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ABSTRACT ARTICLE INFO

The statistical methods based on cumulative distribu-
tion function is a start point for many parametric or
nonparametric statistical inferences. However, there are
many practical problems that require dealing with obser-
vations/parameters that represent inherently imprecise.
However, Hesamian and Taheri (2013) was extended a
concept of fuzzy cumulative distribution function. Ap-
plying a common notion of fuzzy random variables, they
extended a vague concept of fuzzy cumulative distri-
bution function. However, the main properties of the
proposed method has not yet been considered in fuzzy
environment. This paper aims to extend the classical
properties of the fuzzy cumulative distribution function
in fuzzy environment.
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1 Introduction

The cumulative distribution function (C.D.F.) is the probability that the random variable
X takes a value less than or equal to a specified value x. It plays an essential rule in
many fields of statistical methods such as: Kolmogorov-Smirnov test, functional statistics,
estimation of conditional quantiles and etc. In the classical version of such methods,
the model information such as random variable or parameters are generally assumed to
be crisp (precise) quantities. But, in the real world, such elements may be imprecisely
observed or reported. Therefore, there is need to model such imprecise information and
extend the conventional statistical inferences in fuzzy environment. Since the introduction
of the fuzzy st theory, the fuzzy statistical methods have been successfully developed (for
parametric cases, see for instance, [2, 3, 4, 5, 6, 27, 24, 30] and see [1, 7, 8, 9, 10, 11, 12,
13, 15, 16, 17, 18, 20, 23] for nonparametric cases).
The present paper aims to extend the classical properties of a well-established fuzzy
cumulative distribution function based on fuzzy random variables and fuzzy parameters
introduced by Hesamian and Taheri [14]. To do this, after introducing a concept of
convergence/ divergence on the space of fuzzy numbers, the a classical properties of a
C.D.F. are investigated for a fuzzy cumulative distribution function.
The rest of this paper is organized as follows: in the next section, we briefly review the
classical cumulative distribution function. In addition, we recall some necessary concepts
related to fuzzy numbers and fuzzy random variables. Some concept of converging or
diverging a sequence of fuzzy numbers are also introduced in this section. Section 3
extends the classical properties of a cumulative distribution function for a fuzzy cumulative
distribution function to fuzzy environments with fuzzy data and fuzzy parameters at a
crisp as well as at a fuzzy point. Finally, a brief conclusion is provided in Section 4.

2 Some Preliminaries

2.1 Classical cumulative distribution function

Let (Ω,A, P ) be a probability space. A set of probability measures Pθ on (Ω,A) where
θ ∈ Θ is said to be a parametric family if Θ ⊂ Rp for some fixed positive integer p. The
set Θ is called the p-dimensional parameter space. For a random variable X : Ω → R,
the cumulative distribution function of X at x ∈ R is defined as follows:

FX(x) = P{X ≤ x} =

∫

{ω∈Ω|X(ω)≤x}
dP (ω).

It should be noted that every cumulative distribution function FX is non-decreasing and
right-continuous. Furthermore, limx→−∞ FX(x) = 0, limx→∞ FX(x) = 1.
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2.2 Fuzzy numbers and fuzzy random variables

A fuzzy set Ã of X (the universal set) is defined by its membership function Ã : X→ [0, 1].

The set Ã[α] := {x ∈ X : Ã(x) ≥ α} is called the α-level set (or α-cut) of the fuzzy set

Ã, for each α ∈ (0, 1] [29]. The set Ã[0] is also defined equal to the closure of the set

{x ∈ X : Ã(x) > 0}. A fuzzy set Ã of R (the real line) is called a fuzzy number if it

is normal, i.e. there exists a unique x∗
Ã
∈ R with Ã(x∗

Ã
) = 1, and for every α ∈ [0, 1],

the set Ã[α] is a non-empty compact interval in R. This interval will be denoted by

Ã[α] = [ÃLα, Ã
U
α ], where ÃLα = inf{x : x ∈ Ã[α]} and ÃUα = sup{x : x ∈ Ã[α]}. A fuzzy

number Ã is called a LR-fuzzy number if there exist real numbers a, l and r with l, r ≥ 0,
and strictly decreasing and continuous functions L,R : [0, 1]→ [0, 1] such that

Ã(x) =





L(a−x
l

) a− l ≤ x ≤ a,

R(x−a
r

) a < x ≤ a+ r,

0 x ∈ R− [a− l, a+ r].

