
Journal of Algorithms and Computation

journal homepage: http://jac.ut.ac.ir

Heuristic and exact algorithms for Generalized Bin

Covering Problem

S. Jabari ∗1, D. Moazzami †2 and A. Ghodousian ‡2

1University of Tehran, Department of Algorithms and Computation.
2University of Tehran, College of Engineering, Faculty of Engineering Science

ABSTRACT ARTICLE INFO

In this paper, we study the Generalized Bin Cover-

ing problem. For this problem an exact algorithm is in-

troduced which can find optimal solution for small scale

instances. To find a solution near optimal for large scale

instances, a heuristic algorithm has been proposed. By

computational experiments, the efficiency of the heuris-

tic algorithm is assessed.

Article history:

Received 20, October 2015

Received in revised form 27,

January 2016

Accepted 29, February 2016

Available online 18, March

2016

Keyword: Generalized Bin Covering Problem, heuristic al-

gorithm, greedy algorithm

AMS subject Classification: Primary 05C78, 05C70

1 Introduction

In Bin Covering problem there are m bins where each bin i has revenue (profit) ri
and demand di. Furthermore, there are n indivisible items where each item j has size

∗Email:sjabari@ut.ac.ir
†E-mail: dmoazzami@ut.ac.ir
‡E-mail: a.ghodousian@ut.ac.irr

Journal of Algorithms and Computation 47 (2016) PP. 53 - 62



54 S. Jabari, / Journal of Algorithms and Computation 47 (2016) PP. 53 - 62

sj. Bin i is covered or filled if the set of items assigned to it has total size at least di.

In that case, the profit of bin is earned and the objective is to maximize the total profit.

Bin Covering problem is a model to assign resource or task among some agents so that

the goal is to maximize the number of agents who fulfill their quota [11]. This problem is

dual of Bin Packing problem.

Bin Covering problem with respect to bins properties is categorized into three cases:

classic, variable-sized and generalized. classic bin covering is the special case

of the problem in which dj = rj = 1 for all bins. variable-sized bin covering is the

special case of the problem in which dj = rj for all bins. generalized bin covering

is general mode of the problem so that dj and rj can get any value for all bins.

Moreover, there are two supply models for generalized and variable-sized bin

covering problem: unit supply model and infinite supply model. In the unit model

there is exactly one bin of each type, i. e., there are individual bins. By contrast, in

the infinite supply model, there are arbitrarily many bins of each type. In this paper, we

consider the offline Generalized Bin Covering problem in unit supply mode.

Bin Covering problem firstly was introduced by Assmann[2]. Assmann et al. pre-

sented efficient approximation algorithms for classic bin covering and they proved

that Next Fit is a 2-approximation algorithm [1]. Also [4, 6, 13] presented asymptotic

approximation algorithms for this problem and [5, 7, 8, 9, 12] worked on variable-

sized bin covering. With the best of our knowledge, Hellwig worked on generalized

bin covering and introduced a 5-approximation algorithm [12]. We call this algorithm

”Hellwig algorithm” in this paper.

We consider an instance of Generalized Bin Covering: Suppose that β = {B1, ..., Bm}
denotes a set of bins and let µ = {I1, ..., In} be a set of items such that each item Ii has

size si. Each bin Bj has two properties: demand dj and revenue rj. The objective is to

pack items into as many bins as possible. If a bin is covered, then the revenue of the bin

is gained. The goal of this problem is to gain maximum revenue.

Assmann showed by reduction of Partition problem that Bin Covering is actually

an NP-hard problem. Since any approximation algorithm with ratio strictly smaller than

2 would have to solve the NP-complete Partition problem that is impossible (unless

P=NP). So, there is no polynomial time 2− ε approximation algorithm for this problem.

On the other hand, there are certain applications that require exact solutions of NP-hard

problems. In these cases, approximation algorithm for this problem may not be efficient.

In section 2, an exact algorithm for generalized bin covering is introduced. In section



55 S. Jabari, / Journal of Algorithms and Computation 47 (2016) PP. 53 - 62

3, a heuristic algorithm has been proposed. To assess ability of the heuristic to solve the

problem, we implemented Hellwig, heuristic and exact algorithms. The results of these

algorithms for some instances of the problem are compared and showed in section 4.

2 Exact algorithm

Every NP-hard problems are solvable by enumerating all possible solutions. general-

ized bin covering is a permutation problem and has a trivial O(nn) brute-force search

(each item i, can be putted in m bins). The algorithm follows is an exponential exact

and is not applicable in the real world but we know the design and analysis of exact

algorithms leads to a better understanding of NP-hard problems and initiates interesting

new combinatorial and algorithmic challenges[10].

