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1 Introduction

Graphs considered here are finite and simple. Graph labeling is used in several areas of
science and technology like coding theory, astronomy, circuit design etc. For more details
refer Gallian [2]. The origin of graph labeling is graceful labeling which was introduced
by Rosa (1967). Let G1, G2 respectively be (p1, q1), (p2, q2) graphs. The corona of G1

with G2, G1 � G2 is the graph obtained by taking one copy of G1 and p1 copies of G2

and joining the ith vertex of G1 with an edge to every vertex in the ith copy of G2. The
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bistar Bm,n is the graph obtained by making adjacent the two central vertices of K1,m

and K1,n. A graph S(G) derived from a graph G by a sequence of edge subdivisions is
called a subdivision of a graph G. Cahit[1], introduced the concept of cordial labeling
of graphs. Recently Ponraj et al. [4], introduced the remainder labeling of graphs and
investigated the remainder cordial labeling behavior of several graphs like path, cycle,
complete graph, star, bistar etc. Motivated by these concepts, in this paper we generalize
the remainder cordial labeling, called k-remainder cordial labeling and investigate the 4-
remainder cordial labeling behavior of certain graphs. Terms are not defined here follows
from Harary [3] and Gallian [2].

2 k-Remainder cordial labeling

Definition 1. Let G be a (p, q) graph. Let f be a map from V (G) to the set {1, 2, . . . , k}
where k is an integer 2 < k ≤ |V (G)|. For each edge uv assign the label r where
r is the remainder when f(u) is divided by f(v) (or) f(v) is divided by f(u) accord-
ing as f(u) ≥ f(v) or f(v) ≥ f(u). f is called a k-remainder cordial labeling of G if
|vf (i)− vf (j)| ≤ 1, i, j ∈ {1, . . . , k} where vf (x) denote the number of vertices labelled
with x and |ef (0)− ef (1)| ≤ 1 where ef (0) and ef (1) respectively denote the number of
edges labeled with even integers and number of edges labelled with odd integers. A graph
with a k-remainder cordial labeling is called a k-remainder cordial graph.

Remark 2. When k = 2, number of edges with label 0 is q. So there does not exists a
2-remainder cordial labeling.

Theorem 3. Every graph is a subgraph of a connected k-remainder cordial graphs for
k ≥ 4.

Proof. Let G be a (p, q) graph. Consider the k-copies of the complete graph Kp. Let
Gi denotes the ith copy of Kp and V (Gi) = {ui

j : 1 ≤ j ≤ p}. Let s =
(
p
2

)
− 1. Next

consider the s copies of the path on k vertices and denotes ith copy as P i
k : vi1v

i
2 . . . v

i
k

(1 ≤ i ≤ s). We now construct the super graph G∗ of the graph G as given below; Let

V (G∗) =
k⋃

i=1

V (Gi) ∪
s⋃

i=1

V (P i
k) and E(G∗) =

k⋃
i=1

E(Gi) ∪
s⋃

i=1

E(P i
k) ∪ {ui

1v
i+1
1 : 1 ≤ i ≤

k − 1} ∪ {u2
2v

1
3} ∪ {vi2vi+1

3 : 1 ≤ i ≤ s − 1} ∪ {vi3vi+1
2 : 1 ≤ i ≤ s − 1} ∪ {vi3vi+1

4 : 1 ≤
i ≤ s − 1} ∪ {u2

2u
3
2, u

2
3u

3
3, u

2
4u

3
4} ∪ {u3

2u
4
2, u

3
3u

4
3}. Clearly G∗ has kp + k

(
p
2

)
− k vertices

and 2(k + 1)
(
p
2

)
edges. Let f be this vertex labeling. We now check the vertex and

edge condition of the remainder cordiality. vf (1) = vf (2) = . . . = vf (k) = p + s and
ef (0) = k

(
p
2

)
+ s+ 1 , ef (1) = k−2 + 1 + 5 + (k−2)s+ s−1 + s−1 + s−1 = k

(
p
2

)
+ s+ 1.

