Super Pair Sum Labeling of Graphs

R. Vasuki* ${ }^{* 1}$, S. Arockiaraj ${ }^{\dagger 2}$ and P. Sugirtha ${ }^{\ddagger 3}$
${ }^{1,3}$ Department of Mathematics, Dr. Sivanthi Aditanar College of Engineering, Tiruchendur-628 215,Tamil Nadu, INDIA.
${ }^{2}$ Department of Mathematics, Mepco Schlenk Engineering College, Sivakasi-626124, Tamil Nadu.

ABSTRACT

Let G be a graph with p vertices and q edges. The graph G is said to be a super pair sum labeling if there exists a bijection f from $V(G) \cup E(G)$ to $\left\{0, \pm 1, \pm 2, \ldots, \pm\left(\frac{p+q-1}{2}\right)\right\}$ when $p+q$ is odd and from $V(G) \cup E(G)$ to $\left\{ \pm 1, \pm 2, \ldots, \pm\left(\frac{p+q}{2}\right)\right\}$ when $p+q$ is even such that $f(u v)=f(u)+f(v)$. A graph that admits a super pair sum labeling is called a super pair sum graph. Here we study about the super pair sum labeling of some standard graphs.

Keyword: labeling, super pair sum labeling, super pair sum graph.

ARTICLE INFO

Article history:

Received 08, February 2017
Received in revised form 24, July 2017
Accepted 30 October 2017
Available online 01, December 2017

AMS subject Classification: 05C78.

1 Introduction

Throughout this paper, by a graph we mean a finite, undirected simple graph. Let $G(V, E)$ be a graph with p verticies and q edges. For notations and terminology, we follow [2].

[^0]Path on n vertices is denoted by P_{n} and a cycle on n vertices is denoted by C_{n}. $K_{1, m}$ is called a star and it is denoted by S_{m}. The bistar $B_{m, n}$ is the graph obtained from K_{2} by identifying the central vertices of $K_{1, m}$ and $K_{1, n}$ at the end vertices of K_{2} respectively. $B_{m, m}$ is often denoted by $B(m)$. The corona of a graph G on p vertices $v_{1}, v_{2}, \ldots, v_{p}$ is the graph obtained from G by adding p new vertices $u_{1}, u_{2}, \ldots, u_{p}$ and the new edges $u_{i} v_{i}$ for $1 \leq i \leq p$. The corona of G is denoted by $G \odot K_{1}$. The graph $P_{n} \odot K_{1}$ is called a comb. Let S_{m} be a star with central vertex vertex v_{0} and pendant vertices $v_{1}, v_{2}, \ldots, v_{m}$ and let $\left[P_{2 n} ; S_{m}\right.$] be the graph obtained from $2 n$ copies of S_{m} with vertices $v_{0_{j}}, v_{1_{j}}, \ldots, v_{m_{j}}(1 \leq j \leq 2 n)$ and joining $v_{0) j}$ and $v_{0_{j+1}}$ by means of an edge, $1 \leq j \leq 2 n-1$. A caterpillar T is a tree with a path $P_{n}=u_{1}, u_{2}, \ldots, u_{n}$ called spine with leaves (pendant vertices) known as feet attached to the vertices of the spine by edges known as legs. It is noted that every spine vertex u_{i} is attached to X_{i} (possibly zero) number of leaves $b_{i_{j}}\left(1 \leq j \leq X_{i}, 1 \leq i \leq n\right)$. The caterpillar is denoted as $T=S\left(X_{1}, X_{2}, \ldots, X_{n}\right)$. The graceful labelings of graphs was first introduced by Rosa in 1961 [1] and super vertex graceful labeling of some standard graphs was discussed in [5]. The concept of pair sum labeling was introduced and studied by R. Ponraj et al. [3, 4]. It motivates us to define a new concept called super pair sum labeling of graphs. Let G be a (p, q) graph. A one-one map $f: V(G) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm p\}$ is said to be a pair sum labeling if the induced edge function $f_{e}: E(G) \rightarrow Z-\{0\}$ defined by $f_{e}(u v)=f(u)+f(v)$ is one-one and $f_{e}(E(G))$ is either of the form $\left\{ \pm k_{1}, \pm k_{2}, \ldots, \pm k_{\frac{q}{2}}\right\}$ or $\left\{ \pm k_{1}, \pm k_{2}, \ldots, \pm k_{\frac{q-1}{2}}\right\}$ according as q is even or odd. A graph with a pair sum labeling defined on it is called a pair sum graph.
A graph G with p vertices and q edges is said to have a super pair sum labeling if there exists a bijection f from $V(G) \cup E(G)$ to $\left\{0, \pm 1, \pm 2, \ldots, \pm\left(\frac{p+q-1}{2}\right)\right\}$ when $p+q$ is odd and from $V(G) \cup E(G)$ to $\left\{ \pm 1, \pm 2, \ldots, \pm\left(\frac{p+q}{2}\right)\right\}$ when $p+q$ is even such that $f(u v)=f(u)+f(v)$. A graph that admits a super pair sum labeling is called a super pair sum graph.
A super pair sum labeling of a graph $B(2)$ is given in Figure 1