We suppose (β, µ) as an instance of generalized bin covering problem and we

consider an optimal solution OPT (β, µ). For this instance, we create a weighted bipartite

graph G = (β ∪ µ,E) so that E = {ij|Bi ∈ β, Ij ∈ µ : di ≤ sj} and a weight function

ω : E → R that ωij = ri for all ij ∈ E. In this graph, we find maximum weighted

matching. Hungarian algorithm [14] can find maximum weighted matching in bipartite

graph. The matching finds a solution for the generalized bin covering problem.

This solution is at least as good as the part of the optimal solution that bins are covered

by one item [12].

Without loss of generality, we can assume in OPT, all bins are covered by one item

since when a bin is covered by more than one item, all these items are assumed as one

item.

Each solution is an assignment of items to bins. The exact algorithm finds the partition

of items that occurs in an optimal solution. For this purpose, the algorithm must consider

all possible partitions on set of items. Suppose the number of all possible partitions on set

of items be P . In each partition partk 1 ≤ k ≤ P , the exact algorithm does the following:

partk = {p1, · · · , pl}. Each subset pi, 1 ≤ i ≤ l is considered as one item. The size of pi is∑
Iq∈pi sq. Algorithm creates a weighted bipartite graph by the bins and {p1, · · · , pl} as

items. Then finds a solution for partk by finding maximum weighted matching in bipartite

graph. After checking all possible partitions, the partition(s) with the most revenue is

(are) optimal. This exact algorithm described in Figure 1.

Complexity Items can be partitioned at most to min{m,n} subsets. So if m < n

then P =
∑m

i=1 S(n, i) (Stirling number of the second kind). Or else P = B(n) (Bell

number). We know
∑n

i=1 S(n, i) ≤ n!. In the process of the exact algorithm, we must run



56 S. Jabari, / Journal of Algorithms and Computation 47 (2016) PP. 53 - 62

Figure 1: Exact algorithm

1. p = min{m,n}

2. partitions =all partitions of set of items from one subset
to p subsets.

3. partNumber =
∑p

i=1 S(n, i)

4. For each partitionsi do
i = 1, . . . , partNumber

(a) k= Number of subsets in partitionsi.

(b) For each subset Sj of partitionsi
j = 1, . . . , k
-Merge the items of Sj to create one item.

(c) Create a weighted bipartite graph Gi by bins and k
new items.

(d) Find maximum weighted matching for Gi by Hungar-
ian algorithm as solutioni.

5. Select solution with the most revenue from solution array
as optimal solution.

Hungarian algorithm for each partition. Since Hungarian algorithm has n3 running time,

the complexity of the exact algorithm is O(n3n!) that is equivalence to O∗(n!). Another

interesting question is on the space requirements of the algorithm. This algorithms does

not need exponential space.

3 Heuristic algorithm

This heuristic algorithm is a combinatorial algorithm and contains four algorithms:

Maximum Weighted Matching in bipartite graph and three greedy algorithms. As men-

tioned, Maximum Weighted Matching in bipartite graph give a solution that is at least as

good as the part of the optimal solution that bins are covered by one item. So, if most of

revenue in optimal solution achieved from the bins that are covered by one, this solution

can be reasonable. Otherwise we use greedy algorithms.



57 S. Jabari, / Journal of Algorithms and Computation 47 (2016) PP. 53 - 62

A greedy algorithm is an algorithm that follows the problem solving heuristic of making

the locally optimal choice at each stage with the hope of finding a global optimum [3].

In many problems, a greedy strategy does not in general produce an optimal solution,

but nonetheless a greedy heuristic may yield locally optimal solutions that approximate a

global optimal solution in a reasonable time. We design three greedy algorithms. For these

greedy algorithms, efficiency of bins are important besides their demand and revenue. For

bin Bi the efficiency, ei, is equal to ri/di. The greedy algorithms apply two priority queues

to order bins: efficiency queue and revenue queue. Efficiency queue sorts the bins non-

increasingly by efficiency. If two bins have same efficiency, the bin with more revenue has

more priority. Revenue queue sorts the bins non-increasingly by revenue. If two bins have

same revenue, then the bin with more efficiency has more priority.

Efficiency algorithm is one of the greedy algorithms. This algorithm selects the bins

from efficiency queue. Another is revenue algorithm which selects the bins form revenue

queue. The last one is called fair algorithm that selects the bins fairly. One bin from

revenue queue and the next from efficiency queue or conversely. These algorithms are

described as follow:

1. Efficiency algorithm: The bins are selected from efficiency queue and items are

sorted non-increasingly. This algorithm tries to cover each bin in three stages. In

each stage, if needed items are found then the algorithm covers the bin and selects

next bin to cover. Also, if the algorithm can’t cover the bin it begins to cover the

next bin. These stages are:

(a) The algorithm finds an item equal to the demand of the bin.

