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ABSTRACT ARTICLE INFO

Sugeno-Weber family of t-norms and t-conorms is one of
the most applied one in various fuzzy modelling prob-
lems. This family of t-norms and t-conorms was sug-
gested by Weber for modeling intersection and union of
fuzzy sets. Also, the t-conorms were suggested as addi-
tion rules by Sugeno for so-called λ–fuzzy measures. In
this paper, we study a nonlinear optimization problem
where the feasible region is formed as a system of fuzzy
relational equations (FRE) defined by the Sugeno-Weber
t-norm. We firstly investigate the resolution of the fea-
sible region when it is defined with max-Sugeno-Weber
composition and present some necessary and sufficient
conditions for determining the feasibility of the prob-
lem. Also, two procedures are presented for simplifying
the problem. Since the feasible solutions set of FREs
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ABSTRACT Continued
is non-convex and the finding of all minimal solutions is an NP-hard problem, conventional
nonlinear programming methods may not be directly employed. For these reasons, a
genetic algorithm is presented, which preserves the feasibility of new generated solutions.
The proposed GA does not need to initially find the minimal solutions. Also, it does not
need to check the feasibility after generating the new solutions. Additionally, we propose
a method to generate feasible max-Sugeno-Weber FREs as test problems for evaluating
the performance of our algorithm. The proposed method has been compared with some
related works. The obtained results confirm the high performance of the proposed method
in solving such nonlinear problems.

1 Introduction

In this paper, we study the following nonlinear problem in which the constraints are
formed as fuzzy relational equations defined by Sugeno-Weber t-norm:

minf(x)

Aϕx = b

x ∈ [0, 1]n
(1)

whrere I = {1, 2, ...,m}, J ={1, 2, ..., n}, A = (aij)m×n , 0 6 aij 6 1 (∀i ∈ I and ∀j ∈ J)
, is a fuzzy matrix , b = (bi)m×1 , 0 6 bi 6 1 (∀i ∈ I ) ,is an m –dimensional fuzzy
vector, and “ϕ” is the max-Sugeno-Weber composition, that is, ϕ(x, y)=T λSW (x, y)=max
{x+y−1+λxy

1+λ
, 0} in which λ > −1 .

If ai is the i’th row of matrix A , then problem (1) can be expressed as follows:

min f(x)

ϕ(ai, x) = bi , i ∈ I

x ∈ [0, 1]n

where the constraints mean:

ϕ(ai, x) = max
j∈J
{ϕ(aij, xj)} = max

j∈J
{T λSW (aij, xj)}

= max
j∈J
{max{aij + xj − 1 + λaijxj

1 + λ
, 0}} = bi , ∀i ∈ I

The members of the family {T λSW} are increasing functions of the parameter λ. It can be
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easily shown that Sugeno-Weber t-norm T λSW (x, y) converges to the product fuzzy inter-
section xy as λ goes to infinity and converges to Drastic product t-norm as λ approaches
-1 [8]. Also, it is interesting to note that T 0

SW (x, y) = max{x + y − 1, 0} , that is, the
Sugeno-Weber t-norm is converted to Lukasiewicz t-norm if λ = 0 .

The problem to determine an unknown fuzzy relation R on universe of discourses U×V
such that AϕR = B , where A and B are given fuzzy sets on U and V , respectively, and
ϕ is an composite operation of fuzzy relations, is called the problem of fuzzy relational
equations (FRE). Since Sanchez [51] proposed the resolution of FRE defined by max-min
composition, different fuzzy relational equations were generalized in many theoretical
aspects and utilized in many applied problems such as fuzzy control, discrete dynamic
systems, prediction of fuzzy systems, fuzzy decision making, fuzzy pattern recognition,
fuzzy clustering, image compression and reconstruction, fuzzy information retrieval, and
so on [5,11,18,22,37,41,42,45,48,57,59,65]. For example, Klement et al. [28] presented
the basic analytical and algebraic properties of triangular norms and important classes
of fuzzy operators’ generalization such as Archimedean, strict and nilpotent t-norms. In
[47] the author demonstrates how problems of interpolation and approximation of fuzzy
functions are converted with solvability of systems of FRE. The authors in [42] used partic-
ular FRE for the compression/decompression of color images in the RGB and YUV spaces.

The solvability and the finding of solutions set are the primary (and the most funda-
mental) subject concerning FRE problems. Many studies have reported fuzzy relational
equations with max-min and max-product compositions. Both compositions are special
cases of the max-triangular-norm (max-t-norm). Di Nola et al. proved that the solution
set of FRE (if it is nonempty) defined by continuous max-t-norm composition is often
a non-convex set that is completely determined by one maximum solution and a finite
number of minimal solutions [6]. This non-convexity property is one of two bottlenecks
making major contribution to the increase in complexity of problems that are related to
FRE, especially in the optimization problems subjected to a system of fuzzy relations. The
other bottleneck is concerned with detecting the minimal solutions for FREs. Chen and
Wang [2,3] presented an algorithm for obtaining the logical representation of all minimal
solutions and deduced that a polynomial-time algorithm to find all minimal solutions of
FRE (with max-min compositions) may not exist. Also, Markovskii showed that solving
max-product FRE is closely related to the covering problem which is an NP-hard problem
[39]. In fact, the same result holds true for more general t-norms instead of the minimum
and product operators [33,34]. Lin et al. [34] demonstrated that all systems of max-
continuous t-norm fuzzy relational equations, for example, max-product, max-continuous
Archimedean t-norm and max-arithmetic mean are essentially equivalent, because they
are all equivalent to the set covering problem. Over the last decades, the solvability of
FRE defined with different max-t compositions has been investigated by many researches
[46,49,50,53,55,56,60,64,68]. It is worth to mention that Li and Fang [32] provided a com-
plete survey and a detailed discussion on fuzzy relational equations. They studied the
relationship among generalized logical operators involved in the construction of FRE and
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introduced the classification of basic fuzzy relational equations.

Optimizing an objective function subjected to a system of fuzzy relational equations or in-
equalities (FRI) is one of the most interesting and on-going topics among the problems re-
lated to the FRE (or FRI) theory [1,9,13,14,15,16,17,18,19,20,21,25,26,27,30,35,54,61,66].
By far the most frequently studied aspect is the determination of a minimizer of a linear
objective function and the use of the max-min composition [1,14]. So, it is an almost stan-
dard approach to translate this type of problem into a corresponding 0-1 integer linear
programming problem, which is then solved using a branch and bound method [10,62].
In [29] an application of optimizing the linear objective with max-min composition was
employed for the streaming media provider seeking a minimum cost while fulfilling the
requirements assumed by a three-tier framework. Chang and Shieh [1] presented new
theoretical results concerning the linear optimization problem constrained by fuzzy max-
min relation equations by improving an upper bound on the optimal objective value.
The topic of the linear optimization problem was also investigated with max-product
operation [13,20,36]. Loetamonphong and Fang defined two sub-problems by separating
negative and non-negative coefficients in the objective function and then obtained the
optimal solution by combining those of the two sub-problems [36]. Also, in [20] and
[13], some necessary conditions of the feasibility and simplification techniques were pre-
sented for solving FRE with max-product composition. Moreover, some studies have
determined a more general operator of linear optimization with replacement of max-min
and max-product compositions with a max-t-norm composition [19,30,54], max-average
composition 26,61 or max-star composition [16,27].

Recently, many interesting generalizations of the linear and non-linear programming prob-
lems constrained by FRE or FRI have been introduced and developed based on composite
operations and fuzzy relations used in the definition of the constraints, and some devel-
opments on the objective function of the problems [4,7,12,14,31,35,63] . For instance,
the linear optimization of bipolar FRE was studied by some researchers where FRE was
defined with max-min composition [12] and max-Lukasiewicz composition [31,35]. In [31]
the authors introduced the optimization problem subjected to a system of bipolar FRE
defined as X(A+, A−, b) = {x ∈ [0, 1]m : x ◦ A+ ∨ x̃ ◦ A− = b} where x̃i = 1 − xi for
each component of x̃ = (x̃i)1×m and the notations “∨” and “◦” denote max operation and
the max-Lukasiewicz composition, respectively. They translated the problem into a 0-1
integer linear programming problem which is then solved using well-developed techniques.
In [35], the foregoing problem was solved by an analytical method based on the resolu-
tion and some structural properties of the feasible region (using a necessary condition for
characterizing an optimal solution and a simplification process for reducing the problem).
Ghodousian and khorram [15] focused on the algebraic structure of two fuzzy relational
inequalities Aϕx ≤ b1 and Dϕx ≥ b2 , and studied a mixed fuzzy system formed by the
two preceding FRIs, where ϕ is an operator with (closed) convex solutions. Yang [67]
studied the optimal solution of minimizing a linear objective function subject to fuzzy re-
lational inequalities where the constraints defined as ai1∧x1+ai2∧x2+...+ain∧xn ≥ bi for
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i = 1, ...,m and a ∧ b = min{a, b}. He presented an algorithm based on some properties
of the minimal solutions of the FRI. In [14], the authors introduced FRI-FC problem
min{cTx : Aϕx◦ b, x ∈ [0, 1]n}, where ϕ is max-min composition and “◦” denotes the
relaxed or fuzzy version of the ordinary inequality “≤” .