In this case Ã is denoted simply by (a; l, r)LR. The most common used LR-fuzzy numbers
in many real applications are the so-called triangular fuzzy numbers in which the shape
functions L and R are given by L(x) = R(x) = 1− x, for all x ∈ [0, 1]. The membership

function of triangular fuzzy number, denoted by Ã = (a; l, r)T , is given by

Ã(x) =





x−a+l
l

a− l ≤ x ≤ a,

a+r−x
r

a ≤ x ≤ a+ r,

0 x ∈ R− [a− l, a+ r].

A well-known ordering of fuzzy numbers, used in the sections below for investigating the
properties of a fuzzy cumulative distribution function.

Definition 2.1 [29] For Ã, B̃ ∈ F(R), we say that Ã � (≺)B̃ if ÃLα ≤ (<)B̃L
α and

ÃUα ≤ (<)B̃U
α for any α ∈ [0, 1].

Here, we also recall a common distance in space of fuzzy numbers so-called the Hausdorff
distance measure [26].

Definition 2.2 For two fuzzy numbers Ã and B̃, the Hausdorff distance between Ã and
B̃, denoted by DH(Ã, B̃), is defined as follows

DH(Ã, B̃) = sup
α∈[0,1]

max{|ÃLα − B̃L
α |, |ÃUα − B̃U

α |}.

We shall use DH to investigate the properties of the proposed fuzzy cumulative distribu-
tion function in the next section.
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Definition 2.3 Let {Ãn}n∈N be a sequence of fuzzy numbers.

1. {Ãn}n∈N is said to converges to Z̃ ∈ F(R), briefly Ãn → Z̃, if limn→∞DH(Ãn, Z̃) =
0.

2. This sequence is called increasing (respectively, decreasing) if Ãn 4 Ãn+1 (respec-

tively, Ãn+1 4 Ãn), for all n ∈ N. The sequence is said to diverge to infinity,

denoted by Ãn → +∞, if for all fuzzy numbers M̃ ∈ F(R) there is N ∈ N such that

M̃ 4 Ãn, for all n ≥ N . The notion Ãn → −∞ is defined similarly.

Here, we recall a common definition of fuzzy random variables [19, 20, 22, 25].

Definition 2.4 Given a probability space (Ω,A,P), a fuzzy random variable is defined

to be a Borel measurable mapping X̃ : Ω → F(R) such that for any α ∈ [0, 1], the α-cut

X̃[α] is a random variable, i.e. X̃[α] : Ω→ H(R) (H(R) is the class of nonempty compact
intervals) [25]. It is a Borel measurable function with respect to the Borel σ-field generated
by the topology associated with the (ordinary) Hausdorff metric on H(R).

3 Fuzzy cumulative distribution function

In this section, we first recall a common notion of fuzzy cumulative distribution function
introduced Hesamian and Taheri [14].

Definition 3.1 Let X be fuzzy random variable. The membership function of the fuzzy
cumulative distribution function (F.C.D.F.) of X̃ at x̃ ∈ F(R) is defined by:

µF̃
X̃

(x̃)(y) = sup
{
α ∈ [0, 1] : y ∈ [FX̃U

α
(x̃Lα), FX̃L

α
(x̃Uα )]

}
. (3.1)

Remark 3.1 In cases where the fuzzy point of x̃ reduces to the exact value x, then the
α-cuts of the F.C.D.F. reduce as:

(F̃X̃(x))[α] = [FX̃U
α

(x), FX̃L
α

(x)]. (3.2)

In addition, if X̃ reduces to the ordinary random variable X, then (F̃X̃(x))Lα = (F̃X̃(x))Lα(x) =
FX(x) which is the classical C.D.F.