Figure 1: A super pair sum labeling of $B(2)$
In this paper, we prove that the graphs $P_{n}, K_{1, m}$, bistar $B_{m, n}$ for $m \geq 1$, $n \geq 1,\left[P_{2 n} ; S_{m}\right]$ for $n \geq 1, m \geq 1$, comb, $C_{2 n}, K_{1, m} \cup K_{1, n}$ and banana tree $S(m, 0,0, \ldots, 0), m \geq 1$ are super pair sum graphs.

2 Super Pair Sum Graphs

Theorem 2.1. Any path is a super pair sum graph.
Proof. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of the path P_{n}.
Case i. n is odd.
Define $f: V(G) \cup E(G) \rightarrow\{0, \pm 1, \pm 2, \ldots, \pm(n-1)\}$ as follows:

$$
\begin{aligned}
& \qquad f\left(u_{i}\right)= \begin{cases}\frac{i+1-2 n}{2} & \text { if } i \text { is odd } \\
\frac{n+i-1}{2} & \text { if } i \text { is even }\end{cases} \\
& \text { and } f\left(u_{i} u_{i+1}\right)=\frac{2 i-n+1}{2}, 1 \leq i \leq n-1 .
\end{aligned}
$$

Thus, f is a super pair sum labeling.
Case ii. n is even.
Define $f: V(G) \cup E(G) \rightarrow\{0, \pm 1, \pm 2, \ldots, \pm(n-1)\}$ as follows:

$$
\begin{aligned}
& f\left(u_{i}\right)= \begin{cases}\frac{3 n+2 i-4}{4} & 1 \leq i \leq \frac{n}{2}, i \text { is odd and } n \equiv 2(\bmod 4) \\
& 2 \leq i \leq \frac{n}{2}, i \text { is even and } n \equiv 0(\bmod 4) \\
\frac{n+2 i-4}{4} & \frac{n+4}{2} \leq i \leq n-1, i \text { is odd and } n \equiv 2(\bmod 4) \\
\frac{n+4}{2} \leq i \leq n, i \text { is even and } n \equiv 0(\bmod 4) \\
\frac{2-3 n+2 i}{4} & 2 \leq i \leq \frac{n-2}{2}, i \text { is even and } n \equiv 2(\bmod 4) \\
& 1 \leq i \leq \frac{n-2}{2}, i \text { is odd and } n \equiv 0(\bmod 4) \\
\frac{2-5 n+2 i}{4} & \begin{array}{l}
\frac{n+2}{2} \leq i \leq n, i \text { is even and } n \equiv 2(\bmod 4) \\
\frac{n+2}{2} \leq i \leq n-1, i \text { is odd and } n \equiv 0(\bmod 4)
\end{array} \\
f\left(u_{i} u_{i+1}\right) & =i, \text { for } 1 \leq i \leq \frac{n-2}{2} \\
f\left(u_{\frac{n}{2}} u_{\frac{n+2}{2}}^{2}\right) & =0 \text { and } \\
f\left(u_{i} u_{i+1}\right) & =i-n, \text { for } \frac{n+2}{2} \leq i \leq n-1 .\end{cases}
\end{aligned}
$$

Thus, f is a super pair sum labeling and hence P_{n} is a super pair sum graph.
For example, super pair sum labelings of P_{11}, P_{12} and P_{10} are shown in Figure 2.

