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ABSTRACT ARTICLE INFO

Let n and k be integers such that 3 ≤ 2k + 1 ≤ n.
The generalized Petersen graph GP (n, k) = (V,E) is
the graph with V = {u1, u2, . . . , un} ∪ {v1, v2, . . . , vn}
and E = {uiui+1, uivi, vivi+k : 1 ≤ i ≤ n}, where addi-
tion is in modulo n. A subset D ⊆ V is a dominating set
of GP (n, k) if for each v ∈ V \D there is a vertex u ∈ D
adjacent to v. The minimum cardinality of a dominat-
ing set of GP (n, k) is called the domination number of
GP (n, k).
In this paper we give a dynamic programming algo-
rithm for computing the domination number of a given
GP (n, k) in O(n) time and space for every k = O(1).
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1 Introduction

Let G = (V,E) be a graph with the vertex set V and the edge set E. Here, we study
finite, simple and undirected graphs. The open neighborhood of a vertex v ∈ V is NG(v) =
{u ∈ V : uv ∈ E} and the closed neighborhood of v is NG[v] = NG(v) ∪ {v}. The degree
of v ∈ V , denoted by degG(v), is the cardinality of NG(v), that is, degG(v) = |NG(v)|.
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A dominating set (DS) of G is a set D ⊆ V with the property that every vertex v ∈ V \D
is adjacent to at least one vertex u ∈ D. The minimum cardinality of a dominating set
of G is called the domination number of G, denoted by γ(G).
Let n and k be integers such that 3 ≤ 2k + 1 ≤ n. Watkins [5] has introduced the
generalized Petersen graph GP (n, k) = (V,E) as the graph with the vertex set V =
{u1, u2, . . . , un} ∪ {v1, v2, . . . , vn} and the edge set E = {uiui+1, uivi, vivi+k : 1 ≤ i ≤ n},
where the subscripts are added modulo n.
Behzad et al. [1] have given an upper bound on, and then Yan et al. [6] and Liu and
Zhang [4] have determined the exact value for the domination number of some classes of
generalized Petersen graphs. The problem of finding a minimum dominating set of an
arbitrary graph is NP-complete [2]. There are polynomial time algorithms to compute
the domination number of some of class of graphs such as trees, interval, permutation
and series-parallel graphs [3, Chapter 12]. In this paper, we give a linear time and space
algorithm based on dynamic programming approach to compute the domination number
of GP (n, k), where k = O(1).

2 Preliminaries

In the rest of the paper we fix integers n and k such that 3 ≤ 2k+ 1 ≤ n. Let GP (n, 3) =
(V,E) be the generalized Petersen graph with V = {u1, . . . , un} ∪ {v1, . . . , vn} and E =
{uiui+1, uivi, vivi+k : 1 ≤ i ≤ n}. The semi-generalized Petersen graph SGP (n, k) =
(Vs, Es) (corresponding to GP (n, k)) is a graph with the vertex set

Vs = V ∪ Vl ∪ Vr,

where Vl = {v1−k, v2−k, . . . , v0, u0} and Vr = {un+1, vn+1, vn+2, . . . , vn+k} and the edge set

Es = (E \ {u1un, vn−k+ivi : 1 ≤ i ≤ k}) ∪ El ∪ Er,

where El = {v1−kv1, v2−kv2, . . . , v0vk, u0u1, u0v0} and Er = {un+1vn+1, unun+1,
vn−k+1vn+1, vn−k+2vn+2, . . . , vnvn+k}. See Fig. 1.
We have degSGP (n,k)(v) = 3 for every vertex v ∈ V and degSGP (n,k)(v) < 3 for every vertex
v ∈ Vl ∪ Vr.
Let G′ = (V ′, E ′) be a connected subgraph of SGP (n, k). A subset D ⊆ V ′ is a semi
dominating set (SDS) of G′ if for each vertex v ∈ V ′ \ D with degG′(v) = 3 there
is a vertex u ∈ D adjacent to v. Let Gk

