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Abstract continued:

decreasing functions of the parameter. The resolution of the feasible region of the problem

is firstly investigated when it is defined with max-Hamacher composition. Based on

some theoretical results, a necessary and sufficient condition and three other necessary

conditions are derived for determining the feasibility. Moreover, in order to simplify

the problem, some procedures are presented. It is shown that a lower bound is always

attainable for the optimal objective value. Also, it is proved that the optimal solution of

the problem is always resulted from the unique maximum solution and a minimal solution

of the feasible region. A method is proposed to generate random feasible max-Hamacher

fuzzy relational inequalities and an algorithm is presented to solve the problem. Finally,

an example is described to illustrate these algorithms.

1 Introduction

In this paper, we study the following linear problem in which the constraints are formed

as the intersection of two fuzzy systems of relational inequalities defined by Hamacher

family of t-norms:

min Z = cTx

Aϕx ≤ b1

Dϕx ≥ b2

x ∈ [0, 1]n

(1)

where I1 = {1, 2, ..,m1}, I2 = {m1 + 1,m1 + 2, ..,m1 + m2} and J = {1, 2, .., n}. A =

(aij)m1×n and D = (dij)m2×n are fuzzy matrices such that 0 ≤ aij ≤ 1 (∀i ∈ I1 and

∀j ∈ J) and 0 ≤ dij ≤ 1 (∀i ∈ I2 and ∀j ∈ J). b1 = (b1i )m1×1 is an m1–dimensional fuzzy

vector in [0, 1]m1 (i.e., 0≤ b1i ≤ 1,∀i ∈ I1) , b2 = (b2i )m2×1 is an m2–dimensional fuzzy

vector in [0, 1]m2 (i.e., 0≤ b2i ≤ 1,∀i ∈ I2), and c is a vector in Rn.Moreover, “ϕ ” is the
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max-Hamacher composition, that is,

ϕ (x, y) = TαH(x, y) =

 0 α = x = y = 0

xy
α+(1−α)(x+y−xy) otherwise

in which α ≥ 0. By these notations, problem (1) can be also expressed as follows:

min Z = cTx

max
j∈J
{TαH (aij, xj)} ≤ b1i , i ∈ I1

max
j∈J
{TαH (dij, xj)} ≥ b2i , i ∈ I2

x ∈ [0, 1]n

(2)

Especially, by setting A = D and b1 = b2, the above problem is converted to max-

Hamacher fuzzy relational equations. As mentioned, Members of the Hamacher family of

t-norms are decreasing functions of the parameter α and each member of this family is

actually a strict t-norm [7].

The theory of fuzzy relational equations (FRE) as a generalized version of Boolean relation

equations was firstly proposed by Sanchez and applied in problems of the medical diagnosis

[40]. Nowadays, it is well known that many issues associated with a body knowledge can be

treated as FRE problems [36]. In addition to the preceding applications, FRE theory has

been applied in many fields, including fuzzy control, discrete dynamic systems, prediction

of fuzzy systems, fuzzy decision making, fuzzy pattern recognition, fuzzy clustering, image

compression and reconstruction, fuzzy information retrieval, and so on. Generally, when

inference rules and their consequences are known, the problem of determining antecedents

is reduced to solving an FRE [34]. We refer the reader to [26] in which the authors provided

a good overview of FRE and classified basic FREs by investigating the relationship among

operators used in the definition of fuzzy relational equations.

The solvability determination and the finding of solutions set are the primary (and the

most fundamental) subject concerning with FRE problems. Di Nola et al. proved that

the solution set of FRE (if it is nonempty) defined by continuous max-t-norm composition
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is often a non-convex set that is completely determined by one maximum solution and

a finite number of minimal solutions [5]. This non-convexity property is one of two

bottlenecks making major contribution to the increase of complexity in problems that are

related to FRE, especially in the optimization problems subjected to a system of fuzzy

relations. The other bottleneck is concerned with detecting the minimal solutions for

FREs. Chen and Wang [2] presented an algorithm for obtaining the logical representation

of all minimal solutions and deduced that a polynomial-time algorithm to find all minimal

solutions of FRE (with max-min composition) may not exist. Also, Markovskii showed

that solving max-product FRE is closely related to the covering problem which is an

NP-hard problem [33]. In fact, the same result holds true for a more general t-norms

instead of the minimum and product operators [2, 3, 29, 30]. Over the last decades, the

solvability of FRE defined with different max-t compositions have been investigated by

many researchers [35, 37, 38, 41, 43, 44, 46, 49, 52] . Moreover, some researchers introduced

and improved theoretical aspects and applications of fuzzy relational inequalities (FRI)

[13, 15, 16, 22, 27, 51]. Li and Yang [27] studied a FRI with addition-min composition

and presented an algorithm to search for minimal solutions. They applied FRI to meet

a data transmission mechanism in a BitTorrent-like Peer-to-Peer file sharing systems.