Figure 2: Super pair sum labelings of P_{11}, P_{12} and P_{10}

Theorem 2.2. Every star graph S_{m} is a super pair sum graph for $m \geq 1$.
Proof. Let $v_{0}, v_{1}, v_{2}, \ldots, v_{m}$ be the vertices of the star $K_{1, m}$ with v_{0} as the central vertex.
Define $f: V(G) \cup E(G) \rightarrow\{0, \pm 1, \pm 2, \ldots, \pm m\}$ as follows:

$$
\begin{aligned}
f\left(v_{0}\right) & =m \\
f\left(v_{i}\right) & =i-1-m, 1 \leq i \leq m \text { and } \\
f\left(v_{0} v_{i}\right) & =i-1,1 \leq i \leq m .
\end{aligned}
$$

Thus, f is a super pair sum labeling and hence S_{m} is a super pair sum graph for $m \geq 1$.

A super pair sum labeling of S_{8} is shown in Figure 3.

Figure 3: A super pair sum labeling of S_{8}
Theorem 2.3. Bistar $B_{m, n}$ is a super pair sum graph for $m \geq 1, n \geq 1$.
Proof. Let $V\left(K_{2}\right)=\{u, v\}$ and $u_{i}(1 \leq i \leq m), v_{j}(1 \leq j \leq n)$ be the vertices adjacent to u and v respectively. $B_{m, n}$ has $m+n+2$ vertices and $m+n+1$ edges. Define $f: V(G) \cup E(G) \rightarrow\{0, \pm 1, \pm 2, \ldots, \pm(m+n+1)\}$ as follows:

$$
\begin{aligned}
f(u) & =-(m+n+1), \\
f(v) & =m+n+1, \\
f\left(u_{i}\right) & =m+n+1-i, 1 \leq i \leq m, \\
f\left(v_{j}\right) & =-(m+n+1-j), 1 \leq j \leq n, \\
f\left(u u_{i}\right) & =-i, 1 \leq i \leq m, \\
f\left(v v_{j}\right) & =i, 1 \leq j \leq n \text { and } \\
f(u v) & =0 .
\end{aligned}
$$

Thus, f is a super pair sum labeling and hence $B_{m, n}$ is a super pair sum graph for $m \geq 1, n \geq 1$.

A super pair sum labeling of $B_{7,8}$ is shown in Figure 4.

Figure 4: A super pair sum labeling of $B_{7,8}$
Theorem 2.4. $\left[P_{2 n} ; S_{m}\right]$ is a super pair sum graph for $n \geq 1, m \geq 1$.
Proof. Let $v_{0_{j}}, v_{1_{j}}, v_{2_{j}}, \ldots, v_{m_{j}}$ be the vertices in the $j^{\text {th }}$ copy of $S_{m}, 1 \leq j \leq 2 n$.
The number of vertices and edges of $\left[P_{2 n} ; S_{m}\right]$ are $2 n(m+1)$ and $2 n(m+1)-1$ respectively.
Case i. $\quad n \equiv 0(\bmod 2)$.
Define $f: V(G) \cup E(G) \rightarrow\{0, \pm 1, \pm 2, \ldots, \pm(2 n(m+1)-1)\}$ as follows:

$$
\left.\begin{array}{rl}
f\left(v_{0_{j}}\right) & = \begin{cases}\frac{(m+1)(3 n-j+1)}{2}-1 & \text { if } j \text { is odd, } 1 \leq j \leq n-1 \\
1-\frac{(m+1)(3 n+j)}{2} & \text { if } j \text { is even, } 2 \leq j \leq n,\end{cases} \\
f\left(v_{0_{j}}\right) & =-f\left(v_{0_{2 n+1-j}}\right), n+1 \leq j \leq 2 n,
\end{array}\right\} \begin{array}{ll}
1-i-\frac{(m+1)(3 n+j-1)}{2} & \text { if } j \text { is odd, } 1 \leq j \leq n-1 \\
f\left(v_{i_{j}}\right) & = \begin{cases}\frac{(m+1)(3 n-j+2)}{2}-i-1 & \text { if } j \text { is even, } 2 \leq j \leq n,\end{cases} \\
f\left(v_{i_{j}}\right) & =-f\left(v_{\left.i_{2 n+1-j}\right), n+1 \leq j \leq 2 n, 1 \leq i \leq m,},\right. \\
f\left(v_{0_{j}} v_{0_{j+1}}\right) & =-j(m+1), 1 \leq j \leq n-1, \\
f\left(v_{0_{n}} v_{0_{n+1}}\right) & =0, \\
f\left(v_{0_{j}} v_{0_{j+1}}\right) & =(2 n-j)(m+1), n+1 \leq j \leq 2 n-1, \text { and } \\
f\left(v_{0_{j}} v_{i_{j}}\right) & = \begin{cases}(1-j)(m+1)-i & 1 \leq j \leq n, 1 \leq i \leq m \\
(2 n-j)(m+1)+i, & n+1 \leq j \leq 2 n, 1 \leq i \leq m .\end{cases}
\end{array}
$$

Thus, f is a super pair sum labeling.
Case ii. $n \equiv 1(\bmod 2)$.

Define $f: V(G) \cup E(G) \rightarrow\{0, \pm 1, \pm 2, \ldots, \pm(2 n(m+1)-1)\}$ as follows:

$$
\begin{aligned}
f\left(v_{0_{j}}\right) & = \begin{cases}\frac{1-(m+1)(3 n+j)}{2} & \text { if } j \text { is odd, } 1 \leq j \leq n \\
\frac{(m+1)(3 n-j+1)}{2}-1 & \text { if } j \text { is even, } 2 \leq j \leq n-1,\end{cases} \\
f\left(v_{0_{j}}\right) & =-f\left(v_{\left.0_{2 n+1-j}\right)}\right) n+1 \leq j \leq 2 n, \\
f\left(v_{i_{j}}\right) & = \begin{cases}\frac{(m+1)(3 n-j+2)}{2}-i-1 & \text { if } j \text { is odd, } 1 \leq j \leq n \\
1-i-\frac{(m+1)(3 n+j-1)}{2} & \text { if } j \text { is even, } 2 \leq j \leq n-1,\end{cases} \\
f\left(v_{i_{j}}\right) & =-f\left(v_{\left.i_{2 n+1-j}\right), n+1 \leq j \leq 2 n, 1 \leq i \leq m,},\right. \\
f\left(v_{0_{j}} v_{0_{j+1}}\right) & =-j(m+1), 1 \leq j \leq n-1, \\
f\left(v_{0_{n}} v_{0_{n+1}}\right) & =0, \\
f\left(v_{0_{j}} v_{0_{j+1}}\right) & =(2 n-j)(m+1), n+1 \leq j \leq 2 n-1 \text { and } \\
f\left(v_{0_{j}} v_{i_{j}}\right) & = \begin{cases}(1-j)(m+1)-i, & 1 \leq j \leq n, 1 \leq i \leq m, \\
(2 n-j)(m+1)+i, & n+1 \leq j \leq 2 n, 1 \leq i \leq m .\end{cases}
\end{aligned}
$$

Thus, f is a super pair sum labeling. Hence, $\left[P_{2 n} ; S_{m}\right]$ is a super pair sum graph.

For example, super pair sum labelings of $\left[P_{8} ; S_{3}\right]$ and $\left[P_{6} ; S_{4}\right]$ are shown in Figure 5.