Hence f is a k-remainder cordial labeling of G∗.
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We now investigate the 4−remainder cordial labeling behaviors of some graphs.

Theorem 4. The complete graph Kn is 4−remainder cordial iff n ≤ 3.

Proof. Suppose f is a 4−remainder cordial labeling of Kn. The proof is divided into four
cases.
Case(i). n > 3
Subcase(i). n ≡ 0 (mod 4)
Let n = 4t. Then vf (1) = vf (2) = vf (3) = vf (4) = t
and we find also ef (0) = t2 + t2 + t2 +

(
t
2

)
+ t2 +

(
t
2

)
+
(
t
2

)
+
(
t
2

)
= 4t2 + 4

(
t
2

)
.

and ef (1) = t2 + t2 = 2t2.
Then ef (0)− ef (1) = 4t2 + 4

(
t
2

)
− 2t2

= 2t2 + 4
(
t
2

)
= 2t2 + t(t−1)

2

= 2t2 + 2t2 − 2t
= 4t2 − 2t > 1 for any positive integer t. Therefore |ef (0)− ef (1)| > 1.
which is a contradiction.

Subcase(ii). n ≡ 1 (mod 4)
Let n = 4t + 1. Then any one of the following four possibilities are occurs.
Type A : vf (1) = t + 1, vf (2) = t, vf (3) = t, vf (4) = t.
Type B : vf (1) = t, vf (2) = t + 1, vf (3) = t, vf (4) = t.
Type C : vf (1) = t, vf (2) = t, vf (3) = t + 1, vf (4) = t.
Type D : vf (1) = t, vf (2) = t, vf (3) = t, vf (4) = t + 1.

Type A : vf (1) = t + 1, vf (2) = t, vf (3) = t, vf (4) = t.
Then ef (0) = t(t + 1) + t(t + 1) + t(t + 1) + t2 + t2 +

(
t+1
2

)
+
(
t
2

)
+
(
t
2

)
+
(
t
2

)
= 4t2 + 4t + t2 + (t+1)(t+1)−1

2
+ t(t−1)

2
+ t(t−1)

2
+ t(t−1)

2

= 5t2 + 4t + (t2+t)
2

+ 3 (t2−t)
2

= 7t2 + 3t.
and ef (1) = t2 + t2 = 2t2.
Then we find ef (0) − ef (1) = 7t2 + 3t − 2t2 = 5t2 + 3t > 1 for any positive integer t.
Therefore |ef (0)− ef (1)| > 1. which is a contradiction.

Type B : vf (1) = t, vf (2) = t + 1, vf (3) = t, vf (4) = t.
Then ef (0) = t(t + 1) + t2 + t2 + t(t + 1) +

(
t
2

)
+
(
t
2

)
+
(
t
2

)
+
(
t+1
2

)
= 4t2 + 2t + 3 t(t−1)

2
+ (t+1)(t+1)−1

2

= 6t2 + t.
and ef (1) = t(t + 1) + t2 = 2t2 + t.
Then we find ef (0) − ef (1) = (6t2 + t) − (2t2 + t) = 4t2 > 1 for any positive integer t.
Therefore |ef (0)− ef (1)| > 1. which is a contradiction.



44 R. Ponraj / JAC 49, issue 2, December 2017, PP. 41 - 52

Type C : vf (1) = t, vf (2) = t, vf (3) = t + 1, vf (4) = t.
Then ef (0) = t(t + 1) + t2 + t2 + t2 +

(
t
2

)
+
(
t
2

)
+
(
t
2

)
+
(
t+1
2

)
= 4t2 + t + 3 t(t−1)

2
+ (t+1)(t+1)−1

2
= 6t2.

and ef (1) = t(t + 1) + t(t + 1) = 2t2 + 2t.
Then we find ef (0) − ef (1) = 6t2 − (2t2 + 2t) = 4t2 − 2t > 1 for any positive integer t.
Therefore |ef (0)− ef (1)| > 1. which is a contradiction.