Another interesting generalizations of such optimization problems are related to objec-
tive function. Wu et al. [63] represented an efficient method to optimize a linear frac-
tional programming problem under FRE with max-Archimedean t-norm composition.
Dempe and Ruziyeva [4] generalized the fuzzy linear optimization problem by consid-
ering fuzzy coefficients. Dubey et al. studied linear programming problems involving
interval uncertainty modeled using intuitionistic fuzzy set [7]. If the objective function is

z(x) =
n

max
i=1
{min{ci, xi}} with ci ∈ [0, 1], the model is called the latticized problem [58].

Also, Yang et al. [66] introduced another version of the latticized programming problem
subject to max-prod fuzzy relation inequalities with application in the optimization man-
agement model of wireless communication emission base stations. The latticized problem
was defined by minimizing objective function z(x) = x1 ∨ x2 ∨ ... ∨ xn subject to feasible
region X(A, b) = {x ∈ [0, 1]n : A ◦ x ≥ b} where “◦” denotes fuzzy max-product composi-
tion. They also presented an algorithm based on the resolution of the feasible region. On
the other hand, Lu and Fang considered the single non-linear objective function and solved
it with FRE constraints and max-min operator [38]. They proposed a genetic algorithm
for solving the problem. Hassanzadeh et al. [23] used the same GA proposed by Lu and
Fang to solve a similar nonlinear problem constrained by FRE and max-product operator.

Generally, the most important difficulties related to FRE or FRI problems can be cate-
gorized as follows:

1. In order to completely determine FREs and FRIs, we must initially find all the minimal
solutions, and the finding of all the minimal solutions is an NP-hard problem.

2. A feasible region formed as FRE or FRI [15] is often a non-convex set.

3. FREs and FRIs as feasible regions lead to optimization problems with highly non-
linear constraints.

Due to the above mentioned difficulties, although the analytical methods are efficient
to find exact optimal solutions, they may also involve high computational complexity for
high-dimensional problems (especially, if the simplification processes cannot considerably
reduce the problem).

In this paper, we propose a genetic algorithm for solving problem (1), which keeps the
search inside of the feasible region without finding any minimal solution and checking the
feasibility of new generated solutions. For this purpose, the paper consists of three main
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parts. Firstly, we describe some structural details of FREs defined by the Sugeno-Weber
t-norm such as the theoretical properties of the solutions set, necessary and sufficient con-
ditions for the feasibility of the problem, some simplification processes and the existence
of an especial convex subset of the feasible region. By utilizing the convex subset, the
proposed GA can easily generate a random feasible initial population. These results are
used throughout the paper and provide a proper background to design an efficient GA by
taking advantage of the structure of the feasible region. Then, our algorithm is presented
based on the obtained theoretical properties. The proposed GA is designed especially for
solving nonlinear optimization problems with fuzzy relational equations constraints. It is
shown that all the operations used by the algorithm such as mutation and crossover are
also kept within the feasible region. Finally, we provide some statistical and experimental
results to evaluate the performance of our algorithm. Since the feasibility of problem
(1) is essentially dependent on the t-norm (Sugeno-Weber t-norm) used in the definition
of the constraints, a method is also presented to construct feasible test problems. More
precisely, we construct a feasible problem by randomly generating a fuzzy matrix A and
a fuzzy vector b according to some criteria resulted from the necessary and sufficient con-
ditions. It is proved that the max-Sugeno-Weber fuzzy relational equations constructed
by this method is not empty. Moreover, a comparison is made between the proposed GA
and the genetic algorithms presented in [23] and [38].

The remainder of the paper is organized as follows. Section 2 takes a brief look at some
basic results on the feasible solutions set of problem (1). In section 3, the proposed GA
and its characteristics are described. A comparative study is presented in section 4 and,
finally in section 5 the experimental results are demonstrated.

2 Some basic properties of max-Sugeno-Weber FREs

2.1 Characterization of feasible solutions set

This section describes the basic definitions and structural properties concerning problem
(1)

that are used throughout the paper. For the sake of simplicity, let STλSW (ai, bi) de-

note the feasible solutions set of i ‘th equation, that is, STλSW (ai, bi)={x ∈ [0, 1]n :
n

max
j=1
{T λSW (aij, xj)} = bi}. Also, let STλSW (A, b) denote the feasible solutions set of problem

(1). Based on the foregoing

notations, it is clear that STλSW (A, b) =
⋂
i∈I
STλSW (ai, bi) .

Definition 1. For each i ∈ I , we define Ji = {j ∈ J : aij ≥ bi} .

According to definition 1, we have the following lemmas.
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Lemma 1. Let i ∈ I . If j /∈ Ji , then T λSW (aij, xj) < bi , ∀xj ∈ [0, 1].

Proof. From the monotonicity and identity law of t-norms, we have

T λSW (aij, xj) ≤ T λSW (aij, 1) = aij, ∀xj ∈ [0, 1] . Now, the result follows from the as-
sumption

( i.e., j /∈ Ji) and definition 1.

Lemma 2. Let i ∈ I and j ∈ Ji .

(a) If xj >
(1+λ)bi+(1−aij)

1+λaij
, then T λSW (aij, xj) > bi .

(b) If xj =
(1+λ)bi+(1−aij)

1+λaij
, then T λSW (aij, xj) = bi .

(b) If xj <
(1+λ)bi+(1−aij)

1+λaij
and bi 6= 0 , then T λSW (aij, xj) < bi .

(d) If xj ≤ (1+λ)bi+(1−aij)
1+λaij

and bi = 0 , then T λSW (aij, xj) = bi .

Proof. The proof is easily obtained from the definition of Sugeno-Weber t-norm and
definition 1.

Lemma 3 below gives a necessary and sufficient condition for the feasibility of sets
STλSW (ai, bi),∀i ∈ I.

Lemma 3. For a fixed i ∈ I, STλSW (ai, bi) 6= ∅ if and only if Ji 6= ∅

Proof. Suppose that STλSW (ai, bi) 6= ∅. So, there exists x ∈ [0, 1]n such that
n

max
j=1
{T λSW (aij, xj)} = bi . Therefore, we must have T λSW (aij0 , xj0) = bi for some j0 ∈ J .

Now, lemma 1 implies j0 ∈ Ji that means Ji 6= ∅ . Conversely, suppose that Ji 6= ∅ and
let j0 ∈ Ji.

We define ẋ = [ẋ1, ẋ2, ..., ẋn] ∈ [0, 1]n where

ẋj =

{
(1+λ)bi+(1−aij)

1+λaij
j = j0

0 j 6= j0
, ∀j ∈ J

By this definition, we have T λSW (aij0 , ẋj0) = bi and T λSW (aij, ẋj) = 0 ≤ bi for each
j ∈ J − {j0}. Therefore,
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n
max
j=1
{T λSW (aij, ẋj)} = max{T λSW (aij0 , ẋj0),max

j∈J
j 6=j0

{T λSW (aij, ẋj)}}

= T λSW (aij0 , ẋj0) = bi

The above equality shows that ẋ ∈ STλSW (ai, bi). This completes the proof.

Definition 2. Suppose that i ∈ I and STλSW (ai, bi) 6= ∅ (hence, Ji 6= ∅ from lemma

3).

Let x̂i = [(x̂i)1, (x̂i)2, ..., (x̂i)n] ∈ [0, 1]n where the components are defined as follows:

ˆ(xi)k =

{
(1+λ)bi+(1−aik)

1+λaik
k ∈ Ji

1 k /∈ Ji
,∀k ∈ J

Also, for each j ∈ Ji , we define x̆i(j) = [x̆i(j)1, x̆i(j)2, ..., x̆i(j)n] ∈ [0, 1]n such that

x̆i(j)k =

{
(1+λ)bi+(1−aij)

1+λaij
bi 6= 0 and k = j

0 otherwise
,∀k ∈ J

The following theorem characterizes the feasible region of the i ‘th relational equation
(i ∈ I).

Theorem 1. Let i ∈ I. If STλSW (ai, bi) 6= ∅, then STλSW (ai, bi) =
⋃
j∈Ji

[x̆i(j), x̂i].

Proof. Firstly, we show that
⋃
j∈Ji

[x̆i(j), x̂i] ⊆ STλSW (ai, bi).

Then, we prove that x /∈
⋃
j∈Ji

[x̆i(j), x̂i] implies x /∈ STλSW (ai, bi). The second state-

ment is equivalent to STλSW (ai, bi) ⊆
⋃
j∈Ji

[x̆i(j), x̂i], and then the result follows. Let,

ẋ ∈
⋃
j∈Ji

[x̆i(j), x̂i]. Thus, there exists some j0 ∈ Ji such that ẋ ∈ [x̆i(j0), x̂i] (i.e. ,

x̆i(j0) ≤ ẋ ≤ x̂i). In the first case,

suppose that bi 6= 0 .