Figure 5: Super pair sum labelings of $\left[P_{8} ; S_{3}\right]$ and $\left[P_{6} ; S_{4}\right]$
Theorem 2.5. Any comb is a super pair sum graph
Proof. Let G be the comb obtained from a path $P_{n}: v_{1}, v_{2}, \ldots, v_{n}$ by joining a vertex u_{i} to $v_{i}(1 \leq i \leq n)$.
Case i. $\quad n \equiv 1(\bmod 4)$.
Define $f: V(G) \cup E(G) \rightarrow\{0, \pm 1, \pm 2, \ldots, \pm(2 n-1)\}$ as follows:

$$
f\left(v_{i}\right)= \begin{cases}1-2 i & \text { if } i \text { is odd, } 1 \leq i \leq n \\ 2(n-i)+1 & \text { if } i \text { is even, } 1 \leq i \leq n\end{cases}
$$

$$
\begin{aligned}
f\left(u_{i}\right) & = \begin{cases}f\left(v_{i+1}\right)+2, & 1 \leq i \leq n-1 \\
1, & i=n,\end{cases} \\
f\left(v_{i} v_{i+1}\right) & =2 n-4 i, 1 \leq i \leq n-1 \text { and } \\
f\left(u_{i} v_{i}\right) & =2 n-4 i+2,1 \leq i \leq n .
\end{aligned}
$$

Then, f is a super pair sum labeling.
Case ii. $\quad n \equiv 3(\bmod 4)$.
Define $f: V(G) \cup E(G) \rightarrow\{0, \pm 1, \pm 2, \ldots, \pm(2 n-1)\}$ as follows:

$$
\begin{aligned}
f\left(v_{i}\right) & = \begin{cases}2(n-i)+1 & \text { if } i \text { is odd, } 1 \leq i \leq n \\
1-2 i & \text { if } i \text { is even, } 1 \leq i \leq n,\end{cases} \\
f\left(u_{i}\right) & = \begin{cases}f\left(v_{i+1}\right)+2, & 1 \leq i \leq n-1 \\
1-2 n, & i=n,\end{cases} \\
f\left(v_{i} u_{i+1}\right) & =2 n-4 i, 1 \leq i \leq n-1 \text { and } \\
f\left(u_{i} v_{i}\right) & =2 n-4 i+2,1 \leq i \leq n .
\end{aligned}
$$

Thus, f is a super pair sum labeling. When n is even and $m=1$, the result follows from Theorem 2.4. Hence, any comb is a super pair sum graph.
For example, super pair sum labelings of $P_{9} \odot K_{1}$ and $P_{11} \odot K_{1}$ are shown in
Figure 6.

Figure 6: Super pair sum labelings of $P_{9} \odot K_{1}$ and $P_{11} \odot K_{1}$
Theorem 2.6. $C_{2 n}$ is a super pair sum graph for $n \geq 1$.
Proof. Let $v_{1}, v_{2}, \ldots, v_{2 n}$ be the vertices of the cycle $C_{2 n}$.
Define $f: V(G) \cup E(G) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm 2 n\}$ as follows:

$$
\begin{aligned}
f\left(v_{1}\right) & =1 \\
f\left(v_{2 i+1}\right) & =1-n-i, 1 \leq i \leq\left\lfloor\frac{n-1}{2}\right\rfloor, \\
f\left(v_{2 i}\right) & =2 n-i, 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\
f\left(v_{i}\right) & =-f\left(v_{i-n}\right), n+1 \leq i \leq 2 n
\end{aligned}
$$

$$
\begin{aligned}
f\left(v_{1} v_{2}\right) & =2 n \\
f\left(v_{i} v_{i+1}\right) & =n-i+1,2 \leq i \leq n-1 \\
f\left(v_{n} v_{n+1}\right) & =\frac{3 n-2}{2} \\
f\left(v_{i} v_{i+1}\right) & =-f\left(v_{i-n} v_{i+1-n}\right), n+1 \leq i \leq 2 n-1 \text { and } \\
f\left(v_{2 n} v_{1}\right) & =-f\left(v_{n} v_{n+1}\right) .
\end{aligned}
$$

Thus, f is a super pair sum labeling and hence $C_{2 n}$ is a super pair sum graph.
For example, a super pair sum labeling of C_{12} is shown in Figure 7 .

