{k} \cdots b_{2} 1}\left(G_{i+1}^{k}\right) \leq \gamma^{1 b_{2 k+2} \cdots b_{k+4} 100 b_{k} \cdots b_{2}}\left(G_{i}^{k}\right)+1$. This, together with Inequalities (2)-(4), completes the proof of (ii).
Similarly, we can prove (iii).
Here, we prove (iv). Assume $j \in\{2, \ldots, k, k+2, \ldots, 2 k+2\}$ and let D be a $\gamma^{b_{2 k+2} \cdots b_{1}}\left(G_{i+1}^{k}\right)$ set such that either $b_{k+3}+b_{k+2} \geq 1$ or $b_{k+1}=b_{1}=1$. We have $N_{G_{i+1}^{k}}\left(v_{i}\right)=\left\{u_{i}, v_{i-k}, v_{i+k}\right\}$ and $N_{G_{i+1}^{k}}\left(u_{i}\right)=\left\{u_{i-1}, u_{i+1}, v_{i}\right\}$. We first assume $b_{k+3}+b_{k+2} \geq 1$. Hence, either $b_{k+3}=1$ or $b_{k+2}=1$.

- If $b_{k+3}=0$, then $v_{i} \notin D$ and $b_{k+2}=1$ and so $u_{i} \in D$. Hence, u_{i} dominates v_{i}.
- If $b_{k+2}=0$, then $u_{i} \notin D$ and $b_{k+3}=1$ and so $v_{i} \in D$. Hence, v_{i} dominates u_{i}.
- If $b_{k+3}=1$ and $b_{k+2}=1$, then both vertices $u_{i}, v_{i} \in D$.

We deduce either $v_{i-k} \in D$ or $v_{i-k} \notin D$ and either $u_{i-1} \in D$ or $u_{i-1} \notin D$. If $b_{k+1}=b_{1}=1$, then both vertices v_{i+k} and u_{i+1} are in D and so if $v_{i} \notin D$ (respectively, $u_{i} \notin D$), then v_{i+k} (respectively, u_{i+1}) dominates v_{i} (respectively, u_{i}). Therefore, either $v_{i-k} \in D$ or $v_{i-k} \notin D$ and either $u_{i-1} \in D$ or $u_{i-1} \notin D$. We obtain that if either $b_{k+3}+b_{k+2} \geq 1$ or $b_{k+1}=b_{1}=1$, then either $v_{i-k} \in D$ or $v_{i-k} \notin D$ and either $u_{i-1} \in D$ or $u_{i-1} \notin D$. In the following we consider these cases. Let $X=D$ if $u_{i+1} \notin D$ (i.e., $b_{k+1}=0$) and $v_{i+k} \notin D$ (i.e., $b_{1}=0$), let $X=D \backslash\left\{u_{i+1}\right\}$ if $u_{i+1} \in D$ (i.e., $b_{k+1}=1$) and $v_{i+k} \notin D$ (i.e., $b_{1}=0$), let $X=D \backslash\left\{v_{i+k}\right\}$ if $u_{i+1} \notin D$ (i.e., $b_{k+1}=0$) and $v_{i+k} \in D$ (i.e., $b_{1}=1$) and let $X=D \backslash\left\{v_{i+k}, u_{i+1}\right\}$ if $u_{i+1} \in D$ (i.e., $b_{k+1}=1$) and $v_{i+k} \in D$ (i.e., $b_{1}=1$). We deduce $|X|=|D|-\left(b_{k+1}+b_{1}\right)$.
(a) Assume $v_{i-k} \in D$ and $u_{i-1} \in D$. So, X is a SDS of G_{i}^{k} such that the corresponding vertex to b_{j} is in X if $b_{j}=1$ and is not in X if $b_{j}=0, v_{i-k} \in X$ and $u_{i-1} \in X$ and so $\gamma^{1 b_{2 k+2} \cdots b_{k+4} 1 b_{k+2} b_{k+3} b_{k} \cdots b_{2}}\left(G_{i}^{k}\right) \leq|X|=|D|-\left(b_{k+1}+b_{1}\right)$, that is,

$$
\begin{equation*}
\gamma^{1 b_{2 k+2} \cdots b_{k+4} 1 b_{k+2} b_{k+3} b_{k} \cdots b_{2}}\left(G_{i}^{k}\right)+b_{k+1}+b_{1} \leq \gamma^{b_{2 k+2} \cdots 1}\left(G_{i+1}^{k}\right) . \tag{5}
\end{equation*}
$$

(b) Assume $v_{i-k} \notin D$ and $u_{i-1} \in D$. Similar to the previous case, we have

$$
\begin{equation*}
\gamma^{0 b_{2 k+2} \cdots b_{k+4} 1 b_{k+2} b_{k+3} b_{k} \cdots b_{2}}\left(G_{i}^{k}\right)+b_{k+1}+b_{1} \leq \gamma^{b_{2 k+2} \cdots 1}\left(G_{i+1}^{k}\right) \tag{6}
\end{equation*}
$$