(b) It searches items smaller than the demand of the bin. If the sum of these items

isn’t smaller than its demand, the bin is covered.

(c) It finds smallest item that is bigger than the demand of the bin.

When an item is assigned, it will be omitted from the list of items. This algorithm

is described in Figure 2.

2. Revenue algorithm: This algorithm is similar to efficiency algorithm and there

are only one difference so that bins are selected from revenue queue.

3. Fair algorithm: This algorithm selects randomly the first bin from revenue queue

or efficiency queue. When a queue turned out, the next bin is selected from other

queue. By selecting a bin, the algorithm searches items to find one item whose size

is at least equal to the demand of the bin. If there exists such this item then the

bin is covered. Otherwise, the algorithm searches to find items whose sizes are less



58 S. Jabari, / Journal of Algorithms and Computation 47 (2016) PP. 53 - 62

Figure 2: Efficiency algorithm

(a) Sort items non-increasingly.

(b) Select bins from efficiency queue.

(c) For each Bi do
i = 1, . . . ,m

i. Find the first item Ij so that sj ≥ di.

ii. If there isn’t such item then j = n+ 1.

iii. If sj = di then assign Ij to Bi.
Else, if Σj−1

k=1sk ≥ di then

A. Find l so that Σl
k=1sk ≥ di and Σl−1

k=1sk < di.

B. Assign items I1, . . . , Il to Bi

Else, if j ≤ n then assign Ij to Bi .

iv. Remove the assigned items from the list of items.

than the demand of the bin. The bin is covered, if sum of these items are at least

equal to the bin demand.

Algorithm Analysis The heuristic algorithm solves the Generalized Bin Cover-

ing problem by four methods (maximum matching and greedy algorithms) to find a

reasonable solution. Each algorithm finds a solution for the problem. The solution with

the best result is introduced as the heuristic solution.

Greedy algorithms have O(n2) time complexity. So the running time of the heuristic

algorithm is dominated by the complexity of Hungarian algorithm so is O(n3).

4 Computational Experiments

In this section we assess the efficiency of the heuristic algorithm. To get this aim, this

solution is compared with the optimal (if possible) or Hellwig solution. For this com-

parison, a database is created. This database includes random instances of the problem.

Bins and items properties are selected randomly from their domains. These domain can

be changed. Database contains two sets of problems: in the first set, there are small

instances (at most 12 bins and items) so that we can gain optimal solution for them.

The second set contains almost large instances. In the most of instances, the number

of items are more than bins and the size of items are reduced than the demand of bins.

This property of instances constrains their optimal solutions so that more covered bins



59 S. Jabari, / Journal of Algorithms and Computation 47 (2016) PP. 53 - 62

are filled by more than one item. For this assessment, this property is important because

finding a good solution is difficult when a large fraction of bins covered by several bins

in the optimal solution (Hungarian algorithm can find the part of optimal solution that

bins are covered by one item).

Table 1: The ratio of the optimal revenue to the heuristic or Hellwig revenue (α)
bins items instances α heuristic Hellwig

number number number
α = 1 88.45% 62.07%

1 < α ≤ 1.5 10.2% 28.56%
2-6 3-7 10,000 1.5 < α ≤ 2 0.33% 7.77%

2 < α ≤ 2.5 0% 0.24%
2.5 < α ≤ 3 0% 0.02%

α = 1 63.05% 24.46%
1 < α ≤ 1.5 36.73% 69.42%

6-8 7-10 10,000 1.5 < α ≤ 2 0.22% 5.8%
2 < α ≤ 2.5 0% 0.29%
2.5 < α ≤ 3 0% 0.03%

α = 1 39.6% 9.8%
1 < α ≤ 1.5 60.4% 86.5%

8-10 10-12 1000 1.5 < α ≤ 2 0% 3.4%
2 < α ≤ 2.5 0% 0.3%
2.5 < α ≤ 3 0% 0%

Table 2: Comparison the revenue of the heuristic with the revenue of Hellwig (small
instances)

bins number items number more revenue equal revenue
heuristic Hellwig

2-6 3-7 31.28% 0.6% 68.11%
6-8 7-10 61.96% 1.97% 36.07%
8-10 10-12 73.8 0.21% 24.1%

For small instances of the problem, we calculated the heuristic, Hellwig and optimal

solutions. α is ratio of the optimal revenue to the heuristic or Hellwig revenue and for

each instance is calculated. Table 1 shows the results of this comparison. α isn’t more

than 3 in non of instances. The results demonstrate that heuristic algorithm can find the



60 S. Jabari, / Journal of Algorithms and Computation 47 (2016) PP. 53 - 62

optimal solution in more cases and if can’t find the optimal solution, it ables to find a

solution near to the optimal.