Remark 3.2 According to [9, 20, 28], it should be noted that X̃ can be regarded as a
vague perception of an ordinary random variable X. Therefore, one may imagine that
F.C.D.F. F̃X̃ is also a vague perception of FX . In this regard, let {FX,θ : θ ∈ Θ ⊆ Rp} be
a family of continuous parametric C.D.F. Therefore, based on a set of fuzzy parameters
θ̃ : Θ→ (F(R))p, p ≥ 1, we can reconstruct a F.C.D.F. as:

(F̃X̃)Lα = inf
θ∈θ̃[α]

FX,θ, (F̃X̃)Uα = sup
θ∈θ̃[α]

FX,θ. (3.3)



131 M. Shams / JAC 52 issue 2, December 2020, PP. 127 - 136

Example 3.1 Let X̃ be a fuzzy random variable distributed according to exponential dis-
tribution with fuzzy parameter λ̃ ∈ F(R), supp(λ̃) ⊆ (0,∞). By (3.3), we then get:

µF̃
X̃

(x)(y) = sup
α∈[0,1]

αI(y ∈ [1− exp(
−x
λ̃Uα

), 1− exp(
−x
λ̃Lα

)]). (3.4)

For instance, assume that λ̃ = (80, 100, 120)T . For this case, 3-dimensional curve of
F.C.D.F. is plotted in Fig. 1.
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Fig. 1. F.C.D.F. in Example 3.1.

Example 3.2 Assume that X̃ distributed according to normal distribution with fuzzy µ̃ ∈
F(R) and fuzzy variance σ̃2 ∈ F((0,∞)). The membership degree of F.C.D.F. of X̃ at
x̃ ∈ F(R) can be evaluated as:

µF̃
X̃

(x)(y) = sup{α ∈ [0, 1] : y ∈ [Φ(
x̃Lα − µ̃Uα
σ̃Uα

),Φ(
x̃Uα − µ̃Lα
σ̃Lα

)]}. (3.5)

For example, let µ̃ = (8, 10, 12)T and σ̃2 = (3, 4, 5)T . Then, the membership function of
the F.C.D.F. at two fuzzy point x̃1 = (2, 3, 5)T and x̃2 = (7, 10, 13)T are drown in Fig.
2. In addition, the membership function of the F.C.D.F. at x ∈ R can be evaluated as:

µF̃
X̃

(x)(y) = sup{α ∈ [0, 1] : y ∈ [Φ(
x− µ̃Uα
σ̃Uα

),Φ(
x− µ̃Lα
σ̃Lα

)]}, (3.6)

where Φ denotes the C.D.F. of standard normal distribution. Moreover, for µ̃ = (8, 10, 12)T
and σ̃2 = (3, 4, 5)T , the 3-dimensional curve of F.C.D.F. is shown in Fig. 3.
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Fig. 2. F.C.D.F. at x̃1 = (2, 3, 5)T and x̃2 = (7, 10, 13)T in Example 3.2.
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Fig. 3. F.C.D.F. in Example 3.2.

Example 3.3 Assume that X̃ follows the double exponential distribution (with C.D.F.

of FX(x) = 1−e−x−θσ , x > θ) where θ̃ ∈ F(R) and σ̃ ∈ F((0,∞)). Then, the membership
function of F.C.D.F. at x ∈ R can be given as follows:

µF̃
X̃

(x)(y) = sup
α∈[0,1]

αI(y ∈ [1− e−
x̃Lα−θ̃Uα
σ̃Uα , 1− e−

x̃Uα−θ̃Lα
σ̃Lα ]). (3.7)

Let θ̃ = (−1, 0,+1)T and σ̃ = (0.25.0.50, 0.75)T for instance. The membership function
of F.C.D.F. at x̃1 = (0.5, 1, 1.5)T is then drown in Fig. 4. In addition, its membership
function at x ∈ R can be evaluated as follows:

µF̃
X̃

(x)(y) = sup{α ∈ [0, 1] : y ∈ [1− e−
x−θ̃Uα
σ̃Uα , 1− e−

x−θ̃Lα
σ̃Lα ]}. (3.8)

In this case, the 3-dimensional curve of F.C.D.F. is shown in Fig. 5.

