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ABSTRACT ARTICLE INFO

The stability of a communication network composed of

processing nodes and communication links is of prime

importance to network designers. As the network be-

gins losing links or nodes, eventually there is a loss in

its effectiveness. Thus, communication networks must

be constructed to be as stable as possible, not only with

respect to the initial disruption, but also with respect to

the possible reconstruction of the network. For any fixed

integers n,p with p ≥ n + 1, Harary constructed classes

of graphs Hn,p that are n-connected with the minimum

number of edges. Thus Harary graphs are examples

of graphs with maximum connectivity. This property

makes them useful to network designers and thus it is of

interest to study the behavior of other stability param-

eters for the Harary graphs. In this paper we study the

toughness of the third case of the Harary graphs.
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1 Introduction

Let G be a graph with vertex set V . Let A be a subset of V . We define G− A to be

the graph induced by the vertices of V − A. Also, for any graph G, ω(G) is the number

of components of G.

Throughout this paper we will let p and q be the number of vertices and edges of G

respectively. A set of vertices in G is independent if no two of them are adjacent. The

largest number of vertices in any such set is called the vertex independence number of G

and is denoted by β(G) or β.

A cut-set of a graph G is a set of vertices whose removal results in a disconnected graph

or the trivial graph K1. The connectivity of G, κ = κ(G), is the minimum order of a

cut-set in G. A graph G is called n-connected if κ ≥ n.

The toughness of a graph G was defined in [2] as t(G) = min{ |A|
ω(G−A)

}, where the mini-

mum is taken over all cut-sets A of G. A subset A of V (G) is said to be a t-set of G if

t(G) = |A|
ω(G−A)

. Note that if G is disconnected then the set A may be empty.

Given a graph G, the graph Gr has V (Gr) = V (G) and uv ∈ E(Gr) if and only if the

distance from u to v in G is at most r. Thus, in particular, Cp
r has

V (Cp
r) = {0, 1, . . . , p− 1} and E(Cp

r) = {ij : |i− j| ≤ r}.

For any fixed integers n,p with p ≥ n + 1, Harary [3] constructed classes of graphs Hn,p,

that are n-connected with the minimum number of edges on p vertices. Thus Harary

graphs are examples of graphs which in some sense have the maximum possible connec-

tivity and hence are of interests as possibly having good stability properties.

Also, the Harary graph Hn,p with n = 2r is the rth power of the p-cycle, Cp
r, for which

both the toughness have been studied. Harary graphs, Hn,p is constructed as follows:

Case1: If n is even then let n = 2r. Then Hn,p has vertices 0, 1, 2, . . . , p − 1 and two

vertices i and j are adjacent if and only if |i− j| ≤ r (where addition is taken module p).

Note that this is Cp
r and is n-regular.

Case2: (Moazzami and Bafandeh [4]) If n is odd (n > 1) and p is even. Let n = 2r + 1

(r > 0). Then H2r+1,p is constructed by drawing H2r,p and adding edges joining vertex i

to vertex i+ p

2
for 1 ≤ i ≤ p

2
. Again note that this is an n-regular graph.

Case3: If n is odd (n > 1) and p is odd. Let n = 2r + 1 (r > 0). Then H2r+1,p is

constructed by first drawing H2r,p and adding edges joining vertex i to vertex i+ p+1
2

for
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0 ≤ i ≤ p+1
2
. Note that under this definition, vertex 0 is adjacent to both vertices p+1

2

and p−1
2
. Again note that all vertices of Hn,p have degree n except vertex 0, which has

degree n + 1. H5,9 is shown in Figure 3.

The following four proposition were proved in [2].

Proposition1: If G is a spanning subgraph of H , then t(G) ≤ t(H).

Proposition2: For any graph G, t(G) ≥ k(G)
β(G)

.

Proposition3: If G is not complete, then t(G) ≤ k(G)
2

.

Proposition4: If G is not complete, then t(G) ≤ p−β(G)
β(G)

.

2 Toughness of a graph with maximum connectivity:

In this section we start to calculate the toughness of third case of Harary graphs. Through-

out the rest of this paper we will let the connectivity n = 2r+1 and the number of vertices

p = k(r + 1) + s for 0 ≤ s < r + 1. So we can see that p ≡ s mod (r + 1) and k = ⌊ p

r+1
⌋.

Also we assume that the graph Hn,p is not complete, so n+1 < p. Note that this implies

that k ≥ 2.

Lemma 1: Let Hn,p be the Harary graph with p and n both odd, n = 2r + 1 and r > 0.

Then p ≡ 1 mod (n + 1) if and only if s = 1 and k is even.

Proof: Let 1 < s < r + 1 and k = 2q + 1 for some q. Thus p = k(r + 1) + s =

q(n+ 1) + s+ r + 1. Since 1 < s+ r + 1 < n+ 1, p 6≡ 1 mod (n+ 1).

Now suppose k = 2q and 1 < s < r + 1. Thus p = q(n + 1) + s. Since 1 < s < n + 1,

p 6≡ 1 mod (n+ 1).
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If s = 0 then p = k(r+1). Since p is odd we know that k is odd. Thus p = q(n+1)+r+1.

Since 1 < r + 1 < (n+ 1), then p 6≡ 1 mod (n+ 1).

Finally, consider the case when s = 1. If k is odd, then p = q(n + 1) + r + 2. Since

1 < r + 2 < n + 1, then p 6≡ 1 mod (n + 1). If k is even, then p = q(n + 1) + 1. Thus

p ≡ 1 mod (n+ 1). �

Lemma 2: Let Hn,p be the Harary graph with p and n both odd, n = 2r + 1 and r > 0.

Then

β(Hn,p) =

{

k if p 6≡ 1 mod (n+ 1)

k − 1 if p ≡ 1 mod (n+ 1)

Proof: let G = Hn,p. Since at least r consecutive vertices must be between any two

members of an independent set and s < r + 1, then β(G) ≤ k. Consider the set

B = {0, r + 1, 2(r + 1), 3(r + 1), . . . , (k − 1)(r + 1)}

Let 0 ≤ s < r and assume k = 2q + 1 for some q. Since vertex i is adjacent to vertex

i + p+1
2

= i+ q(r + 1) + s+r
2

+ 1, for any 0 ≤ i ≤ p−1
2
, and r

2
+ 1 ≤ s+r

2
+ 1 < r + 1, and

vertex p−1
2

6∈ B then vertex t(r+1) ∈ B, 0 ≤ t ≤ k− 1, is not adjacent to vertex x(r+1)

for any 0 ≤ x ≤ k − 1. Thus the set B is an independent set and β(G) = k.