i be the subgraph of SGP (n, k) induced by
Vi = Vl ∪ {u1, . . . , ui} ∪ {v1, . . . , vi, vi+1, vi+k−1} for each 1 ≤ i ≤ n + 1. We obtain
Gk

n+1 = SGP (n, k). See Fig. 1(b). Let b1, b2, . . . , b2k+2 ∈ {0, 1} and let i ∈ {1, 2, . . . , n +
1}. In the following we define γb2k+2b2k+1···b1(Gk

i ). Here, b2k+2, b2k+1, . . . , b1 are corre-
sponding to vertices vi−k, vi−k+1, . . . , vi−1, ui−1, ui, vi, vi+1, . . . , vi+k−1, respectively. Let
j ∈ {1, . . . , 2k + 2}. The value γb2k+2···b1(Gk

i ) is the minimum cardinality of a SDS D
of Gk

i such that if bj = 0, then the corresponding vertex of bj is not in D and if bj = 1,
then the corresponding vertex of bj is in D. Since there are 22k+2 = 4k+1 different cases
for defining γb2k+2···b1(Gk

j ), in the following we give the complete formal definition of some
cases.
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Figure 1: Illustrating (a) GP (8, 3) and (b) SGP (8, 3) and G3
7.

• γ0···0(Gk
i ) = min{|D| : D is a SDS of Gk

i , vi−k /∈ D, vi−k+1 /∈ D, . . . , vi−1 /∈ D,
ui−1 /∈ D, ui /∈ D, vi /∈ D, vi+1 /∈ D, . . . , vi+k−1 /∈ D},

• γ0···01(Gk
i ) = min{|D| : D is a SDS of Gk

i , vi−k /∈ D, vi−k+1 /∈ D, . . . , vi−1 /∈ D,
ui−1 /∈ D, ui /∈ D, vi /∈ D, vi+1 /∈ D, . . . , vi+k−2 /∈ D, vi+k−1 ∈ D} and

• γ1···1(Gk
i ) = min{|D| : D is a SDS of Gk

i , vi−k ∈ D, vi−k+1 ∈ D, . . . , vi−1 ∈ D,
ui−1 ∈ D, ui ∈ D, vi ∈ D, vi+1 ∈ D, . . . , vi+k−1 ∈ D}.

A γ0···0(Gk
i )-set is a minimum SDS D of Gk

i such that vi−k /∈ D, vi−k+1 /∈ D, . . . , vi−1 /∈ D,
ui−1 /∈ D, ui /∈ D, vi /∈ D, vi+1 /∈ D, . . . , vi+k−1 /∈ D. Similarly, we define the others. See
Fig. 2.
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Figure 2: Illustrating (a) a γ10011000(G3
3)-set and (b) a γ11000110(G3

4)-set; note that the
vertices of SDSs are solid.

Let Xn,k be the set of all minimum SDS of SGP (n, k) such that
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Algorithm 3.1: DT(GP (n, k))

Input: The generalized Petersen graph GP (n, 3) = (V,E).
Output: The domination number of GP (n, 3).

1 Let SGP (n, 3) be the semi generalized Petersen graph corresponding to GP (n, 3).
2 for b1, . . . , b2k+2 ∈ {0, 1} do
3 γb2k+2···b1(G1) = b1 + · · ·+ b2k+2;
4 for (x1, . . . , x2k+2 ∈ {0, 1}) ∧ (x2k+2 · · ·x1 6= b2k+2 · · · b1) do
5 γx2k+2···x1(G1) =∞;

6 for i = 1 to n+ 1 do
7 for x1, . . . , x2k+2 ∈ {0, 1} do
8 Compute γx2k+2···x1(Gi) by Lemma 3.