Ghodousian and Khorram [13] focused on the algebraic structure of two fuzzy relational

inequalities Aϕx ≤ b1and Dϕx ≥ b2, and studied a mixed fuzzy system formed by the

two preceding FRIs, where ϕis an operator with (closed) convex solutions. Generally, if

ϕis an operator with closed convex solutions, the solutions set of Dϕx ≥ b2 is determined

by a finite number of maximal solutions as well as the same number of minimal ones. In

particular, if ϕis a continuous non-decreasing function (specially, a continuous t-norm),

all maximal solutions overlap each other [13]. Guo et al. [15] investigated a kind of

FRI problems and the relationship between minimal solutions and FRI paths. They also

introduced some rules for reducing the problems and presented an algorithm for solving

optimization problems with FRI constraints.

The problem of optimization subject to FRE and FRI is one of the most interesting and

on-going research topic among the problems related to FRE and FRI theory [1, 8, 11–23,
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28, 31, 39, 42, 47, 51]. Fang and Li [9] converted a linear optimization problem subjected

to FRE constraints with max-min operation into an integer programming problem and

solved it by branch and bound method using jump-tracking technique. In [24] an ap-

plication of optimizing the linear objective with max-min composition was employed for

the streaming media provider seeking a minimum cost while fulfilling the requirements

assumed by a three-tier framework. Wu et al. [45] improved the method used by Fang

and Li, by decreasing the search domain and presented a simplification process by three

rules resulted from a necessary condition. Chang and Shieh [1] presented new theoretical

results concerning the linear optimization problem constrained by fuzzy max–min rela-

tion equations. They improved an upper bound on the optimal objective value, some

rules for simplifying the problem and proposed a rule for reducing the solution tree.

The topic of the linear optimization problem was also investigated with max-product op-

eration [11, 18, 32]. Loetamonphong and Fang defined two sub-problems by separating

negative and non-negative coefficients in the objective function and then obtained the

optimal solution by combining those of the two sub-problems [32]. The maximum solu-

tion of FRE is the optimum of the sub-problem having negative coefficients. Another

sub-problem was converted into a binary programming problem and solved by branch

and bound method. Also, in [18] and [11] some necessary conditions of the feasibility and

simplification techniques were presented for solving FRE with max-product composition.

Moreover, some generalizations of the linear optimization with respect to FRE have been

studied with the replacement of max-min and max-product compositions with different

fuzzy compositions such as max-average composition [21,47], max-star composition [14,23]

and max-t-norm composition [19,28,42]. For example, Li and Fang [28] solved the linear

optimization problem subjected to a system of sup-t equations by reducing it to a 0-1 inte-

ger optimization problem. In [19] a method was presented for solving linear optimization

problems with the max-Archimedean t-norm fuzzy relation equation constraint. In [42],

the authors solved the same problem whit continuous Archimedean t-norm and used the

covering problem rather than the branch-and-bound methods for obtaining some optimal

variables.
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Recently, many interesting generalizations of the linear programming subject to a system

of fuzzy relations have been introduced and developed based on composite operations used

in FRE, fuzzy relations used in the definition of the constraints, some developments on

the objective function of the problems and other ideas [6, 10, 16, 25, 31, 48]. For example,

Wu et al. [48] represented an efficient method to optimize a linear fractional programming

problem under FRE with max-Archimedean t-norm composition. Dempe and Ruziyeva

[4] generalized the fuzzy linear optimization problem by considering fuzzy coefficients.

Dubey et al. studied linear programming problems involving interval uncertainty modeled

using intuitionistic fuzzy set [6]. The linear optimization of bipolar FRE was studied by

some researchers where FRE defined with max-min composition [10] and max-Lukasiewicz

composition [25, 31]. In [31], the authors presented an algorithm without translating the

original problem into a 0-1 integer linear problem.

The optimization problem subjected to various versions of FRI could be found in the

literature as well [12, 13, 15, 16, 22, 50, 51]. Yang [50] applied the pseudo-minimal index

algorithm for solving the minimization of linear objective function subject to FRI with

addition-min composition. Xiao et al. [51] introduced the latticized linear programming

problem subject to max-product fuzzy relation inequalities with application in the opti-

mization management model of wireless communication emission base stations. Ghodou-

sian and Khorram [12] introduced a system of fuzzy relational inequalities with fuzzy

constraints (FRI-FC) in which the constraints were defined with max-min composition.

They used this fuzzy system to convincingly optimize the educational quality of a school

(with minimum cost) to be selected by parents.