Assume s = r 6= 0 and k = 2q + 1 for some q. Consider the set

C = {0, r + 1, 2(r + 1), . . . , q(r + 1), (q + 1)(r + 1) + 1, . . . , (k − 1)(r + 1) + 1}

If s = r, then s+r
2

+ 1 = r + 1. Since vertex i is adjacent to i+ p+1
2

= i + (q + 1)(r + 1)

for any 0 ≤ i ≤ p−1
2

, and vertex p−1
2

6∈ C, then vertex t(r + 1) ∈ C, 0 ≤ t ≤ q, is not

adjacent to x(r + 1) + 1 for any q + 1 ≤ x ≤ k − 1. Thus C is an independent set and

hence the independence number is at least k. Therefore β(G) = k.

Suppose 1 < s < r + 1 and k = 2q for some q. Consider the set B. Since vertex i is

adjacent to vertex i+ p+1
2

= i+ q(r + 1) + s+1
2

for any 0 ≤ i ≤ p−1
2

and 1 < s+1
2

< r + 1,

and vertex p−1
2

6∈ B, then vertex t(r+1) ∈ B, 0 ≤ t ≤ k−1, is not adjacent to x(r+1) for

any 0 ≤ x ≤ k− 1. Thus in this case B is again an independent set. Therefore β(G) = k.

Now let s = 1 and k = 2q for some q. Assume β(G) = k. Since s = 1, m = 2q(r+ 1) + 1.

Hence there are r consecutive vertices between two members of an independent set and
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so sets of the format B or C are the only possible independent sets. But we also need

to consider edges of the form {i, i + p+1
2
}. Hence vertex t(r + 1), 1 ≤ t ≤ q, is adjacent

to vertex x(r + 1) + 1 for any q + 1 ≤ x ≤ k − 2, and vertex 0 is adjacent to vertices
p−1
2

= q(r+1) and p−1
2

= q(r+1)+1. First consider the set B. In B vertex 0 is adjacent to

q(r+1) and this is a contradiction to the definition of independent set. Now, consider the

set C. In C vertex t(r+1), 1 ≤ t ≤ q, is adjacent to vertex x(r+1)+1, q+1 ≤ x ≤ k−2,

and again this is a contradiction to the definition of independent set. Hence β(G) 6= k

and thus β(G) < k.

Finally consider the set

C = {0, r+1, 2(r+1), . . . , (q−1)(r+1), q(r+1)+2, (q+1)(r+1)+2 . . . , (k−2)(r+1)+2}

Since vertex i is adjacent to i + p+1
2

= i + q(r + 1) + 1 for any 0 ≤ i ≤ p−1
2
, and vertex

p−1
2

6∈ D it can be seen that vertex t(r + 1) ∈ D, 0 ≤ t ≤ q − 1, is not adjacent to vertex

x(r + 1) + 2, q ≤ x ≤ k − 2. Thus D is an independent set. Hence k − 1 ≤ β(G) < k.

Therefore since β(G) and k are integers, we can conclude that β(G) = k − 1.

Theorem1: Let Hn,p be the Harary graph with p an n odd, and n = 2r + 1, then

r ≤ t(Hn,p) ≤

{

r + s
k

if p 6≡ 1 mod (n + 1)
kr+s+1
k−1

if p ≡ 1 mod (n + 1)

Proof: Let G = Hn,p. By proposition 4, t(G) ≤ p−β(G)
β(G)

. Thus by lemma 2, if p 6≡ 1

mod (n + 1), then t(G) ≤ p−k

k
= k(r+1)+s−k

k
= r + s

k
, and if p ≡ 1 mod (n + 1), then

t(G) ≤ p−(k−1)
k−1

= k(r+1)+s−k+1
k−1

= kr+s+1
k−1

Since V (H2r,p) = V (G) and E(H2r,p) ⊆ E(G), then H2r,p is a spanning subgraph of G.

By proposition 1, we have t(H2r,p) ≤ t(G). Thus we have r ≤ t(G).

Corollary1: If p and n are odd s = 0, then t(Hn,p) = r.

Corollary2: If p and n are odd, s = 1 and k is odd, then r ≤ t(Hn,p) ≤ r + 1
k
.

Corollary3: If p and n are odd, s = 1 and k is even, then r + 1
k
≤ t(Hn,p) ≤

kr+2
k−1

.

Lemma 3: Let Hn,p be the Harary graph with n = 2r + 1, p and k both odd, r ≥ 2,

1 < s < r + 1 and s < k. Then there is a cut-set A with kr elements such that
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ω(Hn,p − A) = k.

Proof: We may assume Hn,p is labeled by 0, 1, 2, . . . , p − 1. Let s < k, so s = k − l for

some l. Thus p = s(r + 2) + l(r + 1). Since k is odd then k = 2q + 1 for some q.

Case1: If r is odd then s is odd and l is even. Then s = k − l ≥ 1 and l = 2t for

some t. Hence k − l = 2q + 1 − 2t ≥ 1 which implies that q ≥ t. Define the sets Wi for

1 ≤ i ≤ 2q + 1 as follows:

Wi =























{ir + i} 1 ≤ i ≤ t

{ir − t + 2i− 1, ir − t+ 2i} t+ 1 ≤ i ≤ q

{ir − t + q + i} q + 1 ≤ i ≤ q + t

{ir − 2t + 2i− 1, ir − 2t+ 2i} q + t+ 1 ≤ i ≤ 2q + 1

Let W be the union of the sets Wi, 1 ≤ i ≤ 2q + 1 and A = V (G)−W . The number of

vertices in W is equal to t+ 2(q − t) + t+ 2(q− t+ 1) = 2(2q + 1)− 2t = 2k− l = k + s,

so |A| = p − k − s = kr. Now, we can see that for any 1 ≤ i ≤ 2q + 1, the elements in

Wi differ from those in Wi+1 by at least r + 1. Hence, no vertex in Wi is adjacent to a

vertex in Wj , 1 ≤ i < j ≤ 2q + 1, by an edge in the copy of H2r,p in G. Thus we only

need consider edges of the form {x, x+ p+1
2
}. In fact, we need to consider only such edges

when x is at most p−1
2
. Hence, since p−1

2
= qr+2q− t+ r

2
+ 1

2
< (q+1)r− t+ q+ (q+1),

we need to consider only vertices in Wi for 1 ≤ i ≤ q.

So consider Wi = {ir + i} for 1 ≤ i ≤ t. Then

ir+ i+ p+1
2

= (q+ i)r− t+ q+(q+ i)+1+ r+1
2

> (q+ i)r− t+ q+(q+ i) = jr− t+ q+ j,

for j = q + i.

Also, since r ≥ 2,

ir + i + p+1
2

< (q + i)r − t + q + (q + i) + 1 + r = (q + i + 1)r − t + q + (q + i + 1) =

(j + 1)r − t + q + (j + 1).

Therefore the set {ir + i+ p+1
2
} is strictly between Wj and Wj+1 for j = q + i, and so it

is contained in A.