(c) Assume $v_{i-k} \in D$ and $u_{i-1} \notin D$. Similar to Case (a), we obtain

$$
\begin{equation*}
\gamma^{1 b_{2 k+2} \cdots b_{k+4} 0 b_{k+2} b_{k+3} b_{k} \cdots b_{2}}\left(G_{i}^{k}\right)+b_{k+1}+b_{1} \leq \gamma^{b_{2 k+2} \cdots 1}\left(G_{i+1}^{k}\right) . \tag{7}
\end{equation*}
$$

(d) Assume $v_{i-k} \notin D$ and $u_{i-1} \notin D$. Similar to Case (a), we deduce

$$
\begin{equation*}
\gamma^{0 b_{2 k+2} \cdots b_{k+4} 0 b_{k+2} b_{k+3} b_{k} \cdots b_{2}}\left(G_{i}^{k}\right)+b_{k+1}+b_{1} \leq \gamma^{b_{2 k+2} \cdots 1}\left(G_{i+1}^{k}\right) . \tag{8}
\end{equation*}
$$

Conversely, assume that S is a SDS of G_{i}^{k}, either $b_{k+3}+b_{k+2} \geq 1$ or $b_{k+1}=b_{1}=1$ and $j \in\{1, \ldots, 2 k+2\}$. Let $X=S$ if $b_{k+1}=0$ and $b_{1}=0$, let $X=S \cup\left\{u_{i+1}\right\}$ if $b_{k+1}=1$ and $b_{1}=0$, let $X=S \cup\left\{v_{i+k}\right\}$ if $b_{k+1}=0$ and $b_{1}=1$ and let $X=S \cup\left\{v_{i+k}, u_{i+1}\right\}$ if $b_{k+1}=1$ and $b_{1}=1$. We deduce that X is a SDS of G_{i+1}^{k} with $|X|=|S|+b_{k+1}+b_{1}$.
Assume that S is a $\gamma^{00_{2 k+2} \cdots b_{k+4} 0 b_{k+2} b_{k+3} b_{k} \cdots b_{2}}\left(G_{i}^{k}\right)$-set. So, X is a SDS of G_{i+1}^{k} such that the corresponding vertex to b_{j} is in X if $b_{j}=1$ and is not in X if $b_{j}=0$ and so $\gamma^{0 b_{2 k+2} \cdots b_{k+4} 0 b_{k+2} b_{k+3} b_{k} \cdots b_{2}}\left(G_{i}^{k}\right) \leq|X|=|S|+b_{k+1}+b_{1}$, that is,

$$
\begin{equation*}
\gamma^{b_{2 k+2} \cdots b_{1}}\left(G_{i+1}^{k}\right) \leq \gamma^{0 b_{2 k+2} \cdots b_{k+4} 0 b_{k+2} b_{k+3} b_{k} \cdots b_{2}}\left(G_{i}^{k}\right)++b_{k+1}+b_{1} . \tag{9}
\end{equation*}
$$

Similarly, if S is a $\gamma^{0 b_{2 k+2} \cdots b_{k+4} 1 b_{k+2} b_{k+3} b_{k} \cdots b_{2}}\left(G_{i}^{k}\right)$-set, then we obtain

$$
\begin{equation*}
\gamma^{b_{2 k+2} \cdots b_{1}}\left(G_{i+1}^{k}\right) \leq \gamma^{0 b_{2 k+2} \cdots b_{k+4} 1 b_{k+2} b_{k+3} b_{k} \cdots b_{2}}\left(G_{i}^{k}\right)++b_{k+1}+b_{1} . \tag{10}
\end{equation*}
$$

Similarly, if S is a $\gamma^{1 b_{2 k+2} \cdots b_{k+4} 0 b_{k+2} b_{k+3} b_{k} \cdots b_{2}}\left(G_{i}^{k}\right)$-set, then we have

$$
\begin{equation*}
\gamma^{b_{2 k+2} \cdots b_{1}}\left(G_{i+1}^{k}\right) \leq \gamma^{1 b_{2 k+2} \cdots b_{k+4} 0 b_{k+2} b_{k+3} b_{k} \cdots b_{2}}\left(G_{i}^{k}\right)++b_{k+1}+b_{1} . \tag{11}
\end{equation*}
$$