It should be noted that the conventional properties of the underline F.C.D.F. was not
investigate in fuzzy environment. Here, we are going to investigate its properties in fuzzy
environment.
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Fig. 4. F.C.D.F. in Example 3.3.

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c.d.f.

D
e
g
re

e
 o

f 
m

e
m

b
e
rs

h
ip

x̃1 = (0.5, 1, 1.5)T

Fig. 5. F.C.D.F. at x̃1 = (0.5, 1, 1.5)T in Example 3.3.

Proposition 3.1 Let X̃ be a fuzzy random variable on a probability space (Ω,A, P ).
Then:

(i) For t̃, s̃ ∈ F(R) if t̃ � s̃ then F̃X̃(t̃) � F̃X̃(s̃).

(ii) For t̃ ∈ F(R), if {t̃n}n∈N is a decreasing sequence of fuzzy numbers with t̃n → t̃ then

F̃X̃(t̃n)→ F̃X̃(t̃).

(iii) If {t̃n}n∈N is an increasing sequence of fuzzy numbers with t̃n → +∞ then F̃X̃(t̃n)→
I{1}.

(iv) If {t̃n}n∈N is a decreasing sequence of fuzzy numbers with t̃n → −∞ then F̃X̃(t̃n)→
I{0}.

where I denotes the indicator function.

Proof. Assume s̃ � t̃. So the proof of part (i) is clear by the monotonic property
of a ordinary C.D.F. and the ranking method introduced in Section 2.2. To prove
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part (ii), let {t̃n}n∈N be a decreasing sequence in F(R) which converges to t̃. Then,

based on the classical properties of C.D.F., we have limn→+∞ F̃X̃U
α

((t̃n)Lα) = F̃X̃U
α

(t̃Lα) and

limn→+∞ F̃X̃L
α

((t̃n)Uα ) = F̃X̃L
α

(t̃Uα ) for any α ∈ [0, 1] and so limn→+∞DH(F̃X̃(t̃n), F̃X̃(t̃)) = 0.

For part (iii), suppose {t̃n}n∈N is an increasing sequence of fuzzy numbers with t̃n → +∞.

According to the definition of divergence to +∞, therefore for any fuzzy numbers M̃ there
is N ∈ N with M̃ � t̃n, for all n ≥ N . Applying the classical properties of a C.D.F.,
for any α ∈ [0, 1], it is concluded that limn→+∞ F̃(X̃)Uα

((t̃n)Lα) = limn→+∞ F̃(X̃)Lα
((t̃n)Uα ) = 1

and so limn→+∞DH(F̃X̃(t̃n), I{1})) = 0. Part (iv) can be proven in a similar manner.

Remark 3.3 If fuzzy points are reduced to crisp ones, then the above proposition reduces
as follows. Let X̃ be a fuzzy random variable on a probability space (Ω,A, P ). Then:

(i) For t, s ∈ R if t < s then F̃X̃(t) � F̃X̃(s).

(ii) For t ∈ R, if {tn}n∈N is a decreasing sequence of real numbers with tn → t then

F̃X̃(tn)→ F̃X̃(t).

(iii) If {tn}n∈N is an increasing sequence of fuzzy numbers with tn → +∞ then F̃X̃(tn)→
I{1}.

(iv) If {tn}n∈N is a decreasing sequence of real numbers with tn → −∞ then F̃X̃(tn) →
I{0}.

4 Conclusion

This paper investigated the classical properties of a common fuzzy cumulative distribution
with fuzzy random variables and fuzzy parameters. For this purpose, applying a concept
of convergence or divergence a sequence of fuzzy fuzzy numbers, the classical properties of
a C.D.F. were extended at crisp or fuzzy points. Some numerical examples are provided
to clarify the discussions in this paper.
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