The remainder of the paper is organized as follows. In section 2, some preliminary no-

tions and definitions and three necessary conditions for the feasibility of problem (1) are

presented. In section 3, the feasible region of problem (1) is determined as a union of the

finite number of closed convex intervals. Two simplification operations are introduced to

accelerate the resolution of the problem. Moreover, a necessary and sufficient condition

based on the simplification operations is presented to realize the feasibility of the prob-

lem. Problem (1) is resolved by optimization of the linear objective function considered
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in section 4. In addition, the existence of an optimal solution is proved if problem (1) is

not empty. The preceding results are summarized as an algorithm and, finally in section

5 an example is described to illustrate. Additionally, in section 5, a method is proposed

to generate feasible test problems for problem (1).

2 Basic properties of max-Hamacher FRE

This section describes the basic definitions and structural properties concerning problem

(1) that are used throughout the paper. For the sake of simplicity, let STαH (A, b1) and

STαH (D, b2) denote the feasible solutions sets of inequalities Aϕx ≤ b1 and

Dϕx ≥ b2, respectively, that is, STαH (A, b1) = {x ∈ [0, 1]n : Aϕx ≤ b1} and STαH (D, b2) =

{x ∈ [0, 1]n : Dϕx ≥ b2}. Also, let STαH (A,D, b1, b2) denote the feasible solutions set of

problem (1). Based on the foregoing notations, it is clear that

STαH (A,D, b1, b2) = STαH (A, b1)
⋂
STαH (D, b2).

Definition 1. For each i ∈ I1 and each j ∈ J , we define

STαH (aij, b
1
i ) = {x ∈ [0, 1] : TαH(aij, x) ≤ b1i }. Similarly, for each i ∈ I2 and each j ∈ J ,

STαH (dij, b
2
i ) = {x ∈ [0, 1] : TαH(dij, x) ≥ b2i }. Furthermore, the notations

J1
i =

{
j ∈ J : STαH (aij, b

1
i ) 6= ∅

}
, ∀i ∈ I1, and J2

i =
{
j ∈ J : STαH (dij, b

2
i ) 6= ∅

}
, ∀i ∈ I2,

are used in the text.

Remark 1. From the least-upper-bound property of R, it is clear that

inf
x∈[0,1]

{
STαH (aij, b

1
i )
}

and sup
x∈[0,1]

{
STαH (aij, b

1
i )
}

exist, if STαH (aij, b
1
i ) 6= ∅.

Moreover, since TαH is a t-norm, its monotonicity property implies that

STαH (aij, b
1
i ) is actually a connected subset of [0, 1]. Additionally, due to the continuity of

TαH , we must have inf
x∈[0,1]

{
STαH (aij, b

1
i )
}

= min
x∈[0,1]

{
STαH (aij, b

1
i )
}

and sup
x∈[0,1]

{
STαH (aij, b

1
i )
}

=

max
x∈[0,1]

{
STαH (aij, b

1
i )
}

. Therefore,

STαH (aij, b
1
i ) =

[
min
x∈[0,1]

{
STαH (aij, b

1
i )
}
, max
x∈[0,1]

{
STαH (aij, b

1
i )
}]

, i.e., STαH (aij, b
1
i ) is a closed
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sub-interval of [0, 1]. By the similar argument, if STαH (dij, b
2
i ) 6= ∅, then we have STαH (dij, b

2
i ) =[

min
x∈[0,1]

{
STαH (dij, b

2
i )
}
, max
x∈[0,1]

{
STαH (dij, b

2
i )
}]
⊆ [0, 1].

From Definition 1 and Remark 1, the following two corollaries are resulted.

Corollary 1. For each i ∈ I1 and each j ∈ J , STαH (aij, b
1
i ) 6= ∅. Also, STαH (aij, b

1
i ) =[

0, max
x∈[0,1]

{
STαH (aij, b

1
i )
}]

.

Proof. Since TαH (aij, 0) = 0, we have TαH (aij, 0) ≤ b1i , ∀i ∈ I1 and ∀j ∈ J . There-

fore, 0 ∈ STαH (aij, b
1
i ) and then min

x∈[0,1]

{
STαH (aij, b

1
i )
}

= 0, ∀i ∈ I1 and ∀j ∈ J . Now,

by noting Remark 1 we also have, STαH (aij, b
1
i ) =

[
0, max

x∈[0,1]

{
STαH (aij, b

1
i )
}]

, ∀i ∈ I1 and

∀j ∈ J . This completes the proof.

Corollary 2. If STαH (dij, b
2
i ) 6= ∅ for some i ∈ I2 and j ∈ J , then STαH (dij, b

2
i ) =[

min
x∈[0,1]

{
STαH (dij, b

2
i )
}
, 1

]
.