9 |Xb2k+2···b1| = γb2k+2···b1(Gn+1);

10 γ = min{|Xb2k+2···b1 | − (b1 + · · ·+ b2k+2) : b1, . . . , bk ∈ {0, 1}};
11 return γ;

(i) uj ∈ D if and only if un+j ∈ D for each j ∈ {0, 1}, and

(ii) vj ∈ D if and only if vn+j ∈ D for each j ∈ {−k + 1,−k + 2, . . . , k}.

The following proposition is clear.
proposition 1 |Xn,k| = 4k+1.
Let j ∈ {−k + 1,−k + 2, . . . , k} and l ∈ {0, 1} and assume aj, dl ∈ {0, 1}. Let aj be
corresponding to vertices vj, vn+j and let dl be corresponding to vertices ul, un+l. We
define Xa−k+1a−k+2···a0d0d1a1a2···ak as a minimum SDS of SGP (n, k) such that if aj = 0
(respectively, dl = 0), then their corresponding vertices are not in Xa−k+1···a0d0d1a1···ak and
if aj = 1 (respectively, dk = 1), then their corresponding vertices are in Xa−k+1···a0d0d1a1···ak .
We obtain Xn,k = {Xb2k+2···b1 : b1, . . . , b2k+2 ∈ {0, 1}}.

3 Algorithm

In this section we give an algorithm (Algorithm 3.1) to compute the domination number
of the generalized Petersen graph GP (n, k). In order to prove that Algorithm 3.1 works
correctly we need the following lemmas. The main idea of our algorithm is the following
lemma.
Lemma 1. Let GP (n, k) = (V,E) and let D be a set of Xn,k such that |D∩V | ≤ |S ∩V |
for every set S ∈ Xn,k. Then, D ∩ V is a minimum DS of GP (n, k). Proof. Recall
Vl = {v1−k, . . . , v0, u0} and Vr = {un+1, vn+1, . . . , vn+k}. Let D′ = D ∩ V . We first
prove that D′ is a DS of GP (n, k). By Note ??, we have degSGP (n,k)(v) = 3 for every
vertex v ∈ V . Assume v ∈ V \ D′. Since D is a SDS of SGP (n, k), there is a vertex
u ∈ D adjacent to v. If NSGP (n,k)(v) ∩ D′ 6= ∅, then there is nothing to be proven. If
NSGP (n,k)(v)∩D′ = ∅, then NSGP (n,k)(v)∩D ⊆ Vl∪Vr. Assume without loss of generality
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that u = vj ∈ NSGP (n,k)(v) ∩D for some 1− k ≤ j ≤ 0. By the definition of SGP (n, k),
NSGP (n,3)(vj) = {vj+k} if j 6= 0 and NSGP (n,3)(v0) = {vk, u0} and so v = vj+k. Because
D ∈ Xn,k and vj ∈ D, we deduce vn+j ∈ D. Since vn+j ∈ NGP (n,k)(vj+k), hence D′ is a
DS of GP (n, k).
Suppose for a contradiction that D′ is a not a minimum DS of GP (n, k). Assume that
Z ′ is a DS of GP (n, k) with |Z ′| < |D′|. We construct the set Z as follows. Initialize
Z to be Z ′. If u1 ∈ Z ′, then we add un+1 to Z, if un ∈ Z ′, then we add u0 to Z,
if vj ∈ D for some j ∈ {1, 2, . . . , k}, then we add vn+j to Z and if vj ∈ D for some
j ∈ {n − k + 1, n − k + 2, . . . , n}, then we add vj−n to Z. So, Z ∈ Xn,k with |Z ∩ V | =
|Z ′| < |D′| = |D ∩ V |, a contradiction.
In order to compute all sets of Xn,k we need the following lemma.
Lemma 2. Let b1, b2, . . . , b2k+2 ∈ {0, 1}, let i ∈ {1, 2, . . . , n + 1} and let either bk+3 +
bk+2 ≥ 1 or bk+1 = b1 = 1. Then,