Type D : vf (1) = t, vf (2) = t, vf (3) = t, vf (4) = t + 1.
Then ef (0) = t2 + t2 + t(t + 1) + t(t + 1) +

(
t
2

)
+
(
t
2

)
+
(
t
2

)
+
(
t+1
2

)
= 4t2 + 2t + 3 t(t−1)

2
+ (t+1)(t+1)−1

2
= 6t2 + t.

and ef (1) = t2 + t(t + 1) = 2t2 + t.
Then we find ef (0) − ef (1) = (6t2 + t) − (2t2 + t) = 4t2 > 1 for any positive integer t.
Therefore |ef (0)− ef (1)| > 1. which is a contradiction.

Subcase(iii). n ≡ 2 (mod 4)
Let n = 4t + 2. In this case any one of the following arises.
Type A : vf (1) = t + 1, vf (2) = t + 1, vf (3) = t, vf (4) = t.
Type B : vf (1) = t + 1, vf (2) = t, vf (3) = t + 1, vf (4) = t.
Type C : vf (1) = t + 1, vf (2) = t, vf (3) = t, vf (4) = t + 1.
Type D : vf (1) = t, vf (2) = t + 1, vf (3) = t + 1, vf (4) = t.
Type E : vf (1) = t, vf (2) = t + 1, vf (3) = t, vf (4) = t + 1.
Type F : vf (1) = t, vf (2) = t, vf (3) = t + 1, vf (4) = t + 1.

Type A : vf (1) = t + 1, vf (2) = t + 1, vf (3) = t, vf (4) = t.
Then we find ef (0) = (t + 1)2 + t(t + 1) + t(t + 1) + t(t + 1) +

(
t+1
2

)
+
(
t+1
2

)
+
(
t
2

)
+
(
t
2

)
= t2 + 2t + 1 + 3t(t + 1) + 2 (t+1)(t+1)−1

2
+ 2 t(t−1)

2

= t2 + 2t + 1 + 3t2 + 3t + 2 (t2+t)
2

+ 2 (t2−t)
2

= 6t2 + 5t + 1.
and also ef (1) = t(t + 1) + t2 = 2t2 + t.
We get ef (0)− ef (1) = (6t2 + 5t+ 1)− (2t2 + t) = 4t2 + 4t+ 1 > 1 for any positive integer
t. Therefore |ef (0)− ef (1)| > 1. which is a contradiction.

Type B : vf (1) = t + 1, vf (2) = t, vf (3) = t + 1, vf (4) = t.
Now we find ef (0) = t(t + 1) + (t + 1)2 + t(t + 1) + t2 +

(
t+1
2

)
+
(
t
2

)
+
(
t+1
2

)
+
(
t
2

)
= 2t(t + 1) + (t + 1)2 + t2 + 2

(
t+1
2

)
+ 2
(
t
2

)
= 2t2 + 2t + t2 + 2t + 1 + t2 + 2 (t+1)(t+1)−1

2
+ 2 t(t−1)

2

= 4t2 + 4t + 1 + 2 (t2+t)
2

+ 2 (t2−t)
2

= 6t2 + 4t + 1.
and also ef (1) = t(t + 1) + t(t + 1) = 2t2 + 2t.
We get ef (0)−ef (1) = (6t2 +4t+1)− (2t2 +2t) = 4t2 +2t+1 > 1 for any positive integer
t. Therefore |ef (0)− ef (1)| > 1. which is a contradiction.
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Type C : vf (1) = t + 1, vf (2) = t, vf (3) = t, vf (4) = t + 1.
Now we find ef (0) = t(t + 1) + t(t + 1) + (t + 1)2 + t(t + 1) +

(
t+1
2

)
+
(
t+1
2

)
+
(
t
2

)
+
(
t
2

)
= 3t(t + 1) + (t + 1)2 + 2

(
t+1
2

)
+ 2
(
t
2

)
= 3t2 + 3t + t2 + 2t + 1 + 2 (t+1)(t+1)−1

2
+ 2 t(t−1)

2

= 4t2 + 5t + 1 + 2 (t2+t)
2

+ 2 t2−t
2

= 6t2 + 5t + 1.
and also ef (1) = t2 + t(t + 1) = 2t2 + t.
We get ef (0)− ef (1) = (6t2 + 5t+ 1)− (2t2 + t) = 4t2 + 4t+ 1 > 1 for any positive integer
t. Therefore |ef (0)− ef (1)| > 1. which is a contradiction.