Finally, consider Wi = {ir − t+ 2i− 1, ir − t + 2i} for t+ 1 ≤ i ≤ q. Then
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ir− t+2i−1+ p+1
2

= (q+ i)r−2t+2(q+ i)+ r+1
2

> (q+ i)r−2t+2(q+ i) = jr−2t+2j,

for j = q + i.

Also,

ir− t+ 2i+ p+1
2

= (q + i)r− 2t+ 2(q + i) + 1+ r = (q + i+ 1)r− 2t+ 2(q + i+ 1)− 1 =

(j + 1)r − 2t+ 2(j + 1)− 1.

Hence the set {ir− t+2i− 1+ p+1
2
, ir− t+2i+ p+1

2
} is strictly between Wj and Wj+1 for

j = q+ i and so it is contained in A. Also note that 0+ p+1
2

= qr+2q− t+1+ r
2
+ 1

2
6∈ Wj

for any j and so is in A. Therefore the Wi, 1 ≤ i ≤ 2q + 1 = k are the components of

Hn,p − A, so ω(Hn,p −A) = k.

Case2: If r is odd, then s is even and l is odd. Hence s = 2h for some h. Define

Wi =























{ir + 2i− 1, ir + 2i} 1 ≤ i ≤ h

{ir + i+ h} h+ 1 ≤ i ≤ q

{ir + 2i− q + h− 1, ir + 2i− q + h} q + 1 ≤ i ≤ q + h

{ir + i+ 2h} q + h+ 1 ≤ i ≤ 2q + 1

Let W be the union of the sets Wi, 1 ≤ i ≤ 2q + 1 and A = V (G) − W . The number

of vertices in W is equal to 2h + (q − h) + 2h + q − h + 1 = 2q + 1 + 2h = k + s, so

|A| = p − k − s = kr. Now, we can see that for any 1 ≤ i ≤ 2q + 1, the elements in

Wi differ from those in Wi+1 by at least r + 1. Hence, no vertex in Wi is adjacent to a

vertex in Wj , 1 ≤ i < j ≤ 2q + 1, by an edge in the copy of H2r,p in G. Thus we only

need consider edges of the form {x, x+ p+1
2
}. In fact, we need to consider only such edges

when x is at most p−1
2
. Hence, since p−1

2
= qr+ q+h+ r

2
< (q+1)r+2(q+1)− q+h−1,

we need only consider vertices in Wi for 1 ≤ i ≤ q.

So consider Wi = {ir + 2i− 1, ir + 2i} for 1 ≤ i ≤ h. Then

ir+2i−1+ p+1
2

= (q+ i)r+2(q+ i)−q+h+ r
2
> (q+ i)r+2(q+ i)−q+h = jr+2j−q+h,

for j = q + i.

Also, since r ≥ 2
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ir+2i+ p+1
2

= (q+ i)r+2(q+ i)− q+h+ r
2
+1 < (q+ i+1)r+2(q+ i+1)− q+h− 1 =

(j + 1)r + 2(j + 1)− q + h− 1.

Therefore the set {ir + 2i − 1 + p+1
2
, ir + 2i + p+1

2
} is strictly between Wj and Wj+1 for

j = q + i, and so it is contained in A.

Finally, consider Wi = {ir + i+ h} for h+ 1 ≤ i ≤ q. Then

ir+i+h+ p+1
2

= (q+i)r+(q+i)+2h+ r
2
+1 > (q+i)r+(q+i)+2h = jr+j+2h, for j = q+i.

Again we have, ir+i+h+ p+1
2

< (q+i)r+(q+i)+2h+ r
2
+1 < (q+i+1)r+(q+i+1)+2h =

(j + 1)r + (j + 1) + 2h.

Hence the set {ir+ i+ h+ p+1
2
} is strictly between Wj and Wj+1 for j = q+ i and so it is

contained in A. Also 0+ p+1
2

= qr+ q+ h r
2
+1 ∈ A Therefore the Wi, 1 ≤ i ≤ 2q+1 = k

are the components of Hn,p −A, so ω(Hn,p − A) = k.

Theorem 2: LetHn,p be the Harary graph with n = 2r+1, p and k both odd, 1 < s < r+1

and s < k. Then t(Hn,p) = r.

Proof: First we see that r ≥ 2, since if r = 1, 1 < s < 2, a contradiction. By Theorem 1,

we have r ≤ t(Hn,p). By lemma 3, there is a cut-set A of Hn,p with kr elements such that

ω(Hn,p−A) = k. Therefore, the toughness attains the lower bound using A, so t(Hn,p) = r.

Now we consider the cases when s ≥ k and p and k are odd. Again as before the following

lemmas are required in the proofs of Lemmas 6,7 and 8.

Lemma 4: Let Hn,p be the Harary graph with n = 2r+1, p and k both odd, 1 < s < r+1

and s ≥ k, where s = ak + b, for some a and b.

Case 1: For 0 < b < k,

(i)If r is even, then

r ≥

{

4 a odd

8 a even

(ii)If r is odd, then
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r ≥

{

5 a odd

7 a even

Case 2:For b = 0, s = ak,

(i) If r is even, then r ≥ 6,

(ii) If r is odd, then r ≥ 3.

Proof:

Case 1. Let r be even and 0 < b < k. Hence s is even.

Subcase (i). If a is even then b is even and the minimum values for b and a are 2. Since

k is odd and b < k, the minimum value for k is 3. Therefore the minimum value for s is

2(3) + 2 = 8. Since r is even and s < r + 1, we have r ≥ 8.

Subcase (ii). If a is odd then b is odd and the minimum value for b is 1. Since a and k

are odd and b < k, the minimum values for k and a are 3 and 1 respectively. Therefore

the minimum value for s is 1(3) + 1 = 4. Since r is even and s < r + 1, we have r ≥ 4.

Case 2. Let r be odd and 0 < b < k. Hence s is odd.

Subcase (i). If a is even then b is odd and the minimum value for b is 1. Since a is

even and k is odd and b < k, the minimum values for k and a are 3 and 2 respectively.

Therefore the minimum value for s is 2(3) + 1 = 7. Since r is odd and s < r+1, we have

r ≥ 7.

Subcase (ii). If a is odd then b is even and the minimum value for b is 2. Since a and k

are odd and b < k, the minimum values for a and k are 1 and 3 respectively. Therefore

the minimum value for s is 1(3) + 2 = 5. Since r is odd and s < r + 1, we have r ≥ 5.

Case 3. Suppose r is even and b = 0. Then s is even and so a is even. Since k > 1 and k

is odd, the minimum values for a and k are 2 and 3 respectively. Therefore the minimum

value for s is 2(3) = 6. Since r is even and s < r + 1, we have r ≥ 6.