So, definition 2 implies ẋj0 =
(1+λ)bi+(1−aij0 )

1+λaij0
, ẋj = [0,

(1+λ)bi+(1−aij)
1+λaij

] , ∀j ∈ Ji − {j0},
and
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ẋj ∈ [0, 1], ∀j /∈ Ji.

Therefore T λSW (aij, ẋj) < bi , ∀j /∈ Ji (resulted from lemma 1), and then

max
j /∈Ji
{T λSW (aij, ẋj)} < bi. Also, T λSW (aij, ẋj) ≤ bi , ∀j ∈ Ji − {j0} (resulted from lemma 2,

parts (b) and (c)), which implies

max
j∈Ji−{j0}

{T λSW (aij, ẋj)} ≤ bi. Additionally, T λSW (aij0 , ẋj0) = bi from lemma 2 (part (b)).

Hence, we have

n
max
j=1
{T λSW (aij, ẋj)} = max{T λSW (aij0 , ẋj0), max

j∈Ji−{j0}
T λSW (aij, ẋj)

,max
j /∈J
{T λSW (aij, ẋj)}} = bi

Otherwise, suppose that bi = 0 . In this case, definition 2 implies ẋj = [0,
(1+λ)bi+(1−aij)

1+λaij
] ,

∀j ∈ Ji , and ẋj ∈ [0, 1], ∀j /∈ Ji. By similar arguments we have max
j /∈Ji
{T λSW (aij, ẋj)} < bi

Also , max
j∈Ji
{T λSW (aij, ẋj)} = bi (resulted from lemma 2, part (d)). Therefore,

n
max
j=1
{T λSW (aij, ẋj)} = max{max

j∈Ji
T λSW (aij, ẋj),max

j /∈Ji
{T λSW (aij, ẋj)}} = bi

˙
Thus, for each case ẋ ∈ STλSW (ai, bi) that implies

⋃
j∈Ji

[x̆i(j), x̂i] ⊆ STλSW (ai, bi).

Conversely, assume that ẋ /∈
⋃
j∈Ji

[x̆i(j), x̂i]. Hence, either ẋ is not less than x̂i (i.e., ẋ � x̂i)

or ẋ is not greater than x̆i(j) , ∀j ∈ Ji (i.e., ẋ � x̆i(j), ∀j ∈ Ji). If ẋ � x̂i , there must
exists some

k ∈ J such that ẋk > (x̂i)k. Therefore from definition 2 we must have ẋk > 1 , for

k /∈ Ji , and ẋk >
(1+λ)bi+(1−aik)

1+λaik
, for k ∈ Ji. In the former case, the infeasibility of ẋ

is obvious. In the latter case, lemma 2 (part (a)) implies T λSW (aik, ẋk) > bi . Therefore,
n

max
j=1
{T λSW (aij, ẋj)} > bi that means ẋ /∈ STλSW (ai, bi). Otherwise, suppose that ẋ � x̆i(j)

, ∀j ∈ Ji . Since each solution x̆i(j) (j ∈ Ji) has at most one positive component x̆i(j)j
(from definition 2), we conclude ẋj < x̆i(j)j (∀j ∈ Ji) . So, for each j ∈ Ji we have

ẋj < 0 , if bi = 0 , and ẋj <
(1+λ)bi+(1−aij)

1+λaij
, if bi 6= 0 . In the former case, the result

trivially follows. In the latter case, lemma 2 (part (c)) implies T λSW (aij, ẋj) < bi (∀j ∈ Ji)
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.Therefore , max
j∈Ji
{T λSW (aij, ẋj)} < bi , and then we have

n
max
j=1
{T λSW (aij, ẋj)} = max{max

j∈Ji
T λSW (aij, ẋj),max

j /∈Ji
{T λSW (aij, ẋj)}} < bi

Thus, ẋ /∈ STλSW (ai, bi) that completes the proof.

From theorem 1, x̂i is the unique maximum solution and x̆i(j) ‘s (j ∈ Ji) are the minimal
solutions of STλSW (ai, bi) .

Definition 3. Let x̂i(i ∈ I) be the maximum solution of STλSW (ai, bi) . We define

X = min
i∈I
{x̂i} .

Definition 4. Let e : I → Ji so that e(i) = j ∈ Ji , ∀i ∈ I , and let E be the set of
all vectors e . For the sake of convenience, we represent each e ∈ E as an m–dimensional
vector e = [j1, j2, ..., jm] in which jk = e(k) .

Definition 5. Let e = [j1, j2, ..., jm] ∈ E .
We define X(e) = [X(e)1, X(e)2, ..., X(e)n] ∈ [0, 1]n , where
X(e)j = max

i∈I
{x̆i(e(i))j} = max

i∈I
{x̆i(ji)j} , ∀j ∈ J .

Theorem 2 below completely determines the feasible solutions set of problem (1).

Theorem 2. STλSW (A, b) =
⋃
e∈E

[X(e), X] .

Proof. Since STλSW (A, b) =
⋂
i∈I
STλSW (ai, bi), from theorem 1 we have

STλSW (A, b) =
⋂
i∈I

⋃
j∈Ji

[x̆i(j), x̂i] =
⋂
i∈I

⋃
e∈E

[x̆i(e(i)), x̂i] =
⋃
e∈E

⋂
i∈I

[x̆i(e(i)), x̂i] =

⋃
e∈E

[max
i∈I
{x̆i(e(i))},min

i∈I
{x̂i}] =

⋃
e∈E

[X(e), X]

where the last equality is obtained by definitions 3 and 5.

As a consequence, it turns out that X is the unique maximum solution and X(e)‘s (e ∈ E)
are the minimal solutions of STλSW (A, b) . Moreover, we have the following corollary that
is directly resulted from theorem 2.

Corollary 1(first necessary and sufficient condition).
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STλSW (A, b) 6= ∅ if and only if X ∈ STλSW (A, b).

The following example illustrates the above-mentioned definitions.

Example 1. Consider the problem below with Sugeno-Weber t-norm
0.9 0.4 0.6 0.7 0.4 0.4
0.5 0.1 0.2 0.3 0.5 0.2
0.2 0.8 0.4 0.4 0.6 0.9
0.9 0.7 0.3 0.8 0.8 0.5
0.0 0.0 0.1 0.2 0.0 0.7

ϕx=


0.7
0.5
0.6
0.8
0.0


where ϕ(x, y) = T 1

SW (x, y) = max{x+y−1+xy
2

, 0} (i.e., λ = 1) .

By definition 1, we have

J1 = {1, 4}, J2 = {1, 5}, J3 = {2, 5, 6}, J4 = {1, 4, 5} and J5 = {1, 2, 3, 4, 5, 6}. The
unique maximum solution and the minimal solutions of each equation are obtained by
definition 2 as follows:
x̂1 = [0.7895, 1, 1, 1, 1, 1] ,
x̂2 = [1, 1, 1, 1, 1, 1] ,
x̂3 = [1, 0.7778, 1, 1, 1, 0.6842] ,
x̂4 = [0.8947, 1, 1, 1, 1, 1] ,
x̂5 = [1, 1, 0.8182, 0.6667, 1, 0.1765] ,

x̆1(1) = [0.7895, 0, 0, 0, 0, 0] ,
x̆1(4) = [0, 0, 0, 1, 0, 0] ,
x̆2(1) = [1, 0, 0, 0, 0, 0] ,
x̆2(5) = [0, 0, 0, 0, 1, 0] ,
x̆3(2) = [0, 0.7778, 0, 0, 0, 0] ,
x̆3(5) = [0, 0, 0, 0, 1, 0] ,
x̆3(6) = [0, 0, 0, 0, 0, 0.6842] ,
x̆4(1) = [0.8947, 0, 0, 0, 0, 0] ,
x̆4(4) = [0, 0, 0, 1, 0, 0] ,
x̆4(5) = [0, 0, 0, 0, 1, 0] ,
x̆5(j) = [0, 0, 0, 0, 0, 0] , j ∈ {1, 2, 3, 4, 5, 6}

Therefore, by theorem 1 we have

STλSW (a1, b1) = [x̆1(1), x̂1] ∪ [x̆1(4), x̂1] ,

STλSW (a2, b2) = [x̆2(1), x̂2] ∪ [x̆2(5), x̂2] ,

STλSW (a3, b3) = [x̆3(2), x̂3] ∪ [x̆3(5), x̂3] ∪ [x̆3(6), x̂3] ,
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STλSW (a4, b4) = [x̆4(1), x̂4] ∪ [x̆4(4), x̂4] ∪ [x̆4(5), x̂4] ,

and STλSW (a5, b5) = [01×6, x̂5] where 01×6 is a zero vector.