Type D : vf (1) = t, vf (2) = t + 1, vf (3) = t + 1, vf (4) = t.
Now we find ef (0) = t(t + 1) + t(t + 1) + t2 + t(t + 1) +

(
t
2

)
+
(
t
2

)
+
(
t+1
2

)
+
(
t+1
2

)
= 3t(t + 1) + t2 + 2

(
t
2

)
+ 2
(
t+1
2

)
= 3t2 + 3t + t2 + 2 t(t−1)

2
+ 2 (t+1)(t+1)−1

2

= 4t2 + 3t + 2 (t2−t)
2

+ 2 (t2+t)
2

= 6t2 + 3t.
and also ef (1) = (t + 1)2 + t(t + 1) = t2 + 2t + 1 + t2 + t = 2t2 + 3t + 1.
We get ef (0)− ef (1) = (6t2 + 3t)− (2t2 + 3t+ 1) = 4t2− 1 > 1 for any positive integer t.
Therefore |ef (0)− ef (1)| > 1. which is a contradiction.

Type E : vf (1) = t, vf (2) = t + 1, vf (3) = t, vf (4) = t + 1.
Now we find ef (0) = t(t + 1) + t2 + t(t + 1) + (t + 1)2 +

(
t
2

)
+
(
t
2

)
+
(
t+1
2

)
+
(
t+1
2

)
= 2t(t + 1) + t2 + (t + 1)2 + 2

(
t
2

)
+ 2
(
t+1
2

)
= 2t2 + 2t + t2 + t2 + 2t + 1 + 2 t(t−1)

2
+ 2 (t+1)(t+1)−1

2

= 4t2 + 4t + 1 + 2 (t2−t)
2

+ 2 (t2+t)
2

= 6t2 + 4t + 1.
and also ef (1) = t(t + 1) + t(t + 1) = 2t(t + 1) = 2t2 + 2t.
We get ef (0)−ef (1) = (6t2 +4t+1)− (2t2 +2t) = 4t2 +2t+1 > 1 for any positive integer
t. Therefore |ef (0)− ef (1)| > 1. which is a contradiction.

Type F : vf (1) = t, vf (2) = t, vf (3) = t + 1, vf (4) = t + 1.
Now we find ef (0) = t2 + t(t + 1) + t(t + 1) + t(t + 1) +

(
t
2

)
+
(
t
2

)
+
(
t+1
2

)
+
(
t+1
2

)
= t2 + 3t(t + 1) + 2

(
t
2

)
+ 2
(
t+1
2

)
= 4t2 + 3t + 2 t(t−1)

2
+ 2 (t+1)(t+1)−1

2

= 4t2 + 3t + 2 (t2−t)
2

+ 2 (t2+t)
2

= 6t2 + 3t.
and also ef (1) = t(t + 1) + (t + 1)2 = t2 + t + t2 + 2t + 1 = 2t2 + 3t + 1.
We get ef (0)− ef (1) = (6t2 + 3t)− (2t2 + 3t+ 1) = 4t2− 1 > 1 for any positive integer t.
Therefore |ef (0)− ef (1)| > 1. which is a contradiction.

Subcase(iv). n ≡ 3 (mod 4)
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Let n = 4t + 3. In this case any one of the following arises.
Type A : vf (1) = t + 1, vf (2) = t + 1, vf (3) = t + 1, vf (4) = t.
Type B : vf (1) = t + 1, vf (2) = t + 1, vf (3) = t, vf (4) = t + 1.
Type C : vf (1) = t + 1, vf (2) = t, vf (3) = t + 1, vf (4) = t + 1.
Type D : vf (1) = t, vf (2) = t + 1, vf (3) = t + 1, vf (4) = t + 1.