Case 4. Suppose r is odd and b = 0. Then s is odd and so a is odd. Therefore the

minimum values for a and k are 1 and 3 respectively. So the minimum value for s is

1(3) = 3. Since r is odd and s < r + 1, we have r ≥ 3.

Lemma 5: Let Hn,p be the Harary graph with n = 2r+1, p and k both odd, 1 < s < r+1
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and s ≥ k. Where s = ak+ b for some a and b. If 0 < b < k then a+1 ≤ r
2
with equality

possible only if r is even and a is odd. If b = 0, so that s = ak, then a+ 1 ≤ ⌈r/2⌉.

Proof.

Case 1. Let r be even and 0 < b < k. Hence s is even.

Subcase (i). If a is even then b is even and the minimum value for b is 2. Since b < k and

k is odd, the minimum value for k is 3. Thus 3a+2 ≤ ak+ b = s. Since 2a+ 2 < 3a+ 1,

we have 2a+ 2 < r. Therefore a + 1 < r
2
.

Subcase (ii). If a is odd then b is odd and the minimum values for b and k are 1 and 3

respectively. Thus 3a + 1 ≤ ak + b = s. Since a is odd, we have 2a + 2 ≤ 3a + 1 and so

2a+ 2 ≤ r. Therefore a+ 1 ≤ r
2
.

Case 2. Let r be odd and 0 < b < k. Hence s is odd.

Subcase (i). If a is even then b is odd and the minimum value for b is 1, and since k is

odd and b < k, the minimum value for k is 3. Thus 3a+ 2 ≤ ak + b = s. Since a is even,

we have 2a+ 2 < 3a+ 1. Thus 2a+ 2 < r. Therefore a+ 1 < r
2
.

Subcase (ii). If a is odd then b is even and the minimum value for b is 2. Since k is odd

and b < k, the minimum value for k is 3. Thus 3a+2 ≤ ak+ b = s. Since 2a+2 < 3a+2

and s ≤ r, we have a + 1 < r
2
.

Case 3. Let r be even and b = 0. Thus a is even. Since a is even, we have 2a + 2 ≤ 3a.

Since k is odd and k > 1, the minimum value for k is 3. Hence 3a ≤ ak = s ≤ r.

Therefore a+ 1 ≤ r
2
.

Case 4. Let r be odd and b = 0. Thus a is odd. Therefore we have 2a+1 ≤ 3a. Since k is

odd and k > 1, the minimum value for k is 3. Hence 3a ≤ ak = s ≤ r, and so a+1 ≤ r+1
2

.

Lemma 6: Let Hn,p be the Harary graph with n = 2r + 1, p and k both odd, 1 < s <

r + 1 and s = ak for some a. Then there is a cut-set A with kr elements such that

ω(H(n, p)−A) = k.

Proof. Let s = ak and k = 2q + 1 for some q. Thus

m = 2qr + 2q(a+ 1) + r + a+ 1.

Let Wi = {ir + (i− 1)a+ i, . . . , ir + ia+ i} for 1 ≤ i ≤ 2q + 1 and let W be the union of

the sets, Wi, 1 ≤ i ≤ 2q + 1, and A = V (G)−W . The number of vertices in W is equal

to (2q+1)(a+1) = ka+ k = s+ k, so |A| = p− k− s = kr. Now we can see that for any
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1 ≤ i ≤ 2q + 1, the elements in Wi differ from those in Wi+1 by at least r + 1. Hence, no

vertex in Wi is adjacent to a vertex in Wj , 1 ≤ i < j ≤ 2q + 1, by an edge in the copy of

H2r,p in G. Thus we need only consider edges of the form {x, x + p+1
2
}. In fact, we need

to consider only such edges when x is at most p−1
2
. Hence, since by Lemma 5, a

2
< r

2
, so

p−1
2

= qr + qa + q + r
2
+ a

2
< (q + 1)r + qa+ q + 1,

we need to consider only vertices in Wi for 1 ≤ i ≤ q. So consider

Wi = {ir + (i− 1)a+ i, . . . , ir + ia + i}

for 1 ≤ i ≤ q. Then

ir+(i−1)a+ i+ p+1
2

= (q+ i)r+(q+ i)a+(q+ i)+ r
2
− a

2
+1 > (q+ i)r+(q+ i)a+ q+ i =

jr + ja+ j, for j = q + i.

Also,

ir + ia + i+ p+1
2

< (q + i+ 1)r + (q + i)a+ (q + i+ 1) = (j + 1)r + ja + j + 1.

Hence, the set {ir + (i− 1)a+ i+ p+1
2
, . . . , ir + ia + i+ p+1

2
} is strictly between Wj and

Wj+1 for j = q + i, and so it is contained in A. Also

0 + p+1
2

= qr + qa + q + r
2
+ a

2
+ 1 ∈ A

Therefore the Wi, 1 ≤ i ≤ 2q+1 = k are the components of Hn,p−A, so ω(Hn,p−A) = k.

Theorem 3: LetHn,p be the Harary graph with n = 2r+1, p and k both odd, 1 < s < r+1

and s = ak for some a. Then t(Hn,p) = r.

Proof: By Theorem 1, we have r ≤ t(Hn,p). Set A of Lemma 6 achieves this lower bound,

since |A| = kr and ω(Hn,p − A) = k. Therefore t(Hn,p) = r.

Lemma 7: Let Hn,p be the Harary graph with n = 2r+1, p and k both odd, 1 < s < r+1

and s > k where s = ak + b for some a and b, 0 < b < k. Then there is a cut-set A with

kr elements such that ω(H(n, p)− A) = k.

Proof: Let s > k, and s = ak + b for 0 < b < k. Thus

p = kr + (k − b)(a + 1) + b(a + 2).
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Write p = k(r + 1) + s. If r is even, then s is even. In this case a is even if and only if b

is even. If r is odd, then s is odd. In this case a is odd if and only if b is even. Thus we

have the following two cases.