From definition 3, X = [0.7895, 0.7778, 0.8182, 0.6667, 1, 0.1765] . It is easy to verify
that X ∈ STλSW (A, b) . Therefore, the above problem is feasible by corollary 1. Finally,

the cardinality of set E is equal to 36 (definition 4). So, we have 36 solutions X(e) asso-
ciated to 36 vectors e . For example, for e = [1, 5, 5, 5, 1] , we obtain
X(e) = max{x̆1(1), x̆2(5), x̆3(5), x̆4(5), x̆5(1)}
from definition 5 that means
X(e) = [0.7895, 0, 0, 0, 1, 0] .

2.2 Simplification processes

In practice, there are often some components of matrix A that have no effect on the so-
lutions to problem (1). Therefore, we can simplify the problem by changing the values
of these components to zeros. For this reason, various simplification processes have been
proposed by researchers. We refer the interesting reader to [15] where a brief review of
such these processes is given. Here, we present two simplification techniques based on the
Sugeno-Weber t-norm.

Definition 6. If a value changing in an element, say aij , of a given fuzzy relation
matrix A has no effect on the solutions of problem (1), this value changing is said to be
an equivalence operation.

Corollary 2. Suppose that T λSW (aij0 , xj0) < bi , ∀x ∈ STλSW (A, b) . In this case, it

is obvious that
n

max
j=1
{T λSW (aij, xj)} = bi

is equivalent to
n

max
j=1
j 6=j0

{T λSW (aij, xj)} = bi , that is, “resetting aij0 to zero” has no effect on

the solutions of problem (1) (since component aij0 only appears in the i ‘th constraint of
problem (1)). Therefore, if T λSW (aij0 , xj0) < bi , ∀x ∈ STλSW (A, b) , then “resetting aij0 to
zero” is an equivalence operation.

Lemma 4 (first simplification). Suppose that j0 /∈ Ji , for some i ∈ I and j0 ∈ J .
Then, “resetting aij0 to zero” is an equivalence operation.

Proof. From corollary 2, it is sufficient to show that T λSW (aij0 , xj0) < bi , ∀x ∈ STλSW (A, b)

. But, from lemma 1 we have T λSW (aij0 , xj0) < bi , ∀xj0 ∈ [0, 1] . Thus , T λSW (aij0 , xj0) < bi
, ∀x ∈ STλSW (A, b) .

Lemma 5 (second simplification). Suppose that j0 ∈ Ji1 and bi1 6= 0 , where
i1 ∈ I and j0 ∈ J . If j0 ∈ Ji2 for some i2 ∈ I(i1 6= i2) and
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(1 + λ)bi2 + (1− ai2j0)
1 + λai2j0

<
(1 + λ)bi1 + (1− ai1j0)

1 + λai1j0

, then “resetting ai1j0 to zero” is an equivalence operation .

Proof. Similar to the proof of lemma 4, we show that T λSW (ai1j0 , xj0) < bi , ∀x ∈
STλSW (A, b) . Consider an arbitrary feasible solution x ∈ STλSW (A, b) . Since x ∈ STλSW (A, b)

, it turns out that T λSW (ai1j0 , xj0) > bi1 never holds. So, assume that T λSW (ai1j0 , xj0) = bi1
, that is , max{ai1j0+xj0−1+λai1j0xj0

1+λ
, 0} = bi1 . Since bi1 6= 0 , we conclude that

ai1j0+xj0−1+λai1j0xj0
1+λ

= bi1 , or equivalently xj0 =
(1+λ)bi1+(1−ai1j0 )

1+λai1j0
. Now, from

(1 + λ)bi2 + (1− ai2j0)
1 + λai2j0

<
(1 + λ)bi1 + (1− ai1j0)

1 + λai1j0

, we obtain xj0 >
(1+λ)bi2+(1−ai2j0 )

1+λai2j0
Therefore, from lemma 2 (part (a)), we have

T λSW (ai2j0 , xj0) > bi2 that contradicts x ∈ STλSW (A, b) .

We give an example to illustrate the above two simplification processes.

Example 2. Consider the problem presented in example 1. From the first simplification
(lemma 4), “resetting the following components aij to zeros” are equivalence operations:
a12, a13, a15, a16; a22, a23, a24, a26; a31, a33, a34; a42, a43, a46 ; in all of these cases, aij < bi ,
that is, j /∈ Ji . Moreover, from the second simplification (lemma 5), we can change the
values of components a14, a21, a36, a41 and a44 to zeros with no effect on the solutions set
of the problem. For example, since a36 > b3 (i.e. , 6 ∈ J3) , b3 6= 0 , a56 > b5 (i.e. , 6 ∈ J5)
and

0.1250 =
(1 + λ)b5 + (1− a56)

1 + λa56
<

(1 + λ)b3 + (1− a36)
1 + λa36

= 0.4643

“resetting a36 to zero” is an equivalence operation.

In addition to simplifying the problem, a necessary and sufficient condition is also de-
rived from lemma 5. Before formally presenting the condition, some useful notations
are introduced. Let Ã denote the simplified matrix resulted from A after applying the
simplification processes (lemmas 4 and 5). Also, similar to definition 1, assume that
J̃i = {j ∈ J : ãij ≥ bi} (i ∈ I ) where ãij denotes (i, j) ‘th component of matrix Ã . The
following theorem gives a necessary and sufficient condition for the feasibility of problem
(1).

Theorem 3 (second necessary and sufficient condition).
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STλSW (A, b) 6= ∅ if and only if J̃i 6= ∅ , ∀i ∈ I .

Proof. Since STλSW (A, b) = STλSW (Ã, b) from lemmas 4 and 5, it is sufficient to show that

STλSW (Ã, b) 6= ∅ if and only if J̃i 6= ∅ , ∀i ∈ I .

Let STλSW (Ã, b) 6= ∅ . Therefore, STλSW (ãi, bi) 6= ∅ , ∀i ∈ I, where ãi denotes i‘th row of

matrix Ã . Now, lemma 3 implies J̃i 6= ∅ , ∀i ∈ I . Conversely, suppose that J̃i 6= ∅ ,
∀i ∈ I . Again by using lemma 3 we have J̃i 6= ∅ , ∀i ∈ I .By contradiction, suppose that
STλSW (Ã, b) 6= ∅ .

Therefore, X /∈ STλSW (Ã, b) from corollary 1, and then there exists

i0 ∈ I such that X /∈ STλSW (ãi0 , bi0) . Since

max
j /∈J̃i
{T λSW (ãi0j, Xj)} < bi0 (from lemma 1), we must have either

max
j∈J̃i
{T λSW (ãi0j, Xj)} > bi0 or max

j∈J̃i
{T λSW (ãi0j, Xj)} < bi0 . Anyway, since

X ≤ x̂i0 (i.e., Xj ≤ (x̂i0)j , ∀j ∈ J ) , we have

max
j∈J̃i0
{T λSW (ãi0j, Xj)} ≤ max

j∈J̃i0
{T λSW (ãi0j, (x̂i0)j)} = bi0 , and then the former case

(i.e., max
j∈J̃i
{T λSW (ãi0j, Xj)} > bi0 ) never holds. Therefore, max

j∈J̃i
{T λSW (ãi0j, Xj)} < bi0 that

implies bi0 6= 0 and T λSW (ãi0j, Xj) < bi0 , ∀j ∈ J̃i0 . Hence, by lemma 2, we must have

Xj <
(1+λ)bi0+(1−ãi0j)

1+λãi0j
, ∀j ∈ J̃i0 . On the other hand,

(1 + λ)bi0 + (1− ãi0j) ≤ 1 + λãi0j , ∀j ∈ J̃i0 . Therefore, Xj < 1 , ∀j ∈ J̃i0 , and then from

definitions 2 and 3, for each j ∈ J̃i0 there must exists ij ∈ I such that j ∈ J̃ij and

Xj = (x̂ij)j =
(1+λ)bij+(1−ãijj)

1+λãijj
.

Until now, we proved that bi0 6= 0 and for each j ∈ J̃i0 , there exist ij ∈ I such that
j ∈ J̃ij and

(1+λ)bij+(1−ãijj)
1+λãijj

<
(1+λ)bi0+(1−ãi0j)

1+λãi0j

(because ,
(1+λ)bij+(1−ãijj)

1+λãijj
= Xj <

(1+λ)bi0+(1−ãi0j)
1+λãi0j

).

But in these cases, we must have ãi0j ( ∀j ∈ J̃i0 ) from the second simplification process.
Therefore, ãi0j < bi0 6= 0 ( ∀j ∈ J̃i0 ) that is a contradiction.

Remark 1. Since STλSW (A, b) = STλSW (Ã, b) (from lemmas 4 and 5), we can rewrite

all the previous definitions and results in a simpler manner by replacing J̃i with Ji(i ∈ I)
.
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3 The proposed GA for solving problem (1)

Genetic algorithms (GAs) are metaheuristics inspired by the process of natural selection
that belongs to the larger class of evolutionary algorithms (EA). In a genetic algorithm,
a population of solutions (called individuals) to an optimization problem is iteratively
evolved toward better solutions (the population in each iteration called a generation).
The evolution usually starts from a population of randomly generated individuals and
progress to improve solutions by emulating some bio-inspired operators such as mutation,
crossover and selection. In each generation, the fitness (performance) of every individual
in the population is evaluated, and based on the performance, the relatively good solu-
tions are retained and the relatively bad solutions are replaced with some newly generated
offsprings. The fitness is usually the value of the objective function in the optimization
problem being solved. The new generation of solutions is then used in the next iteration
of the algorithm.