Type A : vf (1) = t + 1, vf (2) = t + 1, vf (3) = t + 1, vf (4) = t.
Now we find ef (0) = (t + 1)2 + (t + 1)2 + t(t + 1) + t(t + 1) +

(
t+1
2

)
+
(
t+1
2

)
+
(
t+1
2

)
+
(
t
2

)
= 2(t + 1)2 + 2t(t + 1) + 3

(
t+1
2

)
+
(
t
2

)
= 4t2 + 6t + 2 + t(t−1)

2
+ 3 (t+1)(t+1)−1

2

= 4t2 + 6t + 2 + (t2−t)
2

+ 3 (t2+t)
2

= 6t2 + 7t + 2.
and also ef (1) = (t + 1)2 + t(t + 1) = t2 + 2t + 1 + t2 + t = 2t2 + 3t + 1.
We get ef (0)− ef (1) = (6t2 + 7t + 2)− (2t2 + 3t + 1) = 4t2 + 4t + 1 > 1 for any positive
integer t. Therefore |ef (0)− ef (1)| > 1. which is a contradiction.

Type B : vf (1) = t + 1, vf (2) = t + 1, vf (3) = t, vf (4) = t + 1.
Now we find ef (0) = t(t + 1) + (t + 1)2 + (t + 1)2 +

(
t+1
2

)
+
(
t+1
2

)
+
(
t+1
2

)
+
(
t
2

)
+ t(t + 1)

= 2(t + 1)2 + 2t(t + 1) + 3
(
t+1
2

)
+
(
t
2

)
= 4t2 + 6t + 2 + t(t−1)

2
+ 3 (t+1)(t+1)−1

2

= 4t2 + 6t + 2 + (t2−t)
2

+ 3 (t2+t)
2

= 6t2 + 7t + 2.
and also ef (1) = t(t + 1) + (t + 1)2 = t2 + t + t2 + 2t + 1 = 2t2 + 3t + 1.
We get ef (0)− ef (1) = (6t2 + 7t + 2)− (2t2 + 3t + 1) = 4t2 + 4t + 1 > 1 for any positive
integer t. Therefore |ef (0)− ef (1)| > 1. which is a contradiction.

Type C : vf (1) = t + 1, vf (2) = t, vf (3) = t + 1, vf (4) = t + 1.
Now we find ef (0) = (t + 1)2 + t(t + 1) + (t + 1)2 + (t + 1)2 +

(
t+1
2

)
+
(
t+1
2

)
+
(
t+1
2

)
+
(
t
2

)
= 3(t + 1)2 + t(t + 1) + 3

(
t+1
2

)
+
(
t
2

)
= 4t2 + 7t + 3 + t(t−1)

2
+ 3 (t+1)(t+1)−1

2

= 4t2 + 7t + 3 + (t2−t)
2

+ 3 (t2+t)
2

= 6t2 + 8t + 3.
and also ef (1) = t(t + 1) + t(t + 1) = 2t2 + 2t.
We get ef (0)−ef (1) = (6t2 +8t+3)− (2t2 +2t) = 4t2 +6t+3 > 1 for any positive integer
t. Therefore |ef (0)− ef (1)| > 1. which is a contradiction.

Type D : vf (1) = t, vf (2) = t + 1, vf (3) = t + 1, vf (4) = t + 1.
Now we find ef (0) = t(t + 1) + t(t + 1) + t(t + 1) + (t + 1)2 +

(
t+1
2

)
+
(
t+1
2

)
+
(
t+1
2

)
+
(
t
2

)
= 3t(t + 1) + (t + 1)2 + 3

(
t+1
2

)
+
(
t
2

)
= 3t2 + 3t + t2 + 2t + 1 + t(t−1)

2
+ 3 (t+1)(t+1)−1

2

= 4t2 + 5t + 1 + (t2−t)
2

+ 3 (t2+t)
2
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= 6t2 + 6t + 1.
and also ef (1) = (t + 1)2 + (t + 1)2 = 2t2 + 4t + 2.
We get ef (0)− ef (1) = (6t2 + 6t + 1)− (2t2 + 4t + 2) = 4t2 + 2t− 1 > 1 for any positive
integer t. Therefore |ef (0)− ef (1)| > 1. which is a contradiction.