Case1: Let r and a both be even, or r and a both odd. Hence b is even. Therefore b = 2h

for some h. Since k is odd, k = 2q + 1 for some q. Hence k − b = 2q + 1 − 2h ≥ 1 which

implies that q ≥ h. Define the sets Wi for 1 ≤ i ≤ 2q + 1 as follows:

Wi =























{ir + (i− 1)a+ 2i− 1, . . . , ir + ia + 2i} 1 ≤ i ≤ h

{ir + (i− 1)a+ i+ h, . . . , ir + ia + i+ h} h+ 1 ≤ i ≤ q

{ir + (i− 1)a+ 2i− q + h− 1, . . . , ir + ia + 2i− q + h} q + 1 ≤ i ≤ q + h

{ir + (i− 1)a+ i+ 2h, . . . , ir + ia + i+ 2h} q + h+ 1 ≤ i ≤ 2q + 1

Let W be the union of the sets Wi, 1 ≤ i ≤ 2q + 1 and A = V (G)−W . The number of

vertices in W is equal to

h(a+2)+(q−h)(a+1)+h(a+2)+(q−h+1)(a+1) = (2q+1)a+2h+k = ka+2h+k = k+s,

so |A| = p − k − s = kr. Now, we can see that for any 1 ≤ i ≤ 2q + 1, the ele-

ments in Wi differ from those in Wi+1 by at least r + 1. Hence, no vertex in Wi is

adjacent to a vertex in Wj , 1 ≤ i < j ≤ 2q + 1, by an edge in the copy of H2r,p

in G. Thus we only need consider edges of the form {x, x + p+1
2
}. In fact, we need

to consider only such edges when x is at most p−1
2
. By Lemma 5, a+1

2
< r

2
Hence,

p−1
2

= qr+qa+q+h+ r
2
+ a

2
< (q+1)r+qa+2(q+1)−q+h−1. Thus we need to consider

only vertices in Wi for 1 ≤ i ≤ q. So consider Wi = {ir+(i−1)a+2i−1, . . . , ir+ ia+2i}

for 1 ≤ i ≤ h. By Lemma 5, r
2
− a

2
> a

2
+ 1 > 1. Hence

ir + (i − 1)a + 2i − 1 + p+1
2

= (q + i)r + (q + i)a + 2(q + i) − q + h + r
2
− a

2
>

(q + i)r + (q + i)a+ 2(q + i)− q + h = jr + ja + 2j − q + h, for j = q + i.

Also, by Lemma 4 and 5, r
2
+ a

2
< r Hence

ir+ia+2i+ p+1
2

= (q+i)r+(q+i)a+2(q+i)−q+h+ r
2
+ a

2
+1 < (q+i)r+(q+i)a+2(q+i+

1)−q+h−1+r = (q+i+1)r+(q+i)a+2(q+i+1)−q+h−1 = (j+1)r+(j−1)a+2j−q+h−1

Therefore the set {ir + (i− 1)a+ 2i− 1 + p+1
2
, . . . , ir + ia+ 2i+ p+1

2
} is strictly between
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Wj and Wj+1 for j = q + i, and so it is contained in A.

Finally, consider Wi = {ir + (i − 1)a + i + h, . . . , ir + ia + i + h} for h + 1 ≤ i ≤ q. By

Lemma 5, r
2
− a

2
+ 1 > 0. Hence

ir + (i− 1)a + i + h + p+1
2

= (q + i)r + (q + i)a + (q + i) + 2h + r
2
− a

2
+ 1 > (q + i)r +

(q + i)a+ (q + i) + 2h = jr + ja+ j − q + 2h, for j = q + i.

Also, by Lemma 4 and 5, r
2
+ a

2
< r Hence

ir + ia+ i+ h+ p+1
2

= (q + i)r + (q + i)a+ (q + i) + 2h+ r
2
+ a

2
+ 1 < (q + i+ 1)r+ (q +

i)a + (q + i+ 1) + 2h = (j + 1)r + ja+ (j + 1) + 2h.

Therefore the set {ir+ (i− 1)a+ i+h+ p+1
2
, . . . , ir+ ia+ i+h+ p+1

2
} is strictly between

Wj and Wj+1 for j = q + i, and so it is contained in A. Also note that 0 + p+1
2

∈ A.

Therefore the Wi, 1 ≤ i ≤ 2q+1 = k are the components of Hn,p−A, so ω(Hn,p−A) = k.

Case2: If r is even and a is odd, or r is odd and a is even, then b is odd and hence k− b

is even. Therefore k − b = 2t for some t. Define the sets Wi for 1 ≤ i ≤ 2q + 1 as follows:

Wi =























{ir + (i− 1)a+ i, . . . , ir + ia + i} 1 ≤ i ≤ t

{ir + (i− 1)a+ 2i− t− 1, . . . , ir + ia+ 2i− t} t + 1 ≤ i ≤ q

{ir + (i− 1)a+ i+ q − t, . . . , ir + ia + i+ q − t} q + 1 ≤ i ≤ q + t

{ir + (i− 1)a+ 2i− 2t− 1, . . . , ir + ia+ 2i− 2t} q + t + 1 ≤ i ≤ 2q + 1

Let W be the union of the sets Wi, 1 ≤ i ≤ 2q + 1 and A = V (G)−W . The number of

vertices in W is equal to

t(a+1)+(q−t)(a+2)+t(a+1)+(q−t+1)(a+2) = (2q+1)a+2(2q+1)−2t = ka+k+b = k+s,

so |A| = p − k − s = kr. Now, we can see that for any 1 ≤ i ≤ 2q + 1, the ele-

ments in Wi differ from those in Wi+1 by at least r. Hence, no vertex in Wi is ad-

jacent to a vertex in Wj , 1 ≤ i < j ≤ 2q + 1, by an edge in the copy of H2r,p in

G. Thus we only need consider edges of the form {x, x + p+1
2
}. In fact, we need to

consider only such edges when x is at most p−1
2
. By Lemma 5, a

2
+ 1

2
< r

2
Hence,

p−1
2

= qr+ qa+2q− t+ r
2
+ a

2
+ 1

2
< (q+1)r+ qa+2q+ 1− t. Thus we need to consider

only vertices in Wi for 1 ≤ i ≤ q. So consider Wi = {ir + (i− 1)a+ i, . . . , ir + ia+ i} for
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1 ≤ i ≤ t. By Lemma 5, r
2
− a−3

2
> 0. Hence

ir+ (i− 1)a+ i+ p+1
2

= (q+ i)r+ (q+ i)a+ (q+ i) + q− t r
2
− a−3

2
> (q+ i)r+ (q + i)a+

(q + i) + q − t = jr + ja+ j + q − t, for j = q + i.

Also, by Lemma 4 and 5, a+1
2

+ r
2
< r Hence

ir+ ia+ i+ p+1
2

= (q+ i+1)r+(q+ i)a+2(q+ i+1)+ q− t = (j+1)r+ ja+ j+1+ q− t

Therefore the set {ir + (i − 1)a + i + p+1
2
, . . . , ir + ia + p+1

2
} is strictly between Wj and

Wj+1 for j = q + i, and so it is contained in A.

Finally, consider Wi = {ir + (i− 1)a + 2i− t− 1, . . . , ir + ia + 2i− t} for t+ 1 ≤ i ≤ q.

By Lemma 5, r
2
− a−1

2
≥ a+3

2
> 0. Hence

ir + (i − 1)a + 2i − t − 1 + p+1
2

= (q + i)r + (q + i)a + 2(q + i) − 2t + r
2
− a−1

2
>

(q + i)r + (q + i)a+ 2(q + i)− 2t = jr + ja+ 2j − 2t, for j = q + i.