In table 2 Hellwig and the heuristic solutions compared to each other (database is the

same as database of table 1). This table show that the heuristic algorithm has better

solutions for larger instances in comparison with Hellwig algorithm.

For almost large instances, only Hellwig and heuristic solutions calculated and they

compared to each other. The result is in table 3. Each row of table contains 10, 000

problem instances. Results show that for most of the instances, the heuristic solution is

better than Hellwig solution and for larger instances the heuristic solution give us better

results.

The consumed time of these algorithms is in table 4. Heuristic runs faster than Hellwig

algorithm.

Table 3: The revenue of the heuristic with the revenue of Hellwig (almost large instances)
bins number items number more revenue equal revenue

heuristic Hellwig
20− 40 30− 50 99.18% 0.05% 0.77%
50− 80 50− 100 95.82% 0.04% 4.14%

100− 150 100− 200 97.06% 0% 2.94%
150− 200 200− 300 99.99% 0.01% 0%

Table 4: Consumed time of Hellwig and heuristic for almost large instances
bins number items number heuristic Hellwig

20− 40 30− 50 35s 57s
50− 80 50− 100 107s 169s

100− 150 100− 200 298s 478s
150− 200 200− 300 686s 1,128s

5 Conclusion

In this paper we have studied off-line Generalized Bin Covering Problem in unit

supply model. First, we have introduced an exact algorithm with O∗(n!) time complexity.

This is not applicable for large problem instances. For larger instances, we have proposed

a heuristic algorithm. In computational experiments, the algorithm was compared to the

exact and Hellwig algorithms. The results show that the heuristic algorithm can find the



61 S. Jabari, / Journal of Algorithms and Computation 47 (2016) PP. 53 - 62

optimal solution or a solution near to optimal in most cases. Also, almost in the most of

cases the heuristic solution is better than the Hellwig solution specially for larger problem

instances.

6 Acknowledgment

This work was supported by Tehran University. Our special thanks go to the University

of Tehran, College of Engineering and Department of Engineering Science for providing

all the necessary facilities available to us for successfully conducting this research. The

first author is thankful to Ali Golshani of Department of Algorithms and Computation,

University of Tehran, Iran for his valuable comments and suggestions.

References

[1] S. F. Assman, D. Johnson, D. J. Kleitman, and J.-T. Leung. On a dual version of the

one-dimensional bin packing problem. Journal of Algorithms, 5(4):502–525, 1984.

[2] F. S. Assmann. Problems in discrete and applied mathematics. 1983.

[3] P. E. Black. Dictionary of Algorithms and Data Structures. National Institute of

Standards and Technology, 2005.

[4] J. Csirik, J. B. Frenk, M. Labbe, and S. Zhang. Two simple algorithms for bin

covering. Acta Cybernetica, (14):13–25, 1999.

[5] J. Csirik and J. B. G. Frenk. A dual version of bin packing. Algorithms Review,

2:87–95, 1990.

[6] J. Csirik, D. S. Johnson, and C. Kenyon. Better approximation algorithms for bin

covering. 12th Symposium on Discrete Algorithms, pages 557–566, 2001.

[7] J. Csirik and V. Totik. Online algorithms for a dual version of bin packing. Discrete

Applied Mathematics, (21):163–167, 1988.

[8] J. Csirik and G. J. Woeginger. On-line packing and covering problems. In Online

Algorithms, 1442:147–177, 1998.

[9] L. Epstein. Online variable sized covering. Information and Computation,

171(2):294–305, 2001.

[10] F. V. Fomin and D. Kratsch. Exact Exponential Algorithms. Springer, 2010.



62 S. Jabari, / Journal of Algorithms and Computation 47 (2016) PP. 53 - 62

[11] A. S. Fukunaga and R. E. Korf. Bin-completion algorithms for multicontainer packing

and covering problems. Journal of Artificial Intelligence Research, (28):393–429,

2007.

[12] M. Hellwig and A. Souza. Approximation algorithms for generalized and variable-

sized bin covering. In L. N. in Computer Science, editor, 15th International

Workshop, Approximation, Randomization, and Combinatorial Optimization, vol-

ume 7408, pages 195–204. Springer Berlin Heidelberg, 2012.

[13] K. Jansen and R. Solis-Oba. An asymptotic fully polynomial time approximation

scheme for bin covering. Theoretical Computer Science, 306(1–3):543– 551, 2003.

[14] H. W. Kuhn. 50 Years of Integer Programming 1958-2008, chapter The Hungarian

Method for the Assignment Problem, pages 7–28. Springer Berlin Heidelberg, 2010.