Similarly, if S is a $\gamma^{1 b_{2 k+2} \cdots b_{k+4} 1 b_{k+2} b_{k+3} b_{k} \cdots b_{2}}\left(G_{i}^{k}\right)$-set, then we deduce

$$
\begin{equation*}
\gamma^{b_{2 k+2} \cdots b_{1}}\left(G_{i+1}^{k}\right) \leq \gamma^{1 b_{2 k+2} \cdots b_{k+4} 1 b_{k+2} b_{k+3} b_{k} \cdots b_{2}}\left(G_{i}^{k}\right)++b_{k+1}+b_{1} . \tag{12}
\end{equation*}
$$

Inequalities (5)-(12) complete the proof of (iv).
Now we are in a position to compute all sets of $X_{n, k}$.
Lemma 3. Let $b_{1}, \ldots, b_{2 k+2} \in\{0,1\}$. We can compute $X_{b_{2 k+2} \cdots b_{1}}$ in $\mathcal{O}\left(4^{k} n\right)$ time and space. Proof Let $x_{1}, \ldots, x_{2 k+2} \in\{0,1\}$. Because we would like to compute $X_{b_{2 k+2} \cdots b_{1}}$, initialize $\gamma^{b_{2 k+2} \cdots b_{1}}\left(G_{1}\right)$ to be $b_{1}+\cdots+b_{2 k+2}$ and $\gamma^{x_{2 k+2} \cdots x_{1}}\left(G_{1}\right)$ to be ∞ for every $x_{2 k+2} \cdots x_{1} \neq$ $b_{2 k+2} \cdots b_{1}$. Then, by Lemma 3 we compute $\gamma^{x_{2 k+2} \cdots x_{1}}\left(G_{2}\right)$ for each $x_{1}, \ldots, x_{2 k+2} \in\{0,1\}$ and repeat this process to compute $\gamma^{x_{2 k+2} \cdots x_{1}}\left(G_{n+1}\right)$ for each $x_{1}, \ldots, x_{2 k+2} \in\{0,1\}$. In the end of this process, we have $\left|X_{b_{2 k+2} \cdots b_{1}}\right|=\gamma^{b_{2 k+2} \cdots b_{1}}\left(G_{n+1}\right)$. During this process we can also compute $X_{b_{2 k+2} \cdots b_{1}}$. By Lemma 3, the time and space complexity of this Algorithm is $\mathcal{O}\left(4^{k} n\right)$.
Theorem 1. Algorithm 3.1 on input the generalized Petersen graph $G P(n, k)$ returns the domination number of $G P(n, k)$ in $\mathcal{O}\left(n 16^{k}\right)$ time and space. Proof Let $b_{1}, \ldots, b_{2 k+2} \in$ $\{0,1\}$ and $G P(n, k)=(V, E)$. By Lemma 3, Algorithm 3.1 on input $G P(n, k)$ in Line 9 computes $\left|X_{b_{2 k+2} \cdots b_{1}}\right|$. By the definition of $X_{b_{2 k+2} \cdots b_{1}}$, we deduce that $\left|X_{b_{2 k+2} \cdots b_{1}} \cap V\right|=$ $\left|X_{b_{2 k+2} \cdots b_{1}}\right|-\left(b_{1}+\cdots+b_{2 k+2}\right)$. By Lemma 3, $\gamma(G P(n, k))=\min \left\{\left|X_{x_{2 k+2} \cdots x_{1}} \cap V\right|\right.$: $\left.x_{1}, \ldots, x_{2 k+2} \in\{0,1\}\right\}$. So, Algorithm 3.1 on input $G P(n, k)$ in Line 10 computes the domination number of $G P(n, k)$ and returns this value in Line 11. We obtain that the time and space complexity of Algorithm 3.1 on input $G P(n, k)$ is $\mathcal{O}\left(n 16^{k}\right)$.
By Theorem 3 we have the following result.
Corollary 1. Algorithm 3.1 on input the generalized Petersen graph $G P(n, k)$ returns the domination number of $G P(n, k)$ in $\mathcal{O}(n)$ time and space, where $k \in \mathcal{O}(1)$.

References

[1] Behzad, A., Behzad, M., and Praeger, C.E., On the domination number of the generalized Petersen graphs Discrete Math. 308 (2008) 603-610.
[2] Garey, M.R., and Johnson, D.S., Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, NewYork, (1979).
[3] Haynes, T.W., Hedetniemi S.T., and Slater, P.J., Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York (1998).
[4] Liu, J., and Zhang, X., The exact domination number of generalized Petersen graphs $P(n, k)$ with $n=2 k$ and $n=2 k+2$, Comp. Appl. Math. 33 (2014) 497-506.
[5] Watkins, M., A theorem on Tait colorings with an application to the generalized Petersen graph, J. Combin. Theory 6 (1969) 152-164.
[6] Yan, H., Kang, L., and Xu, G., The exact domination number of the generalized Petersen graphs, Discrete Math. 309 (2009) 2596-2607.

[^0]: *Corresponding author: A. Poureidi. Email: a.poureidi@shahroodut.ac.ir