Hence the complete graph Kn is not 4−remainder cordial for n > 3.

Next is the Path.

Theorem 5. Any path Pn is 4−remainder cordial.

Proof. Let Pn be a path u1u2 . . . un. We now divide the proof into the following four cases.
Case(i). n ≡ 0 (mod 4)
Assign the labels 1, 2, 3, 4 respectively to the vertices u1, u2, u3, and u4. Now we con-
sider the next four vertices u5, u6, u7, and u8. Assign the labels 1, 2, 3, 4 to the vertices
u5, u6, u7, u8. The same pattern is continued for the next four vertices. Proceeding like
this assign the labels, until we reach the last vertex un. Note that in this process the last
four vertices namely un−3, un−2, un−1, and un received the labels 1, 2, 3, and 4.
Case(ii). n ≡ 1 (mod 4)
As in the case(i), assign the labels to the vertices u1, u2, . . . un−1. Next assign the label 1
to the vertex un.
Case(iii). n ≡ 2 (mod 4)
Assign the labels to the vertices ui, (1 ≤ i ≤ n − 1),as in the case(ii). Finally assign the
label 2 to the vertex un.
Case(iv). n ≡ 3 (mod 4)
In this case assign the labels to the vertices ui, (1 ≤ i ≤ n− 1),as in the case(iii). Finally
assign the label 3 to the vertex un. The Table 1, establish that this labeling f is a 4−
remainder cordial labeling.

Table 1: Edge condition of 4-remainder cordial labeling of a path
Nature of n ≡ r (mod 4) ef (0) ef (1)

n ≡ 0, 2 (mod 4) n−2
2

n
2

n ≡ 1 (mod 4) n−1
2

n−1
2

n ≡ 2 (mod 4) n
2

n−2
2

n ≡ 3 (mod 4) n−1
2

n−1
2

Next investigation is the cycle graph.

Theorem 6. All cycles Cn is 4−remainder cordial.

Proof. Let Cn = u1u2 . . . un be a cycle.
Case(i). n ≡ 0 (mod 4)
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Fix the labels 1, 2, 3, 4 respectively to the four consecutive vertices u1, u2, u3, and u4. Next
assign the labels 4, 3, 2, 1 respectively to the vertices u5, u6, u7, and u8. Next assign the
labels 4, 3, 2, 1 to the vertices u9, u10, u11, u12. In this manner assign the labels, until we
reach the last vertex un. It is easy to verify that the last four vertices un−3, un−2, un−1,
and un received the labels 4, 3, 2, 1.
Case(ii). n ≡ 1 (mod 4)
As in the case(i), assign the labels to the vertices u1, u2, . . . un−1. Next assign the label 4
to the vertex un.
Case(iii). n ≡ 2 (mod 4)
Assign the labels to the vertices u1, u2, . . . un−1 ,as in the case(ii). Finally assign the label
3 to the vertex un.
Case(iv). n ≡ 3 (mod 4)
In this case assign the labels to the vertices u1, u2, . . . un−1,as in the case(iii). Finally
assign the label 2 to the vertex un. The Table 2, establish that this labeling f is a 4−
remainder cordial labeling.

Table 2: Edge condition for 4− remainder cordial labeling of a cycle
Nature of n ≡ r (mod 4) ef (0) ef (1)

n ≡ 0, 2 (mod 4) n
2

n
2

n ≡ 1 (mod 4) n+1
2

n−1
2

n ≡ 3 (mod 4) n−1
2

n+1
2

Next we investigate any comb is 4−remainder cordial.

Theorem 7. Any comb Pn �K1 is 4−remainder cordial.

Proof. Let Pn = u1u2 . . . un be a Path. Let vi be the pendant vertices attached to
ui, 1 ≤ i ≤ n. Assign the labels to the vertices u1, u2, . . . un as in theorem 6.