In this section, a genetic algorithm is presented for solving problem (1). Since the feasi-
ble region of problem (1) is non-convex, a convex subset of the feasible region is firstly
introduced. Consequently, the proposed GA can easily generate the initial population
by randomly choosing individuals from this convex feasible subset. The mutation and
crossover operators are also designed to keep the feasibility of the individuals without
checking the feasibility of the new generated solutions. Solutions with better objective
values will have higher opportunities to survive and the algorithm terminates after taking
a pre-determined number of generations. At the last part of this section, a method is
presented to generate random feasible max-Sugeno-Weber fuzzy relational equations.

3.1 Representation

Similar to the mentioned related literatures [23,38], we use the floating-point representa-
tion in which each variable (gene) xj in a solution (individual) x = [x1, x2, . . . , xn] belongs
to the interval [0,1] . There are several reasons for using the floating-point representa-
tion instead of binary strings. For example, all components of every solution in problem
(1) are nonnegative numbers that are less than or equal to one. Also, the floating-point
representation is faster, more consistence, and provides high precision [38].

3.2 Initialization

As mentioned before, GAs randomly generate the initial population. This strategy works
well when dealing with unconstrained optimization problems. However, for a constrained
optimization problem, randomly generated solutions may not be feasible. In the proposed
GA, the initial population is given by randomly generating the individuals inside the fea-
sible region. For this purpose, we firstly find a convex subset of the feasible solutions
set, that is, we find set F such that F⊆ STλSW (A, b)and F is convex. Then, the initial
population is generated by randomly selecting individuals from set F .
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Definition 7 . Suppose that STλSW (Ã,b)6= ∅ For each i ∈ I , let

x̆i = [(x̆i)1, (x̆i)2, . . . , (x̆i)n] ∈ [0, 1]n where the components are defined as follows:

(x̆i)k =

{
(1+λ)bi+(1−aik)

1+λaik
bi 6= 0 and k ∈ J̃i

0 otherwise
,∀k ∈ J

Also, we define X = max
i∈I
{x̆i} .

Remark 2. According to definition 2 and remark 1, it is clear that for a fixed i ∈ I and
j ∈ J̃i, x̆i(j)k ≤ (x̆i)k (∀k ∈ J).Therefore, from definitions 5 and 7 we have
X(e)k = max

i∈I
{x̆i(e(i))k} = max

i∈I
{x̆i(ji)k} ≤ max

i∈I
{(x̆i)k} = Xk, ∀k ∈ J and ∀e ∈ E .

Thus, X(e) ≤ X, ∀e ∈ E .

Lemma 6 (a Convex subset of the feasible region). Suppose that STλSW (Ã,b)6= ∅
and F = {x ∈ [0, 1]n : X ≤ x ≤ X} . Then F ⊆ STλSW (Ã,b) and F is a convex set .

Proof. From theorem 2, we have STλSW (Ã,b)=STλSW (A, b) =
⋃
e∈E

[X(e), X] .

To prove the lemma, we show that X(e) ≤ X ≤ X , ∀e ∈ E .Then, we can con-
clude [X,X] ⊆ [X(e), X], ∀e ∈ E, that implies both F ⊆ STλSW (A, b) and the

convexity of F . But from remark 2, X(e) ≤ X, ∀e ∈ E Therefore, it is sufficient
to prove X ≤ X . By contradiction, suppose that Xj0

> Xj0 for some j0 ∈ J
.So, from definitions 2, 3 and 7, there must exist i1 ∈ I and i2 ∈ I such that

Xj0
= (x̆i1)j0 =

(1+λ)bi1+(1−ãi1j0 )
1+λãi1j0

,

Xj0 = (x̂i2)j0 =
(1 + λ)bi2 + (1− ãi2j0)

1 + λãi2j0

and Xj0 < Xj0
(i.e,

(1+λ)bi2+(1−ãi2j0 )
1+λãi2j0

<
(1+λ)bi1+(1−ãi1j0 )

1+λãi1j0
). But these cases occur only

when bi1 6= 0 and j0 ∈ J̃i1 ∩ J̃i2 . These facts together with

(1 + λ)bi2 + (1− ãi2j0)
1 + λãi2j0

<
(1 + λ)bi1 + (1− ãi1j0)

1 + λãi1j0

imply ãi1j0 = 0 from the second simplification process. Therefore, ãi1j0 < bi1 that
contradicts j0 ∈ J̃i1 .
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To illustrate definition 7 and lemma 6, we give the following example.

Example 3. Consider the problem presented in example 1, where
X = [0.7895, 0.7778, 0.8182, 0.6667, 1, 0.1765] . Also, according to example 2, the simpli-
fied matrix Ã is

Ã =


0.9 0 0 0 0 0
0 0 0 0 0.5 0
0 0.8 0 0 0.6 0
0 0 0 0 0.8 0
0 0 0.1 0.2 0 0.7


From definition 7, we have
x̆1 = [0.7895, 0, 0, 0, 0, 0],
x̆2 = [0, 0, 0, 0, 1, 0],
x̆3 = [0, 0.7778, 0, 0, 1, 0],
x̆4 = [0, 0, 0, 0, 1, 0],
x̆5 = [0, 0, 0, 0, 0, 0] .

, and then X =
5

max
i=1
{x̆i} = [0.7895, 0.7778, 0, 0, 1, 0] .Therefore, set F=[X,X] is obtained

as a collection of intervals:

F = [X,X] = [0.7895, 0.7778, [0, 0.8182], [0, 0.6667], 1, [0, 0.1765]]

By generating random numbers in the corresponding intervals, we acquire one initial
individual : x=[0.7895,0.7778,0.74,0.666,1,0.07] .

According to lemma 6, the algorithm for generating the initial population is simply ob-
tained as follows:

Algorithm 1 (Initial Population).

1.Get fuzzy matrix A , fuzzy vector b and population size Spop

2.If X /∈ STλSW (A, b) ,then stop ; the problem is infeasible (corollary1).

3.For i = 1, 2, . . . , Spop

Generate a random n-dimensional pop(i) in the interval[X,X] .

End
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3.3 Selection strategy

Suppose that the individuals in the population are sorted according to their ranks from
the best to worst, that is, individual pop(r) has rank r . Therefore, the first individual is
the best one with the smallest objective value in problem (1). The weight of the individual
pop(r) is calculated by the following formula:

Wr =
1√

2πqSpop
e
− 1

2
( r−1
qSpop

)2
(2)

which essentially defines the weight to be a value of the Gaussian function with argument r
, mean 1 , and standard deviation q Spop , where q is a parameter of the algorithm. When
q is small, the best-ranked individuals are strongly preferred, and when it is large, the
probability becomes more uniform. Based on relation (2), the probability Pr of choosing
the r ‘th individual is given by:

Pr =
Wr∑Spop
k=1 Wk

(3)

A more detailed analysis of the influence of the parameter q is presented in section 4 .

3.4 mutation operator

Although various mutation operators have been proposed for handling the constrained
optimization problems, there seldom is any mutation operator available for the non-convex
problem [38]. In this section, a mutation operator is presented, which preserves the
feasibility of new individuals in the non-convex feasible domain. As usual, suppose that
STλSW (A, b) 6= ∅ So, from theorem 3 we have J̃i 6= ∅ ,∀i ∈ I , Where J̃i = {j ∈ J : ãij ≥ bi}
, ∀i ∈ I (see definition1 and remark 1).

Definition 8. Let I+ = {i ∈ I : bi 6= 0} . So, we define D={j ∈ J : if ∃i ∈ I+ such
that j ∈ J̃i ⇒ |J̃i| > 1}, where |J̃i| denotes the cardinality of set J̃i .

For a given individual x=[x1, x2, . . . , xn] , we define an operator that mutates the individ-
ual by randomly choosing an element j0 ∈ D and decreasing xj0 from its current value to
zero. Therefore, for the new individual x′ = [x′1, x

′
2, . . . , x

′
n] we have x′j0 = 0 , and x′j = xj

,
∀j ∈ J − {j0} . If x′ is infeasible, the mutation operator will neglect this decreasing
operation and find another xj (j ∈ D and j 6= j0 ) to decrease.