Also, by Lemma 4 and 5, r
2
+ a+1

2
< r Hence

ir+ia+2i−t+ p+1
2

< (q+i+1)r+(q+i)a+2(q+i+1)−2t−1 = (j+1)r+ja+2(j+1)−2t−1.

Hence the set {ir+(i−1)a+2i− t−1+ p+1
2
, . . . , ir+ ia+2i− t+ p+1

2
} is strictly between

Wj and Wj+1 for j = q + i, and so it is contained in A. Also note that 0 + p+1
2

∈ A.

Therefore the Wi, 1 ≤ i ≤ 2q+1 = k are the components of Hn,p−A, so ω(Hn,p−A) = k.

Theorem 4: LetHn,p be the Harary graph with n = 2r+1, p and k both odd, 1 < s < r+1

and s > k, where s = ak + b for some a and b, 0 < b < k. Then t(Hn,p) = r.

Proof: By Theorem 1, we have r ≤ t(Hn,p). Set A of Lemma 7 achieves this lower bound,

since |A| = kr and ω(Hn,p − A) = k. Therefore t(Hn,p) = r.

Lemma 8: Let Hn,p be the Harary graph with n = 2r + 1, p odd, r ≥ 2 1 < s < r + 1

and s < k and k even. Then there is a cut-set A with kr + 1 elements such that

ω(H(n, p)−A) = k.

Proof: We may assume Hn,p is labeled by 0, 1, 2, . . . , p− 1. Let s < k, then s = k− l for

some l. Since p is odd and k is even, then s is odd. Hence l = 2t+1 and k = 2q, for some

t and q. Thus s = k − l = 2q − 2t− 1 > 1, which implies that q > t + 1. Define the sets

Wi for 1 ≤ i ≤ 2q + 1 as follows:
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Wi =























{ir + 2i− 1, ir + 2i} 1 ≤ i ≤ q − t− 1

{ir + i+ q − t− 1} q − t ≤ i ≤ q + 1

{ir + 2i− t− 3, ir + 2i− t− 2} q + 2 ≤ i ≤ 2q − t

{ir + i+ 2q − 2t− 2} 2q − t + 1 ≤ i ≤ 2q

Let W be the union of the sets Wi, 1 ≤ i ≤ 2q and A = V (G) − W . The number of

vertices in W is equal to

2(q − t− 1) + t + 2 + 2(q − t− 1) + t = 4q − (2t+ 1)− 1 = 2k − l − 1 = k + s− 1,

so |A| = p− k − s + 1 = kr + 1. Now, we can see that for any 1 ≤ i ≤ 2q, the elements

in Wi differ from those in Wi+1 by at least r + 1. Hence, no vertex in Wi is adjacent to

a vertex in Wj , 1 ≤ i < j ≤ 2q, by an edge in the copy of H2r,p in G. Thus we only need

consider edges of the form {x, x+ p+1
2
}. In fact, we need to consider only such edges when

x is at most p−1
2
. Hence, since p−1

2
= qr+2q− t−1 < (q+1)r+(q+1)+q− t−1, we need

to consider only vertices in Wi for 1 ≤ i ≤ q. So consider Wi = {ir + 2i− 1, . . . , ir + 2i}

for 1 ≤ i ≤ q − t− 1. Then

ir+2i− 1+ p+1
2

= (q+ i)r+2(q+ i)− t− 1 > (q+ i)r+2(q+ i)− t− 2 = jr+2j− t− 2,

for j = q + i.

Also, since r ≥ 2

ir + 2i+ p+1
2

< (q + i+ 1)r + 2(q + i+ 1)− t− 3 = (j + 1) + 2(j + 1)r − t− 3.

Therefore the set {ir + 2i − 1 + p+1
2
, ir + 2i + p+1

2
} is strictly between Wj and Wj+1 for

j = q + i, and so it is contained in A.

Finally, consider Wi = {ir + i+ q − t− 1} for q − t ≤ i ≤ q. Then

ir+ i+ q− t− 1+ p+1
2

= (q+ i)r+(q+ i)+ 2q− 2t− 1 > (q+ i)r+(q+ i)+ 2q− 2t− 2 =

jr + j + 2q − 2t− 2, for j = q + i.

Also, since r ≥ 2

ir+ i+q− t−1+ p+1
2

< (q+ i+1)r+(q+ i+1)+2q−2t−2 = (j+1)r+j+1+2q−2t−2.
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Hence the set {ir + i+ q − t− 1p+1
2
} is strictly between Wj and Wj+1 for j = q + i, and

so it is contained in A. Therefore the Wi, 1 ≤ i ≤ 2q are the components of Hn,p −A, so

ω(Hn,p − A) = k.

Theorem 5: Let Hn,p be the Harary graph with n = 2r+1, p odd, k even, 1 < s < r+1

and s < k. Then r ≤ t(Hn,p) ≤ r + 1
k
.

Proof: First note that if r = 1 then 1 < s < 2, a contradiction. Hence we have r ≥ 2.

By Theorem 1, we have r ≤ t(Hn,p). By selecting Set A of Lemma 8 we have |A| = kr+1

and ω(Hn,p − A) = k. Therefore r ≤ t(Hn,p) ≤ r + 1
k
.

Lemma 9: Let Hn,p be the Harary graph with n = 2r + 1, p odd, k even, k > 2,

1 < s < r + 1 and s > k, where s = ak + b for some a and b, 0 < b < k. Then

r ≥

{

5 a odd

9 a even

Proof: Write s = ak+ b, for some 0 < b < k. Since p is odd and k is even, then s is odd.

Hence b is odd, and the minimum value for b is 1. Since k is even and k > 2, then the

minimum value for k is 4.

Case 1. Suppose a is odd. Hence the minimum value for a is 1. Thus the minimum

value for s is 1(4) + 1 = 5. Since s < r + 1, r ≥ 5.

Case 2. Suppose a is even. Hence the minimum value for a is 2. Thus the minimum

value for s is 2(4) + 1 = 9. Since s < r + 1, r ≥ 9.

Note that if r is even then the bounds in the previous lemma can be increased by 1..

Lemma 10: Let Hn,p be the Harary graph with n = 2r + 1, p odd, k even, k > 2,

1 < s < r + 1 and s > k, where s = ak + b for some a and b, 0 < b < k. Then a+ 1 < r
2

Proof: Write s = ak+ b, for some 0 < b < k. Since p is odd and k is even, then s is odd.

Hence b is odd. Since k is even and k > 2 and b is odd, then the minimum value for k

and b are 4 and 1 respectively. Thus 2a + 2 < 4a + 1 ≤ ak + b = s. Hence, since s ≤ r,

we have a+ 1 < r
2
.
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Since k is even and p is odd, then p is not a multiple of k, s 6= ak. Hence we have our

final lemma.