Case(i). n ≡ 0 (mod 4)
We now consider the pendant vertices, fix the labels 4, 3, 2, 1 respectively to the vertices
v1, v2, v3, and v4. Next assign the labels 1, 2, 3, 4 to the four vertices v5, v6, v7, and v8. In
similar fashion assign the labels 1, 2, 3, 4 respectively to the next four consecutive vertices
v9, v10, v11, v12. Proceed as above and labels the next four vertices and so on. In this the
last four vertices vn−3, vn−2, vn−1, vn received the labels 1, 2, 3, 4.
Case(ii). n ≡ 1 (mod 4)
As in the case(i), assign the labels to the pendant vertices v1, v2, . . . vn−1. Next assign the
label 1 to the vertex vn.
Case(iii). n ≡ 2 (mod 4)
Assign the labels to the vertices v1, v2, . . . vn−1 ,as in the case(ii). Finally assign the label
2 to the vertex vn.
Case(iv). n ≡ 3 (mod 4)
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In this case assign the labels to the vertices v1, v2, . . . vn−1,as in the case(iii). Finally assign
the label 3 to the vertex vn. The Table 3, establish that this labeling f is a 4− remainder
cordial labeling.

Table 3: Edge condition for 4− remainder cordial labeling of a comb
Nature of n ≡ r (mod 4) ef (0) ef (1)

n ≡ 0, 2 (mod 4) n−2
2

n
2

n ≡ 1, 3 (mod 4) n+1
2

n−3
2

4-remainder cordial labeling of P5 �K1 is given in Figure 1.

Figure 1:

Next is the Crown Cn �K1.

Theorem 8. All crowns are 4−remainder cordial.

Proof. The crown Cn �K1 is obtained from the comb Pn �K1, and by adding the edge
unu1.
Case(i). n ≡ 0, 2 (mod 4)
The vertex labeling as in theorem 7, is also a 4−remainder cordial labeling of crown.
Case(ii). n ≡ 1, 3 (mod 4)
Assign the labels 2, 3 to the vertices u1, u2 respectively and assign the labels 2, 3 to the
next two vertices u3, u4 . Continuing in this way until we reach the vertex un−1. That
is assign the labels 2, 3, 2, 3, . . . 2, 3 to the vertices u1, u2, . . . , un−1. Now assign the label
2 to the last vertex un. Next we consider the pendant vertices, assign the labels to the
vertices v1, v2, . . . vn−1 in the pattern 1, 4, 1, 4, . . . 1, 4. Finally assign the label 4 to the ver-
tex vn. The following table 4, shows that this labeling f is a 4− remainder cordial labeling.
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Table 4: Edge condition for 4− remainder cordial labeling of crown
Nature of n ef (0) ef (1)
n is even n

2
n
2

n is odd n+1
2

n−1
2

Theorem 9. All stars are 4−remainder cordial.

Proof. Let K1,n be the star with V (K1,n) = {u, ui : 1 ≤ i ≤ n} and E(K1,n) = {uui : 1 ≤
i ≤ n}. we now give a 4−remainder cordial labeling to the star K1,n. Assign the label 3
to the center vertex u.

Case(i). n ≡ 0 (mod 4)
let n = 4t Assign the label 1 to the pendant vertices u1, u2, . . . , ut. Next assign the
label 2 to the pendant vertices ut+1, ut+2, . . . , u2t. We now assign the label 3 to the
next t−pendant vertices u2t+1, u2t+2, . . . , u3t. Finally assign the label 4 to the remaining
pendant vertices.
Case(ii). n ≡ 1 (mod 4)
As in case(i), assign the label to the vertices u, ui(1 ≤ i ≤ n− 1). Next assign the label 1
to the last vertex un.
Case(iii). n ≡ 2 (mod 4)
Assign the label to the vertices u, ui(1 ≤ i ≤ n− 1) as in case(ii). Next assign the label 2
to the vertex un.
Case(iv). n ≡ 3 (mod 4)
As in the case(iii), assign the label to the vertices u, ui(1 ≤ i ≤ n − 1). Next assign the
label 4 to the vertex un. Obviously this vertex labeling f is 4−remainder cordial labeling.