Remark 3. Suppose that i0 ∈ I+ ,j0 ∈ J̃i0 and |J̃i0| = 1 . Therefore, J̃i0 = {j0} and
according to definition 8 we have j0 /∈ D . So, if we decide to set xj0 = 0 , then from
lemma 1
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n
max
k=1
{T λSW (ãi0k, xk)} = max{max

j∈J̃i0
{T λSW (ãi0k, xk)},max

j /∈J̃i0
{T λSW (ãi0k, xk)}}

= max{T λSW (ãi0j0 , xj0),
n

max
k=1
k 6=j0

{T λSW (ãi0k, xk)}}

= max{T λSW (ãi0j0 , 0),
n

max
k=1
k 6=j0

{T λSW (ãi0k, xk)}} < bi0

In this case, the new individual violates i0‘th equation. This is the reason why the
reduction process only selects those elements j belonging to the set D .

Based on definition 8 and remark 3, we present the mutation operator as follows:

Algorithm 2 (Mutation operator).

1.Get the matrix Ã,vector b and a selected solution ẋ = [ẋ1, . . . , ẋn] .
2. While D 6= ∅
2.1.Set x′ ← x.
2.2.Randomly choose j0 ∈ D ,and set x′j0 = 0.
2.3.IF x′ is feasible , go to Crossover operator ; otherwise ,set D = D − {j0}

Remark 4. From theorem 2, if x ∈ STλSW (A, b) , then there exists some e ∈ E such that

x ∈[X(e), X] . Therefore, if x 6= X(e) , it is always possible for algorithm 2 to find an
element j0 ∈ D and generate a feasible solution x′ by setting xj0 = 0 . The only exceptions
are the minimal solutions. The minimal solutions are actually the lower bounds of the
feasible region, and therefore any reduction in their variables results in an infeasible point.
Hence, if the While-loop of the above algorithm is terminated with D 6= ∅ , it turns out
that ẋ must be a minimal solution.

3.5 Crossover operator

In section 2, it was proved that X is the unique maximum solution of STλSW (A, b) . By
using this result, the crossover operator is stated as follows:

Algorithm 3 (Crossover operator).

1.Get the maximum solution X,the new solution x′ (generated by algorithm 2 ) and one
parent pop(k)(for some k = 1, 2, . . . , Spop).

2.Generate a randim number λ1 ∈ [0, 1].Set xnew1 = λ1x
′ + (1− λ1)X .
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3.Let λ2 =
Spop

min
j=1
j 6=k

‖pop(k)− pop(j)‖ and d = X − pop(k) .

Set xnew2 = pop(k) + min{λ2, 1}d .

Remark 6. From the above algorithm, the new individual xnew1 is generated by the
convex combination of x′ and X . Since x′ ∈ STλSW (A, b) , theorem 2 implies x′ ∈ [X(e), X]

, for some e ∈ E . Thus, since [X(e), X] is a closed cell, the generated offsprings xnew1 is
always feasible, and therefore we have no need to check its feasibility. Similar argument
is also true for xnew2 . The only difference is that the offspring xnew2 usually locates close
to its parent (i.e., pop(k) ). It is because of the step length λ2 computed as the minimum
distances between the parent pop(k) and other individual. This strategy increases the
ability of the algorithm to find the optima around a good solution.

3.6 Construction of test problems

There are usually several ways to generate a feasible FRE defined with different t-norms.
In what follows, we present a procedure to generate random feasible max-Sugeno-Weber
fuzzy relational equations:

Algorithm 4 (construction of feasible Max-Sugeno-Weber FRE).

1.Randomly select m columns {j1, j2, . . . , jm} from J = {1, 2, . . . , n}
2.Generate vector b whose elements are random numbers from [0,1]
3.For i ∈ {1, 2, . . . ,m}

Assign a random number from [bi, 1] to aiji .
End
4.For i ∈ {1, 2, . . . ,m}

If bi 6= 0
For each k ∈ {1, 2, . . . ,m} − {i}

Set L =
(1+λ)bi+(1−aiji )

1+λaiji

Assign a random number from [0, (1+λ)bk+(1−L)
1+λL

] to akji
End

End
End
5.For each i ∈ {1, 2, . . . ,m} and each j /∈ {j1, j2, . . . , jm}

Assign a random number from [0,1] to aij .
End

By the following theorem, it is proved that algorithm 4 always generates random feasible
max-Sugeno-Weber fuzzy relational equations.
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Theorem 4. The solutions set STλSW (A, b) of FRE (with Sugeno-Weber t-norm) con-
structed by algorithm 4 is not empty.

Proof. According to step 3 of the algorithm,ji ∈ Ji ,∀i ∈ I . Therefore,Ji 6= ∅ , ∀i ∈ I
. To complete the proof, we show that ji ∈ J̃i , ∀i ∈ I . By contradiction, suppose that
the second simplification process reset aiji to zero, for some i ∈ I . Hence, bi 6= 0 and

there must exists some k ∈ I(k 6= i) such that ji ∈ Jk and
(1+λ)bk+(1−akji )

1+λakji
<

(1+λ)bi+(1−aiji )
1+λaiji

. But in this case, we must have akji >
(1+λ)bk+(1−L)

1+λL
in which L =

(1+λ)bi+(1−aiji )
1+λaiji

. This

contradicts step 4.

4 Comparative study

As mentioned, GAs emulate the natural evolution by simulating mutation, crossover and
selection operators. In this section, to see how the current GA is situated comparing the
other GAs designed for FRE problems, we compare theoretically our algorithm with the
GAs presented in [23] and [38] . In addition, an experimental comparison is given in the
next section.
As the selection strategy, Lu and Fang [38] used the normalized geometric ranking method
in which the probability of the r ‘th individual being selected is defined by Pr = q′(1−q)r−1
, where is the probability of selecting the best individual, r is the rank of the individual,
q′ = q/(1 − (1 − q)Spop) and Spop is the population size. In a similar way, authors in [23]
used the normalized arithmetic ranking method. In contrast, we use Gaussian function
as the selection strategy, which makes the search more diversified. Following equations
(2) and (3), for given parameters q and Spop , the probability PqSpop of choosing one of the
qSpop highest ranking individuals is PqSpop ≈ 0.68 (and P2qSpop ≈ 0.95 ). This is due to the
characteristic of the normal distribution: around 0.68% of the individuals fall inside the
interval (−σ, σ) around the mean and respectively 0.95% in the interval (−2σ, σ) . For
example, for q = 0.1 and Spop = 50 (as used in experiments in section 5), one of the 5
highest ranking individuals will be used with probability 0.68% , and one of the 10 highest
ranking individuals with probability 0.95% .
In [38], the proposed mutation operator decreases one variable of vector x to a random
number between [0, xj) each time (the same mutation operator has been used in [23]). In
this mutation operator, a decreasing variable often followed by increasing several other
variables to guarantee the feasibility of a new solution. However, in the current GA,
the feasibility of the new solution x′ is simultaneously obtained by decreasing a proper
variable to zero. Therefore, we have no need to revise the new solution to make it feasible.
Moreover, since the proposed mutation operator decreases the selected variables to zeros,
the new individuals are more likely to have greater distances from the maximum solution
X , especially x′ may be even a minimal solution (see remark 4). This strategy increases
the ability of the algorithm to expand the search space for finding new individuals.
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Finally, authors in both [23] and [38] used the same “three-point” crossover operator. The
three-point crossover is defined by three points (two parents x1 ,x2 , and the maximum
solution X ) and two operators called “contraction” and “extraction”. Both contraction
and extraction operators are employed between x1 and x2 , and between xi (i=1,2 ) and
X . However, from the four mentioned cases, only one case certainly results in a feasible
offspring (i.e., the contraction between xi (i=1,2 ) and X ). Therefore, for the other three
cases, the feasibility of the new generated solutions must be checked by substituting them
into the fuzzy relational equations as well as the constraints xj ∈ [0, 1], ∀j ∈ J . In
contrast, the current crossover operator uses only one parent each time. Offspring xnew1
is obtained as a random point on the line segment between x′ and X . But, offspring
xnew2 lies close to its parent. This difference between xnew1 and xnew2 provides a suitable
tradeoff between exploration and exploitation. Also, as is stated in remark 6, the new
solutions xnew1 and xnew2 are always feasible.

5 Experimental results

In this section, we present the experimental results for evaluating the performance of our
algorithm. Firstly, we apply our algorithm to 8 test problems described in Appendix
A. The test problems have been randomly generated in different sizes by algorithm 4
given in section 3. Since the objective function is an ordinary nonlinear function, we
take some objective functions from the well-known source: Test Examples for Nonlinear
Programming Codes [24]. In section 5.2, we make a comparison against the related GAs
proposed in [23] and [38]. To perform a fair comparison, we follow the same experimental
setup for the parameters θ = 0.5 ,ζ = 0.01 ,λ = 0.995 and γ = 1.005 as suggested by
the authors in [23] and [38]. Since the authors did not explicitly reported the size of the
population, we consider Spop = 50 for all the three GAs. As mentioned before, we set
q=0.1 in relation (2) for the current GA.
Moreover, in order to compare our algorithm with max-min GA [38] (max-product GA
[23]), we modified all the definitions used in the current GA based on the minimum t-
norm (product t-norm). For example, we used the simplification process presented in
[38] for minimum, and the simplification process given in [13,23] for product. Finally,
30 experiments are performed for all the GAs and for eight test problems reported in
Appendix B, that is, each of the preceding GA is executed 30 times for each test problem.
All the test problems included in Appendix A, have been defined by considering λ = 3 in
TSW

λ . Also, the maximum number of iterations is equal to 100 for all the methods.