(i) γb2k+2···bk+4000bk···b20(Gk
i+1) = γ1b2k+2···bk+4100bk···b2(Gk

i ),

(ii) γb2k+2···bk+4000bk···b21(Gk
i+1) = min{γ0b2k+2···bk+4100bk···b2(Gk

i ), γ1b2k+2···bk+4100bk···b2(Gk
i )}

+ 1,

(iii) γb2k+2···bk+4001bk···b20(Gk
i+1) = min{γ1b2k+2···bk+4000bk···b2(Gk

i ), γ1b2k+2···bk+4100bk···b2(Gk
i )}

+ 1,

(iv) γb2k+2···b1(Gk
i+1) = min{γ0b2k+2···bk+40bk+2bk+3bk···b2(Gk

i ), γ0b2k+2···bk+41bk+2bk+3bk···b2(Gk
i ),

γ1b2k+2···bk+40bk+2bk+3bk···b2(Gk
i ), γ1b2k+2···bk+41bk+2bk+3bk···b2(Gk

i ), }+ bk+1 + b1.

Proof Let j ∈ {2, . . . , k − 1, k, k + 4, . . . , 2k + 1, 2k + 2}. We first prove (i). Let D
be a γb2k+2···bk+4000bk···b20(Gk

i+1)-set. So, all vertices vi, ui, ui+1, vi+k are not in D and the
corresponding vertex to bj is in D if bj = 1 and is not in D if bj = 0. See Fig. 3(a).
Since NGk

i+1
(vi) = {ui, vi−k, vi+k}, NGk

i+1
(ui) = {ui−1, ui+1, vi} and D is a SDS of Gk

i+1, we

deduce that both vertices vi−k and ui−1 are in D. Hence, D is a SDS of Gk
i such that the

corresponding vertex to bj is in D if bj = 1 and is not in D if bj = 0, vi−k ∈ D, ui−1 ∈ D,
ui /∈ D and vi /∈ D and so γ1b2k+2···bk+4100bk···b2(Gk

i ) ≤ |D|, that is,

γ1b2k+2···bk+4100bk···b2(Gk
i ) ≤ γb2k+2···bk+4000bk···b20(Gk

i+1). (1)

Conversely, let S be a γ1b2k+2···bk+4100bk···b2(Gk
i )-set. So, vi−k ∈ S, ui−1 ∈ S, ui /∈ S, vi /∈ S

and the corresponding vertex to bj is in S if bj = 1 and is not in S if bj = 0. See Fig.
3(b). Since both vertices vi−k and ui−1 are in S, we deduce that S is a SDS of Gk

i+1

such that vi+k /∈ S, ui+1 /∈ S, ui /∈ S, vi /∈ S and the corresponding vertex to bj is in
S if bj = 1 and is not in S if bj = 0 and so γb2k+2···bk+4000bk···b20(Gk

i+1) ≤ |S|, that is,
γb2k+2···bk+4000bk···b20(Gk

i+1) ≤ γ1b2k+2···bk+4100bk···b2(Gk
i ). This, together with Inequality (1),

completes the proof of (i).
Now, we prove (ii). Let D be a γb2k+2···bk+4000bk···b21(Gk

i+1)-set. So, all vertices vi, ui, ui+1

are not in D, vi+k ∈ D and the corresponding vertex to bj is in D if bj = 1 and is not in
D if bj = 0. Since NGk

i+1
(vi) = {ui, vi−k, vi+k}, NGk

i+1
(ui) = {ui−1, ui+1, vi} and D is a SDS



62 A. Poureidi / JAC 52 issue 2, December 2020, PP. 57 - 65

vi−1 = bk+4

ui−1

ui = 0
ui+1 = 0

vi = 0 vi+1 = bk

vi+k = 0

(a)

vi−k

: : :: : :

vi−k+1 = b2k+2

vi+k−1 = b2 vi−1 = bk+4

ui−1 = 1

ui = 0
ui+1

vi = 0 vi+1 = bk

vi+k

(b)

vi−k = 1
: : :: : :

vi−k+1 = b2k+2

vi+k−1 = b2

: : : : : :

Figure 3: Illustrating the subgraph Gk
i+1.

of Gk
i+1, we deduce ui−1 ∈ D. Because vi is dominated by vi+k(∈ D), either vi−k ∈ D or

vi−k /∈ D. In the following we consider these cases.