Theorem 10. The bistar Bn,n are 4−remainder cordial for all n.

Proof. Let Bn,n be the bistar with V (Bn,n) = {u, v, ui, vi : 1 ≤ i ≤ n} and E(Bn,n) =
{uv, uui, vvi : 1 ≤ i ≤ n}. Clearly Bn,n has 2n + 2 vertices and 2n + 1 edges. Assign the
label 1, 3 respectively to the central vertices u and v. Consider the pendant vertices ui.
Case(i). n ≡ o (mod 4)
Let n = 4t. Assign the label 1 to the pendant vertices u1, u2, . . . , u2t and assign the label
3 to the vertices u2t+1, u2t+2, . . . , u4t. Next we move to the other side pendant vertices vi.
Assign the label 2 to the vertices v1, v2, . . . , v2t and assign the label 4 to the remaining
pendant vertices v2t+1, v2t+2, . . . , v4t.
Case(ii). n ≡ 1 (mod 4)
Let n = 4t + 1. Assign the labels to the vertices u, v, ui, vi(1 ≤ i ≤ n), as in the case(i).
Next assign the label 4, 2 respectively to the vertices ui and vi.
Case(iii). n ≡ 2 (mod 4)
As in the case(ii), assign the label to the vertices u, v, ui, vi(1 ≤ i ≤ n − 1). Next assign
labels 1, 4 to the vertices un and vn respectively.
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Case(iv). n ≡ 3 (mod 4)
Assign the labels to the vertices u, v, ui, vi(1 ≤ i ≤ n − 1) in case(iii). Finally assign
the labels 3, 2 to the remaining vertices. This vertex labeling is a 4−remainder cordial
labeling follows from table 5.

Table 5: Edge condition of 4−remainder cordial labeling of bistar
Nature of n ef (0) ef (1)

n ≡ 0, 2 (mod 4) n
2

n−2
2

n ≡ 1, 3 (mod 4) n
2

n−2
2

For illustration, a 4−remainder cordial labeling of B5,5 is shown in Figure 2.

Figure 2:

Theorem 11. The subdivision of the star S(K1,n) are 4−remainder cordial.

Proof. Let V (S(K1,n)) = {u, ui, vi : 1 ≤ i ≤ n} and E(S(K1,n)) = {uui, uivi : 1 ≤ i ≤ n}.
The proof is divided in to four cases given below.
Case(i). n ≡ 0 (mod 4)
let n = 4t. Assign the label 3 to the vertex u. Next we consider the vertices of degree
2. Assign the label 3 to the vertices u1, u2, . . . , u2t and assign the label 2 to the vertices
u2t+1, u2t+2, . . . , u4t. Next we move to the pendant vertices. Assign the label 4 to the
vertices v1, v2, . . . , v2t and assign the label 1 to the vertices v2t+1, v2t+2, . . . , v4t.
Case(ii). n ≡ 1 (mod 4)
Assign the labels to the vertices u, ui, vi(1 ≤ i ≤ n − 1) as in case(i). Next assign the
labels 2, 1 respectively to the vertex un and vn.
Case(iii). n ≡ 2 (mod 4)
As in case(ii), assign to labels to the vertices u, ui, vi(1 ≤ i ≤ n − 1). Finally assign the
labels 4, 3 to the vertices un and vn respectively.
Case(iv). n ≡ 3 (mod 4)
Assign the labels to the vertices u, ui, vi(1 ≤ i ≤ n − 1) as in case(iii). Next assign the
labels 2, 1 respectively to the remaining vertices un and vn. The table 6, establish that
this vertex labeling f is a 4−remainder cordial labeling.
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Table 6: Edge condition of 4−remainder cordial labeling of subdivision of star
Nature of n ef (0) ef (1)

n ≡ 0, 2 (mod 4) n
2

n
2

n ≡ 1, 3 (mod 4) n−1
2

n−1
2
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