Lemma 11: Let Hn,p be the Harary graph with n = 2r + 1, p odd, k even, k > 2,

1 < s < r + 1 and s > k, where s = ak + b for some a and b, 0 < b < k. Then there is a

cut-set A with kr + 1 elements such that ω(H(n, p)− A) = k.

Proof: Let s > k, then s = ak + b, for 0 < b < k. Since p is odd and k is even, then s is

odd. Hence b is odd. Thus b = 2t− 1 and k = 2q for some t and q.

Case1: Suppose a+ 1 < q. Define the sets Wi for 1 ≤ i ≤ 2q as follows:

Wi =























































{ir + (i− 1)a+ 2i− 1, . . . , ir + ia + 2i} 1 ≤ i ≤ a + t− 1

{ir + ia + i+ t− 1, . . . , ir + (i+ 1)a+ i+ t− 1} a + t ≤ i ≤ q − 1

{ir + qa+ t + i− 1} q ≤ i ≤ q + 1

{ir + (i− 2)a+ 2(i− 1) + t− q − 1, . . . ,

ir + (i− 1)a+ 2(i− 1) + t− q} q + 2 ≤ i ≤ q + a+ t

{ir + (i− 1)a+ (i− 1) + 2t− 1, . . . ,

ir + ia + (i− 1) + 2t− 1} q + a + t+ 1 ≤ i ≤ 2q

Let W be the union of the sets Wi, 1 ≤ i ≤ 2q and A = V (G) − W . The number of

vertices in W is equal to

2(a+ t− 1)(a+ 2) + 2 + 2(q − a− t)(a + 1) = k − 1 + ka + 2t− 1 = k − 1 + s,

so |A| = p−k−s+1 = kr+1. Now, we can see that for any 1 ≤ i ≤ 2q, the elements inWi

differ from those in Wi+1 by at least r+1. Hence, no vertex in Wi is adjacent to a vertex

in Wj , 1 ≤ i < j ≤ 2q, by an edge in the copy of H2r,p in G. Thus we only need consider

edges of the form {x, x+ p+1
2
}. In fact, we need to consider only such edges when x is at

most p−1
2
. Hence, since p−1

2
= qr+qa+q+ t−1 < (q+1)r+qa+q+ t, we need to consider

only vertices in Wi for 1 ≤ i ≤ q. So consider Wi = {ir+(i−1)a+2i−1, . . . , ir+ ia+2i}

for 1 ≤ i ≤ a+ t− 1. Then

ir + (i − 1)a + 2i − 1 + p+1
2

= (q + i)r + (q + i − 1)a + 2(q + i − 1) − q + t + 1 >

(q+ i)r+(q+ i− 1)a+2(q + i− 1)− q + t = jr+(j− 1)a+2(j − 1)− q+ t, for j = q+ i.

Also, by Lemma 9 and 10, r − a− 1 > 0, and so
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ir + ia + 2i+ p+1
2

< (q + i)r + (q + i)a + 2(q + i)− q + t < (q + i+ 1)r + (q + i− 1)a +

2(q + i) + t− q − 1 = (j + 1)r + (j − 1)a+ 2j + t− q − 1.

Therefore the set {ir + (i− 1)a+ 2i− 1 + p+1
2
, . . . , ir + ia+ 2i+ p+1

2
} is strictly between

Wj and Wj+1 for j = q + i, and so it is contained in A.

Now, consider Wi = {ir+ia+i+t−1, . . . , ir+(i+1)a+i+t−1} for a+t ≤ i ≤ q−1. Then

ir+ia+i+t−1+p+1
2

= (q+i)r+(q+i)a+(q+i−1)+2t > (q+i)r+(q+i)a+(q+i−1)+2t−1 =

jr + ja+ j − 1 + 2t− 1, for j = q + i.

Also, by Lemma 10, a < r, and so

ir + (i+ 1)a + i+ t− 1 + p+1
2

< (q + i)r + (q + i+ 1)a+ q + i− 1 + 2t < (q + i+ 1)r +

(q + i)a+ (q + i) + 2t− 1 = (j + 1)r + ja+ j + 2t− 1.

Hence the set {ir + ia + i + t − 1 + p+1
2
, . . . , ir + (i + 1)a + i + t − 1 + p+1

2
} is strictly

between Wj and Wj+1 for j = q + i, and so it is contained in A.

Finally, consider Wi = {ir + qa + t + i− 1} for i = q. Then qr + qa + t + q − 1 + p+1
2

=
p−1
2

+ p+1
2

= p, Therefore {qr+ qa+ t+ q − 1 + p+1
2
} is strictly between W2q and W1 and

so it is contained in A. Therefore the Wi, 1 ≤ i ≤ 2q are the components of Hn,p −A, so

ω(Hn,p − A) = k.

Case2: Suppose a + t − 1 = z(q − 1), for some integer z and so q − 1 divides a + b−1
2
.

Define the sets Wi for 1 ≤ i ≤ 2q as follows:

Wi =















{ir + (i− 1)a+ (i− 1)z + i, . . . , ir + ia + iz + i} 1 ≤ i ≤ q − 1

{ir + (q − 1)a+ (q − 1)z + i} q ≤ i ≤ q + 1

{ir + (i− 3)a+ (i− 3)z + i, . . . , ir + (i− 2)a+ (i− 2)z + i} q + 2 ≤ i ≤ 2q

Let W be the union of the sets Wi, 1 ≤ i ≤ 2q, and A = V (G) − W . The number of

vertices in W is equal to

2(q − 1)(a+ z + 1) + 2 = k − 1 + ak + b = k − 1 + s,
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so |A| = m− k − s+ 1 = kr + 1. Now, we can see that for any 1 ≤ i ≤ 2q, the elements

in Wi differ from those in Wi+1 by at least r + 1. Hence, no vertex in Wi is adjacent to

a vertex in Wj, 1 ≤ i < j ≤ 2q, by an edge in the copy of Hp,2r, in G. Thus we need

only consider edges of the form {x, x+ p+1
2
}. In fact, we need to consider only such edges

when x is at most p−1
2
. Hence, since

p−1
2

= qr + (q − 1)a+ z(q − 1) < (q + 1)r + (q − 1)a+ z(q − 1) + q + 1.

We need to consider only vertices in Wi for 1 ≤ i ≤ q. So consider {ir + (i − 1)a + (i −

1)z + i, . . . , ir + ia+ iz + i} for 1 ≤ i ≤ q − 1. Then

ir + (i − 1)a + (i − 1)z + i + p+1
2

= (q + i)r + (q + i − 2)a + (q + i − 2)z + q + i + 1 >

(q + i)r + (q + i− 2)a+ (q + i− 2)z + q + i = jr + (j − 2)a+ (j − 2)z + j, for j = q + i.