• Assume vi−k ∈ D. Let X = D \ {vi+k}. So, X is a SDS of Gk
i such that the

corresponding vertex to bj is in X if bj = 1 and is not in X if bj = 0, vi−k ∈ X,
ui−1 ∈ X, ui /∈ X and vi /∈ X and so γ1b2k+2···bk+4100bk···b2(Gk

i ) ≤ |X| = |D| − 1, that
is,

γ1b2k+2···bk+4100bk···b2(Gk
i ) + 1 ≤ γb2k+2···bk+4000bk···b21(Gk

i+1). (2)

• Assume vi−k /∈ D. Let X = D \ {vi+k}. So, X is a SDS of Gk
i such that the

corresponding vertex to bj is in X if bj = 1 and is not in X if bj = 0, vi−k /∈ X,
ui−1 ∈ X, ui /∈ X and vi /∈ X and so γ0b2k+2···bk+4100bk···b2(Gk

i ) ≤ |X| = |D| − 1, that
is,

γ0b2k+2···bk+4100bk···b2(Gk
i ) + 1 ≤ γb2k+2···bk+4000bk···b21(Gk

i+1). (3)

Conversely, let S0 be a γ0b2k+2···bk+4100bk···b2(Gk
i )-set and let X0 = S0∪{vi+k}. So, vi−k /∈ X0,

ui−1 ∈ X0, ui /∈ X0, vi /∈ X0 and the corresponding vertex to bj is in X0 if bj = 1
and is not in X0 if bj = 0. Because both vertices vi+k and ui−1 are in X0, we deduce
that X0 is a SDS of Gk

i+1 such that vi /∈ X0, ui /∈ X0, ui+1 /∈ X0, vi+k ∈ X0 and
the corresponding vertex to bj is in X0 if bj = 1 and is not in X0 if bj = 0 and so
γb2k+2···bk+4000bk···b21(Gk

i+1) ≤ |X0| = |S0|+ 1, that is,

γb2k+2···bk+4000bk···b21(Gk
i+1) ≤ γ0b2k+2···bk+4100bk···b2(Gk

i ) + 1. (4)

Let S1 be a γ1b2k+2···bk+4100bk···b2(Gk
i )-set and let X1 = S1∪{vi+k}. So, vi−k ∈ X1, ui−1 ∈ X1,

ui /∈ X1, vi /∈ X1 and the corresponding vertex to bj is in X1 if bj = 1 and is not in X1

if bj = 0. Because both vertices vi+k and ui−1 are in X1, we deduce that X1 is a SDS of
Gk

i+1 such that vi /∈ X1, ui /∈ X1, ui+1 /∈ X1, vi+k ∈ X1 and the corresponding vertex to
bj is in X1 if bj = 1 and is not in X1 if bj = 0 and so γb2k+2···bk+4000bk···b21(Gk

i+1) ≤ |X1| =
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|S1| + 1, that is, γb2k+2···bk+4000bk···b21(Gk
i+1) ≤ γ1b2k+2···bk+4100bk···b2(Gk

i ) + 1. This, together
with Inequalities (2)–(4), completes the proof of (ii).
Similarly, we can prove (iii).
Here, we prove (iv). Assume j ∈ {2, . . . , k, k+2, . . . , 2k+2} and let D be a γb2k+2···b1(Gk

i+1)-
set such that either bk+3 + bk+2 ≥ 1 or bk+1 = b1 = 1. We have NGk

i+1
(vi) = {ui, vi−k, vi+k}

and NGk
i+1

(ui) = {ui−1, ui+1, vi}. We first assume bk+3 + bk+2 ≥ 1. Hence, either bk+3 = 1

or bk+2 = 1.