Figure 7: A super pair sum labeling of C_{12}
Theorem 2.7. $K_{1, m} \cup K_{1, n}$ is a super pair sum graph.
Proof. Let $u_{0}, u_{1}, u_{2}, \ldots, u_{m}$ be the vertices of $K_{1, m}$ and $E\left(K_{1, m}\right)=\left\{u_{0} u_{i}: 1 \leq\right.$ $i \leq m\}$. Let $v_{0}, v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of $K_{1, n}$ and $E\left(K_{1, n}\right)=\left\{v_{0} v_{i}: 1 \leq\right.$ $i \leq n\}$. Without loss of generality assume that $m<n$.
Define $f: V(G) \cup E(G) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm(m+n+1)\}$ as follows:

$$
\begin{aligned}
f\left(u_{0}\right) & =-(m+n+1), \\
f\left(u_{i}\right) & =m+n+1-2 i, 1 \leq i \leq m, \\
f\left(v_{0}\right) & =m+n+1, \\
f\left(v_{i}\right) & = \begin{cases}1-2 i, & 1 \leq i \leq m \\
-m-i, & m+1 \leq i \leq n,\end{cases} \\
f\left(u_{0} u_{i}\right) & =-2 i, 1 \leq i \leq m, \\
f\left(v_{0} v_{i}\right) & = \begin{cases}m+n-2(i-1), & 1 \leq i \leq m \\
n+1-i, & m+1 \leq i \leq n .\end{cases}
\end{aligned}
$$

Thus, f is a super pair sum labeling and hence $K_{1, m} \cup K_{1, n}$ is a super pair sum graph.

For example, a super pair sum labeling of $K_{1,4} \cup K_{1,7}$ is shown in Figure 8.

Figure 8: A super pair sum labeling of $K_{1,4} \cup K_{1,7}$
Theorem 2.8. The caterpillar $S\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ where $X_{1}=m, X_{2}=X_{3}=$ $\cdots=X_{n}=0$ is a super pair sum graph.

Proof. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of the path P_{n}. The vertex u_{1} is attached to $X_{1}=m$ number of leaves $b_{1_{j}}(1 \leq j \leq m)$.
Define $f: V(G) \cup E(G) \rightarrow\{0, \pm 1, \pm 2, \ldots, \pm(m+n)\}$ as follows:

$$
\begin{aligned}
f\left(u_{i}\right) & =\left\{\begin{array}{cc}
-\left\lfloor\frac{2 n-i}{2}\right\rfloor-m & \text { if } i \text { is odd and } 1 \leq i \leq n \\
\left\lfloor\frac{n+i-1}{2}\right\rfloor+m & \text { if } i \text { is even and } 2 \leq i \leq n,
\end{array}\right. \\
f\left(b_{1_{j}}\right) & =\left\lfloor\frac{n-1}{2}\right\rfloor+j, 1 \leq j \leq m, \\
f\left(u_{1} b_{1_{j}}\right) & =-m-\left\lfloor\frac{n}{2}\right\rfloor+j, 1 \leq j \leq m \text { and } \\
f\left(u_{i} u_{i+1}\right) & =i-\left\lfloor\frac{n}{2}\right\rfloor, 1 \leq i \leq n-1 .
\end{aligned}
$$

Then, f is a super pair sum labeling and hence $S(m, 0,0, \ldots, 0)$ is a super pair sum graph.

For example, a super pair sum labeling of $S(6,0,0,0,0,0,0,0)$ is shown in Figure 9.

Figure 9: A super pair sum labeling of $S(6,0,0,0,0,0,0,0)$

References

[1] Gallian, J.A., A dynamic survey of graph labeling, The Electronic J. Combin., $\mathbf{1 7}$ (2010), \# DS6
[2] Harary, R. , F. , Graph Theory, Narosa Publishing House, New Delhi (1998).
[3] Ponraj, J. Vijaya Xavier Parthipan and R. Kala, Some results on pair sum labelings of graphs, International Journal of Mathematical Combinatorics, 4(2010), 53-61.
[4] Ponraj, R., J. Vijaya Xavier Parthipan and R. Kala, A note on pair sum graphs, Journal of Scientific Research, 3(2)(2011), 321-329.
[5] Sin-Min Lee, Elo leung and Ho Kuen Ng, On super vertex-graceful unicyclic graphs, Czechoslovak Math. J., 59(134)(2009), 1-22.

[^0]: *vasukisehar@gmail.com
 ${ }^{\dagger}$ sarockiaraj_77@yahoo.com
 ${ }^{\ddagger}$ sarockiaraj_77@yahoo.com