Also, since a+ z = a + a+t−1
q−1

< a+ a + b < ak + b = s ≤ r,

ir + ia+ iz + i+ p+1
2

= (q + i)r + (q + i− 1)a+ (q + i− 1)z + q + i+ 1 < (q + i+ 1)r +

(q + i− 2)a+ (q + i− 2)z + q + i+ 1 = (j + 1)r + (j − 2)a+ (j − 2)z + j + 1.

Therefore the set {ir + (i− 1)a+ (i− 1)z + i+ p+1
2
, . . . , ir + ia+ iz + i+ p+1

2
} is strictly

between Wj and Wj+1 for j = q + i, and so it is contained in A.

Finally, consider {ir+(q−1)a+(q−1)z+i} for i = q . Then qr+(q−1)a+(q−1)z+q+ p+1
2

=
p−1
2

+ p+1
2

= m. Hence it is contained in A. Therefore the Wi, 1 ≤ i ≤ 2q, are the com-

ponents of Hp,n −A, so ω(Hp,n − A) = k.

Case3: Suppose that a + t − 1 = z(q − 1) + c, for 0 < c < q − 1 and so q − 1 does not

divide a+ b−1
2
. Define the sets Wi for 1 ≤ i ≤ 2q as follows:

Wi =























































{ir + (i− 1)a+ (i− 1)z + 2i− 1, . . . , ir + ia+ iz + 2i} 1 ≤ i ≤ c

{ir + (i− 1)a+ (i− 1)z + i+ c, . . . , ir + ia+ iz + i+ c} c+ 1 ≤ i ≤ q − 1

{ir + (q − 1)a+ (q − 1)z + i+ c} q ≤ i ≤ q + 1

{ir + (i− 3)a+ (i− 3)z + 2i− q + c− 2, . . . ,

ir + (i− 2)a+ (i− 2)z + 2i− q + c− 1} q + 2 ≤ i ≤ q + c+ 1

{ir + (i− 3)a+ (i− 3)z + i+ 2c, . . . ,

ir + (i− 2)a+ (i− 2)z + i+ 2c} q + c+ 2 ≤ i ≤ 2q
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Let W be the union of the sets Wi, 1 ≤ i ≤ 2q, and A = V (G) − W . The number of

vertices in W is equal to

2c(a+z+2)+2+2(q−c−1)(a+z+1) = k+ka+b−1 = k+s−1, so |A| = m−k−s+1 = kr+1.

Now, we can see that for any 1 ≤ i ≤ 2q, the elements in Wi differ from those in Wi+1 by

at least r+1. Hence, no vertex in Wi is adjacent to a vertex in Wj , 1 ≤ i < j ≤ 2q, by an

edge in the copy of Hp,2r, in G. Thus we need only consider edges of the form {x, x+ p+1
2
}.

In fact, we need to consider only such edges when x is at most p−1
2
. Hence, since

p−1
2

= qr + (q − 1)a+ (q − 1)z + q + c < (q + 1)r + (q − 1)a+ (q − 1)z + q + c+ 1.

We need to consider only vertices in Wi for 1 ≤ i ≤ q. So consider {ir + (i − 1)a + (i −

1)z + 2i− 1, . . . , ir + ia+ iz + 2i} for 1 ≤ i ≤ c. Then

ir+(i−1)a+(i−1)z+2i+ p+1
2

= (q+ i)r+(q+ i−2)a+(q+ i−2)z+2(q+ i)− q+ c >

(q+i)r+(q+i−2)a+(q+i−2)z+2(q+i)−q+c−1 = jr+(j−2)a+(j−2)z+2j−q+c−1,

for j = q + i.

Also, since

a+ z +1 = a+ a
q−1

+ t−1
q−1

− c
q−1

+1 < a+ a
q−1

+ t−1
q−1

+1 ≤ a+ a+ b+1 ≤ ak+ b = s ≤ r.

Thus

ir+ia+iz+2i+ p+1
2

= (q+i)r+(q+i−1)a+(q+i−1)z+2(q+i)−q+c+1 < (q+i+1)r+(q+

i−2)a+(q+i−2)z+2(q+i+1)−q+c−2 = (j+1)r+(j−2)a+(j−2)z+2(j+1)+c−q−2.

Therefore the set {ir + (i − 1)a + (i − 1)z + 2i + p+1
2
, . . . , ir + ia + iz + 2i + p+1

2
} for

1 ≤ i ≤ c is strictly between Wj and Wj+1 for j = q + i, and so it is contained in A.

Now, consider {ir+(i−1)a+(i−1)z+i+c, . . . , ir+ia+iz+i+c} for c+1 ≤ i ≤ q−1. Then

ir+ (i− 1)a+ (i− 1)z + i+ c+ p+1
2

> (q+ i)r+ (q + i− 2)a+ (q + i− 2)z + q + i+ 2c =

jr + (j − 2)a + (j − 2)z + j + 2c, for j = q + i.

Also, by Lemma 10, r > a+ z, and so

ir + ia+ iz + i+ c+ p+1
2

< (q + i+ 1)r + (q + i− 2)a+ (q + i− 2)z + (q + i+ 1) + 2c =
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(j + 1)r + (j − 2)a+ (j − 2)z + (j + 1) + 2c.

Hence the set {ir+(i−1)a+(i−1)z+ i+ c+ p+1
2
, . . . , ir+ ia+ iz+ i+ c+ p+1

2
} is strictly

between Wj and Wj+1 for j = q + i and so it is contained in A.

Finally, consider {ir+(q−1)a+(q−1)z+ i+ c} for i = q. Then qr+(q−1)a+(q−1)z+

q + c + p+1
2

= p−1
2

+ p+1
2

= p. Hence it is contained in A. Therefore the Wi, 1 ≤ i ≤ 2q,

are the components of Hp,n −A so ω(Hp,n − A) = k.

Finally, we have the following theorem.

Theorem 6: Let Hn,p be the Harary graph with n = 2r + 1, p odd, k even, k > 2,

1 < s < r + 1 and s > k, where s = ak + b for some a and b, 0 < b < k. Then

r ≤ t(Hn,p) = r + 1
k
.

Proof: By Theorem 1, we have r ≤ t(Hn,p). Also by Lemma 11, there is a cut-set

A of Hn,p with kr + 1 elements. The number of components of Hn,p − A is k. Hence

r ≤ |A|
ω(Hn,p−A)

= r + 1
k
, and the theorem follows.

Conclusion: We can summarize what we have proved about the Harery graphs as follows,

where n = 2r or n = 2r + 1 and p = k(r + 1) + s for 0 ≤ s < r + 1:

If n is even, then t(Hn,p) = r

If n is odd, p even, k odd, then t(Hn,p) = r

If n is odd, p and k both even, then t(Hn,p) = r + 1
k

If n is odd, p and k both odd, then t(Hn,p) = r

If n is odd, p odd, k even, then t(Hn,p) = r + 1
k
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