5.1 Performance of the max-Sugeno-Weber GA

To verify the solutions found by the max-Sugeno-Weber GA, the optimal solutions of
the test problems are also needed. Since STλSW (A, b) is formed as the union of the finite

number of convex closed cells (theorem 2), the optimal solutions are also acquired by the
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following procedure:

1. Computing all the convex cells of the Sugeno-Weber FRE.

2. Searching the optimal solution for each convex cell.

3. Finding the global optimum by comparing these local optimal solutions.

The computational results of the eight test problems are shown in Table 1 and Figures
1-8. In Table 1, the results are averaged over 30 runs and the average best-so-far solution,
average mean fitness function and median of the best solution in the last iteration are
reported.

Table 2 includes the best results found by the max-Sugeno-Weber GA and the above pro-
cedure. According to Table 2, the optimal solutions computed by the max-Sugeno-Weber
GA and the optimal solutions obtained by the above procedure match very well. Tables
1 and 2, demonstrate the attractive ability of the max-Sugeno-Weber GA to detect the
optimal solutions of problem (1). Also, the good convergence rate of the max-Sugeno-
Weber GA could be concluded from Table 1 and figures 1-8.
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Table 1: Results of applying the max-Sugeno-Weber GA to the eight test problems.The
results have been averaged over 30 runs. Maximum number of iterations=100.

Test problems Average best-so-far Median best-so-far Average mean fitness
A.1 66.96834 66.96832 66.97396
A.2 -0.534223 -0.534223 -0.533495
A.3 -1.231383 -1.231383 -1.231263
A.4 5.088561 5.088561 5.088632
A.5 76.41313 76.41313 76.41313
A.6 0.216664 0.216664 0.216683
A.7 -1.811296 -1.811296 -1.810535
A.8 78.644803 78.644797 78.649339

Table 2: Comparison of the solutions found by Max-Sugeno-Weber GA and the optimal
values of the test problems.

Test problems Solutions of max-Sugeno-Weber GA Optimal values
A.1 66.9683 66.96832
A.2 -0.534223 -0.534224
A.3 -1.231383 -1.231385
A.4 5.088561 5.088561
A.5 76.41313 76.4115
A.6 0.216664 0.216664
A.7 -1.811296 -1.811296
A.8 78.644797 78.644797
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Figure 1: The performance of the
max-Sugeno-

Weber GA Sugeno- on test problem 1.
Figure 2: The performance of the
max-Weber GA on test problem 2.

Figure 3: The performance of the
max-Sugeno-

Weber GA Sugeno- on test problem 3.
Figure 4: The performance of the
max-Weber GA on test problem 4.
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Figure 5: The performance of the
max-Sugeno-

Weber GA Sugeno- on test problem 5.
Figure 6: The performance of the
max-Weber GA on test problem 6.

Figure 7: The performance of the
max-Sugeno-

Weber GA Sugeno- on test problem 7.
Figure 8: The performance of the
max-Weber GA on test problem 8.

5.2 Comparisons with other works

As mentioned before, we can make a comparison between the current GA, max-min
GA [38] and max-product GA [23]. For this purpose, all the test problems described in
Appendix B have been designed in such a way that they are feasible for both the minimum
and product t-norms.
The first comparison is against max-min GA, and we apply our algorithm (modified for
the minimum t-norm) to the test problems by considering ϕ as the minimum t-norm. The
results are shown in Table 3 including the optimal objective values found by the current
GA and max-min GA. As is shown in this table, the current GA finds better solutions for
test problems 1, 5 and 6, and the same solutions for the other test problems.
Table 4 shows that the current GA finds the optimal values faster than max-min GA and
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hence has a higher convergence rate, even for the same solutions. The only exception is
test problem 8 in which all the results are the same. In all the cases, results marked with
“*” indicate the better cases.
The second comparison is against the max-product GA. In this case, we apply our algo-
rithm (modified for the product t-norm) to the same test problems by considering ϕ as
the product t-norm (Tables 5 and 6).
The results, in Tables 5 and 6, demonstrate that the current GA produces better so-
lutions (or the same solutions with a higher convergence rate) when compared against
max-product GAs for all the test problems.

Table 3: Best results found by our algorithm and max-min GA.

Test problems Lu and Fang Our algorithm
B.1 8.4296755 8.4296754*
B.2 -1.3888 -1.3888
B.3 0 0
B.4 5.0909 5.0909
B.5 71.1011 71.0968*
B.6 -0.3291 -0.4175*
B.7 -0.6737 -0.6737
B.8 93.9796 93.9796
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Table 4: Best results found by our algorithm and max-min GA.

Test problems Lu and Fang Our algorithm

B.1
Average best-so-far 8.4297014 8.4296796*
Median best-so-far 8.4296755 8.4296755

Average mean fitness 8.4308865 8.4298745*

B.2
Average best-so-far -1.3888 -1.3888
Median best-so-far -1.3888 -1.3888

Average mean fitness -1.3877 -1.3886*

B.3
Average best-so-far 0 0
Median best-so-far 0 0

Average mean fitness 7.1462e-07 0*

B.4
Average best-so-far 5.0909 5.0909
Median best-so-far 5.0909 5.0909

Average mean fitness 5.0910 5.0908*

B.5
Average best-so-far 71.1011 71.0969*
Median best-so-far 71.1011 71.0968*

Average mean fitness 71.1327 71.1216*

B.6
Average best-so-far -0.3291 -0.4175*
Median best-so-far -0.3291 -0.4175*

Average mean fitness -0.3287 -0.4162*

B.7
Average best-so-far -0.6737 -0.6737
Median best-so-far -0.6737 -0.6737

Average mean fitness -0.6736 -0.6737*

B.8
Average best-so-far 93.9796 93.9796
Median best-so-far 93.9796 93.9796

Average mean fitness 93.9796 93.9796

Table 5: Best results found by our algorithm and max-product GA.

Test problems Hassanzadeh et al. Our algorithm
B.1 13.61740269 13.61740246*
B.2 -1.5557 -1.5557
B.3 0 0
B.4 5.8816 5.8816
B.5 45.0650 45.0314*
B.6 -0.3671 -0.4622*
B.7 -2.470232 -2.470232
B.8 38.0195 38.0150*
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Table 6: A Comparison between the results found by the current GA and max-product
GA.

Test Max-product GA Our GA

B.1
Average best-so-far 13.61745044 13.61740502*
Median best-so-far 13.61740371 13.61740260*

Average mean fitness 13.61785924 13.61781613*

B.2
Average best-so-far -1.5557 -1.5557
Median best-so-far -1.5557 -1.5557

Average mean fitness -1.5524 -1.5557*

B.3
Average best-so-far 0 0
Median best-so-far 0 0

Average mean fitness 1.5441e-05 0*

B.4
Average best-so-far 5.8816 5.8816
Median best-so-far 5.8816 5.8816

Average mean fitness 5.8823 5.8816*

B.5
Average best-so-far 45.0650 45.0315*
Median best-so-far 45.0650 45.0314*

Average mean fitness 45.1499 45.0460*

B.6
Average best-so-far -0.3671 -0.4622*
Median best-so-far -0.3671 -0.4622*

Average mean fitness -0.3668 -0.4614*

B.7
Average best-so-far -2.470232 -2.470232
Median best-so-far -2.470232 -2.470232

Average mean fitness -2.470175 -2.470213*

B.8
Average best-so-far 38.0195 38.0150*
Median best-so-far 38.0195 38.0150*

Average mean fitness 38.0292 38.0171*

6 Conclusion

In this paper, we studied the resolution of FREs defined by the Sugeno-Weber family
of t-norms and introduced a nonlinear problem with the max-Sugeno-Weber fuzzy rela-
tional equations. In order to determine the feasibility of the problem, two necessary and
sufficient conditions were derived. Also, we presented two simplification approaches de-
pending on the Sugeno-Weber t-norm to simplify the problem. A genetic algorithm was
proposed for solving the nonlinear optimization problems constrained by the max-Sugeno-
Weber FRE. Moreover, we presented a method for generating feasible max-Sugeno-Weber
FREs. These feasible FREs were utilized as test problems for the performance evaluation
of the proposed algorithm. Experiments were performed with the proposed method in
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the generated feasible test problems. We conclude that the proposed GA can find the
optimal solutions for all the cases with a great convergence rate. Moreover, a compari-
son was made between the proposed method and max-min and max-product GAs, which
solve the nonlinear optimization problems subjected to the FREs defined by max-min and
max-product compositions, respectively. The results showed that the proposed method
finds better solutions compared with the solutions obtained by the other algorithms. As
future works, we aim at testing our algorithm in other type of nonlinear optimization
problems whose constraints are defined as FRE or FRI with other well-known t-norms.
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Appendix A