• If bk+3 = 0, then vi /∈ D and bk+2 = 1 and so ui ∈ D. Hence, ui dominates vi.

• If bk+2 = 0, then ui /∈ D and bk+3 = 1 and so vi ∈ D. Hence, vi dominates ui.

• If bk+3 = 1 and bk+2 = 1, then both vertices ui, vi ∈ D.

We deduce either vi−k ∈ D or vi−k /∈ D and either ui−1 ∈ D or ui−1 /∈ D. If bk+1 = b1 = 1,
then both vertices vi+k and ui+1 are in D and so if vi /∈ D (respectively, ui /∈ D), then
vi+k (respectively, ui+1) dominates vi (respectively, ui). Therefore, either vi−k ∈ D or
vi−k /∈ D and either ui−1 ∈ D or ui−1 /∈ D. We obtain that if either bk+3 + bk+2 ≥ 1
or bk+1 = b1 = 1, then either vi−k ∈ D or vi−k /∈ D and either ui−1 ∈ D or ui−1 /∈ D.
In the following we consider these cases. Let X = D if ui+1 /∈ D (i.e., bk+1 = 0) and
vi+k /∈ D (i.e., b1 = 0), let X = D \ {ui+1} if ui+1 ∈ D (i.e., bk+1 = 1) and vi+k /∈ D (i.e.,
b1 = 0), let X = D \ {vi+k} if ui+1 /∈ D (i.e., bk+1 = 0) and vi+k ∈ D (i.e., b1 = 1) and let
X = D \ {vi+k, ui+1} if ui+1 ∈ D (i.e., bk+1 = 1) and vi+k ∈ D (i.e., b1 = 1). We deduce
|X| = |D| − (bk+1 + b1).

(a) Assume vi−k ∈ D and ui−1 ∈ D. So, X is a SDS of Gk
i such that the corresponding

vertex to bj is in X if bj = 1 and is not in X if bj = 0, vi−k ∈ X and ui−1 ∈ X and
so γ1b2k+2···bk+41bk+2bk+3bk···b2(Gk

i ) ≤ |X| = |D| − (bk+1 + b1), that is,

γ1b2k+2···bk+41bk+2bk+3bk···b2(Gk
i ) + bk+1 + b1 ≤ γb2k+2···1(Gk

i+1). (5)

(b) Assume vi−k /∈ D and ui−1 ∈ D. Similar to the previous case, we have

γ0b2k+2···bk+41bk+2bk+3bk···b2(Gk
i ) + bk+1 + b1 ≤ γb2k+2···1(Gk

i+1). (6)

(c) Assume vi−k ∈ D and ui−1 /∈ D. Similar to Case (a), we obtain

γ1b2k+2···bk+40bk+2bk+3bk···b2(Gk
i ) + bk+1 + b1 ≤ γb2k+2···1(Gk

i+1). (7)

(d) Assume vi−k /∈ D and ui−1 /∈ D. Similar to Case (a), we deduce

γ0b2k+2···bk+40bk+2bk+3bk···b2(Gk
i ) + bk+1 + b1 ≤ γb2k+2···1(Gk

i+1). (8)
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Conversely, assume that S is a SDS of Gk
i , either bk+3 + bk+2 ≥ 1 or bk+1 = b1 = 1 and

j ∈ {1, . . . , 2k+ 2}. Let X = S if bk+1 = 0 and b1 = 0, let X = S ∪{ui+1} if bk+1 = 1 and
b1 = 0, let X = S ∪ {vi+k} if bk+1 = 0 and b1 = 1 and let X = S ∪ {vi+k, ui+1} if bk+1 = 1
and b1 = 1. We deduce that X is a SDS of Gk

i+1 with |X| = |S|+ bk+1 + b1.
Assume that S is a γ0b2k+2···bk+40bk+2bk+3bk···b2(Gk

i )-set. So, X is a SDS of Gk
i+1 such that

the corresponding vertex to bj is in X if bj = 1 and is not in X if bj = 0 and so
γ0b2k+2···bk+40bk+2bk+3bk···b2(Gk

i ) ≤ |X| = |S|+ bk+1 + b1, that is,

γb2k+2···b1(Gk
i+1) ≤ γ0b2k+2···bk+40bk+2bk+3bk···b2(Gk

i ) + +bk+1 + b1. (9)

Similarly, if S is a γ0b2k+2···bk+41bk+2bk+3bk···b2(Gk
i )-set, then we obtain

γb2k+2···b1(Gk
i+1) ≤ γ0b2k+2···bk+41bk+2bk+3bk···b2(Gk

i ) + +bk+1 + b1. (10)

Similarly, if S is a γ1b2k+2···bk+40bk+2bk+3bk···b2(Gk
i )-set, then we have

γb2k+2···b1(Gk
i+1) ≤ γ1b2k+2···bk+40bk+2bk+3bk···b2(Gk

i ) + +bk+1 + b1. (11)

Similarly, if S is a γ1b2k+2···bk+41bk+2bk+3bk···b2(Gk
i )-set, then we deduce

γb2k+2···b1(Gk
i+1) ≤ γ1b2k+2···bk+41bk+2bk+3bk···b2(Gk

i ) + +bk+1 + b1. (12)

Inequalities (5)–(12) complete the proof of (iv).
Now we are in a position to compute all sets of Xn,k.
Lemma 3. Let b1, . . . , b2k+2 ∈ {0, 1}. We can compute Xb2k+2···b1 in O(4kn) time and
space. Proof Let x1, . . . , x2k+2 ∈ {0, 1}. Because we would like to compute Xb2k+2···b1 , ini-
tialize γb2k+2···b1(G1) to be b1+· · ·+b2k+2 and γx2k+2···x1(G1) to be∞ for every x2k+2 · · ·x1 6=
b2k+2 · · · b1. Then, by Lemma 3 we compute γx2k+2···x1(G2) for each x1, . . . , x2k+2 ∈ {0, 1}
and repeat this process to compute γx2k+2···x1(Gn+1) for each x1, . . . , x2k+2 ∈ {0, 1}. In
the end of this process, we have |Xb2k+2···b1| = γb2k+2···b1(Gn+1). During this process we can
also compute Xb2k+2···b1 . By Lemma 3, the time and space complexity of this Algorithm
is O(4kn).
Theorem 1. Algorithm 3.1 on input the generalized Petersen graph GP (n, k) returns
the domination number of GP (n, k) in O(n16k) time and space. Proof Let b1, . . . , b2k+2 ∈
{0, 1} and GP (n, k) = (V,E). By Lemma 3, Algorithm 3.1 on input GP (n, k) in Line
9 computes |Xb2k+2···b1|. By the definition of Xb2k+2···b1 , we deduce that |Xb2k+2···b1 ∩ V | =
|Xb2k+2···b1| − (b1 + · · · + b2k+2). By Lemma 3, γ(GP (n, k)) = min{|Xx2k+2···x1 ∩ V | :
x1, . . . , x2k+2 ∈ {0, 1}}. So, Algorithm 3.1 on input GP (n, k) in Line 10 computes the
domination number of GP (n, k) and returns this value in Line 11. We obtain that the
time and space complexity of Algorithm 3.1 on input GP (n, k) is O(n16k).
By Theorem 3 we have the following result.
Corollary 1. Algorithm 3.1 on input the generalized Petersen graph GP (n, k) returns
the domination number of GP (n, k) in O(n) time and space, where k ∈ O(1).
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