Test Problem A.1:

f(x) = (x1 + 10x2)
2 + 5(x3 − x4)2

+ (x2 − 2x3)
4 + 10(x1 − x4)4

bT =
[
0.8983 0.6010 0.5193

]
A =

0.1288 0.2334 0.8095 0.9629
0.8298 0.7879 0.4601 0.4487
0.8394 0.2564 0.7787 0.3144


Test Problem A.2:

f(x) = x1 − x2 − x3 − x1x3
+ x1x4 + x2x3 − x2x4 + x4x5,

bT =
[
0.7786 0.2373 0.3468 0.3616

]
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A =


0.1311 0.7461 0.4680 0.5989 0.8454
0.0854 0.8333 0.3092 0.3097 0.1570
0.5236 0.4872 0.2388 0.2346 0.2496
0.1359 1.0607 0.5913 0.4695 0.3187


Test Problem A.3:

f(x) = x1x2 − Ln(1 + x3x4x5)− x6,

bT =
[
0.4424 0.8200 0.3454 0.9695

]

A =


0.5187 0.9324 0.0428 0.8363 0.1606 0.0713
0.4106 0.3265 0.6434 0.2242 0.8498 0.6213
0.2936 0.8862 0.5514 0.9045 0.0719 0.3287
0.0001 0.0511 1.1752 0.8503 0.2803 0.9732


Test Problem A.4:

f(x) = x1 + 2x2 + 4x5 + ex1x4−x6 ,

bT =
[
0.3489 0.1305 0.5058 0.5365 0.3639

]

A =


0.2948 0.8676 1.4230 0.0843 0.1903 0.0870
0.9011 0.3266 0.9803 0.2140 0.0547 0.0546
0.5668 0.9460 1.9417 0.1000 0.5289 0.1163
0.7226 0.1070 1.4073 0.8179 0.1933 0.3163
0.0822 0.5846 1.0050 0.5441 0.0961 0.3857


Test Problem A.5:

f(x) =
∑6

k=1[100(xk+1 − x2k)2 + (1− xk)2],

bT =
[
0.5781 0.1572 0.1360 0.7476 0.5925

]

A =


0.0421 0.7560 0.3016 0.1842 1.0425 0.3630 0.1994
0.1184 0.0399 0.5884 0.0745 0.7625 0.2001 0.1282
0.1039 0.1807 0.4807 0.7209 0.4503 0.1642 0.5829
0.8212 0.2989 0.2370 1.3179 0.3754 0.3298 0.6610
0.2137 0.0123 0.4783 1.7088 0.6534 0.7482 0.0643


Test Problem A.6:
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f(x) = −0.5(x1x4 − x2x3 + x2x6
− x5x6 + x5x4 − x6x7),

bT =
[
0.9716 0.8143 0.4050 0.1165 0.5972 0.4759

]

A =


0.3286 0.3507 0.4794 0.0395 0.7495 0.9996 0.0173
0.8101 0.4893 1.1555 1.2660 0.2951 0.1741 0.8708
0.4898 0.3535 0.3386 0.7532 0.9118 0.2006 0.2162
0.6246 0.0600 0.0228 0.1334 0.6390 0.0472 0.1037
0.3862 0.3641 0.9550 0.4229 0.1560 0.1882 0.0257
1.3701 0.5373 0.2954 0.7454 0.0579 0.3314 0.0006


Test Problem A.7:

f(x) = ex1x2x3x4x5

− 0.5(x31 + x32 + x36 + 1)2 + 2x7x8,

bT =
[
0.3364 0.4433 0.7286 0.5127 0.9257 0.9494

]

A =


0.1615 0.4527 0.5684 0.1564 0.3201 0.7808 0.4241 0.2079
0.0237 0.5623 0.3919 0.2685 0.1053 0.1429 0.5663 0.1432
0.4408 0.3131 0.6791 0.4859 0.9134 0.2937 0.0327 0.2587
0.0018 0.7938 0.3462 0.1977 0.3626 0.5397 0.2654 0.5528
0.9349 0.2952 0.4759 0.6082 0.7751 0.2702 0.7719 0.5722
0.0349 0.8649 1.2400 0.9739 0.1920 0.5756 1.0667 0.5092


Test Problem A.8:

f(x) = (x1 − 1)2 + (x7 − 1)2

+ 10
∑7

k=1(10− k)(x2k − xk+1)
2,

bT =
[
0.9318 0.6864 0.2702 0.0977 0.6027 0.7675 0.0973

]

A =



0.9507 0.1824 0.6716 0.3393 0.4980 0.0681 0.3028 0.8800
0.4767 0.3615 0.2162 0.6696 0.9345 0.3157 0.7011 0.7735
0.2093 0.0504 0.2526 0.5754 0.0571 0.4407 0.3550 0.2951
0.0847 0.1121 0.0232 0.2573 0.0123 0.1752 0.1558 0.1141
0.5341 0.3756 0.6194 0.7273 0.3675 0.9322 0.5919 0.6010
0.4135 0.7710 0.7931 0.7238 0.1424 1.1018 0.1037 0.7139
0.0202 0.0266 0.0358 0.9970 0.2024 0.1484 0.1082 0.0085


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Appendix B

Test Problem B.1:

f(x) = (x1 + 10x2)
2 + 5(x3 − x4)2

+ (x2 − 2x3)
4 + 10(x1 − x4)4

bT =
[
0.2077 0.4709 0.8443

]
A =

0.4302 0.4464 0.0741 0.0751
0.1848 0.1603 0.4628 0.5929
0.9049 0.1707 0.8746 0.4210


Test Problem B.2:

f(x) = x1 − x2 − x3 − x1x3
+ x1x4 + x2x3 − x2x4,

bT =
[
0.4228 0.9427 0.9831

]
A =

0.1280 0.7390 0.2852 0.2409
0.9991 0.7011 0.1688 0.9667
0.1711 0.6663 0.9882 0.6981


Test Problem B.3:

f(x) = x1x2x3x4x5,

bT =
[
0.6714 0.5201 0.1500

]
A =

0.4424 0.3592 0.6834 0.6329 0.9150
0.6878 0.7363 0.7040 0.6869 0.2002
0.6482 0.3947 0.4423 0.0769 0.0175


Test Problem B.4:

f(x) = x1 + 2x2 + 4x5 + ex1x4 ,

bT =
[
0.6855 0.5306 0.5975 0.2992

]
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A =


0.1025 0.7780 0.3175 0.9357 0.7425
0.0163 0.2634 0.5542 0.4579 0.9213
0.7325 0.2481 0.8753 0.2405 0.4193
0.1260 0.2187 0.6164 0.7639 0.2962



Test Problem B.5:

f(x) =
∑6

k=1[100(xk+1 − x2k)2 + (1− xk)2],

bT =
[
0.5846 0.8277 0.4425 0.8266

]

A =


0.1187 0.4147 0.8051 0.3876 0.3643 0.7031
0.4761 0.8606 0.4514 0.0311 0.5323 0.1964
0.6618 0.2715 0.3826 0.0302 0.7117 0.1784
0.9081 0.1459 0.7896 0.9440 0.8715 0.1265


Test Problem B.6:

f(x) = −0.5(x1x4 − x2x3 + x2x6
− x5x6 + x5x4 − x6x7),

bT =
[
0.9879 0.6321 0.8082 0.6650

]

A =


0.0832 0.3312 0.4580 0.7001 0.8287 0.9978 0.1876
0.3904 0.4277 0.2302 0.1373 0.4850 0.3495 0.8831
0.2393 0.8619 0.2734 0.8265 0.6598 0.4328 0.9315
0.4863 0.3787 0.6748 0.9301 0.4564 0.5893 0.8943


Test Problem B.7:

f(x) = ex1x2x3x4x5

− 0.5(x31 + x32 + x36 + 1)2,

bT =
[
0.9521 0.0309 0.8627 0.8343 0.6290

]

A =


0.9869 0.0805 0.8373 0.1417 0.9988 0.6320
0.0139 0.0169 0.0182 0.4379 0.0295 0.5095
0.2497 0.6914 0.8961 0.3504 0.8225 0.2433
0.9691 0.6170 0.5921 0.4785 0.5994 0.5714
0.6197 0.6298 0.2372 0.5874 0.2560 0.9817


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Test Problem B.8:

f(x) = (x1 − 1)2 + (x7 − 1)2

+ 10
∑6

k=1(10− k)(x2k − xk+1)
2,

bT =
[
0.7840 0.4648 0.8864 0.8352 0.9839

]

A =


0.8522 0.2376 0.3586 0.7260 0.8891 0.2771 0.1316
0.4673 0.8176 0.1173 0.5350 0.1426 0.0020 0.2892
0.9707 0.4058 0.7248 0.1826 0.6193 0.8108 0.9630
0.8412 0.4663 0.7011 0.1124 0.6848 0.9434 0.4656
0.0785 0.9515 0.9997 0.0028 0.4982 0.6384 0.3852


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