Proof. Noting Remark 1, it is sufficient to show that 1 ∈ STαH (dij, b
2
i ). Suppose that

STαH (dij, b
2
i ) 6= ∅. Therefore, there exists some x ∈ [0, 1] such that TαH (dij, x) ≥ b2i .

Now, the monotonicity property of TαH implies TαH (dij, 1) ≥ TαH (dij, x) ≥ b2i that means

1 ∈ STαH (dij, b
2
i ).

Remark 2. Corollary 1 together with Definition 1 implies J1
i = J , ∀i ∈ I1.

Definition 2. For each i ∈ I1 and each j ∈ J , we define

Uij =

 1 aij < b1i
[α+(1−α)aij ] b1i

aij−(1−α)(1−aij)b1i
aij ≥ b1i
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Also, for each i ∈ I2 and each j ∈ J , we set

Lij =


+∞ dij < b2i

0 b2i = 0 , dij ≥ b2i
[α+(1−α)dij ] b2i

dij−(1−α)(1−dij)b2i
b2i 6= 0 , dij ≥ b2i

Remark 3. From Definition 2, if aij = b1i , then Uij = 1. Also, we have Lij = 1, if

dij = b2i 6= 0, and Lij = 0 if dij > b2i = 0.

Lemma 1 below shows that Uij and Lij stated in Definition 2, determine the maximum

and minimum solutions of sets STαH (aij, b
1
i ) (i ∈ I1) and STαH (dij, b

2
i )

(i ∈ I2), respectively.

Lemma 1. (a) Uij = max
x∈[0,1]

{
STαH (aij, b

1
i )
}

, ∀i ∈ I1 and ∀j ∈ J . (b) If STαH (dij, b
2
i ) 6= ∅ for

some i ∈ I2 and j ∈ J , then Lij = min
x∈[0,1]

{
STαH (dij, b

2
i )
}

.

Proof. (a) Let i ∈ I1,j ∈ J and x ∈ STαH (aij, b
1
i ). Firstly, suppose that aij ≤ b1i . In this

case, Uij = 1 from Definition 2 and Remark 3. Since x∈ STαH (aij, b
1
i ), then x∈ [0, 1]and

therefore x ≤ Uij. Hence, it is sufficient to show that Uij ∈ STαH (aij, b
1
i ). But, the identity

law of TαH implies TαH (aij, Uij) = TαH (aij, 1) = aij ≤ b1i . Therefore, Uij ∈ STαH (aij, b
1
i ) and

x ≤ Uij (∀x ∈ STαH (aij, b
1
i )) that mean Uij = max

x∈[0,1]

{
STαH (aij, b

1
i )
}

. Otherwise, suppose

that aij > b1i . In this case, Uij =
[α+(1−α)aij ] b1i

aij−(1−α)(1−aij)b1i
. Since TαH (aij, Uij) = b1i and TαH has the

monotonicity property, we have Uij ∈ STαH (aij, b
1
i ) and TαH (aij, x) ≥ b1i for each x > Uij.

Therefore, Uij must be the maximum of the set STαH (aij, b
1
i ).

(b) Let i ∈ I2,j ∈ J and x ∈ STαH (dij, b
2
i ). Since STαH (dij, b

2
i ) 6= ∅, then we must have dij ≥

b2i (because, if dij < b2i , then TαH(dij, x) ≤ TαH(dij, 1) = dij < b2i , ∀x ∈ [0, 1]). If b2i = 0,then

Lij = 0 from Definition 2 and Remark 3. Therefore, TαH (dij, Lij) = TαH (dij, 0) = 0 = b2i and

obviously Lij = 0 ≤ x, ∀x ∈ STαH (dij, b
2
i ). Consequently, Lij = min

x∈[0,1]

{
STαH (dij, b

2
i )
}

.

Otherwise, suppose that b2i 6= 0. In this case, we have Lij =
[α+(1−α)dij ] b2i

dij−(1−α)(1−dij)b2i
. Again,

since TαH (dij, Lij) = b2i and TαH has the monotonicity property, we have Lij ∈ STαH (dij, b
2
i )

and TαH (dij, x) ≤ b2i for each x < Lij. Therefore, Lij must be the minimum of the set

STαH (dij, b
2
i ). This completes the proof.
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Lemma 1 together with the corollaries 1 and 2 results in the following consequence.

Corollary 3. (a) For each i ∈ I1 and j ∈ J , STαH (aij, b
1
i ) = [0 , Uij]. (b) If STα

H
(dij ,b2i ) 6=∅ for

some i ∈ I2 and j ∈ J , then STαH (dij, b
2
i ) = [Lij, 1].

Definition 3. For each i ∈ I1, let STαH (ai, b
1
i ) ={

x ∈ [0, 1]n :
n

max
j=1
{TαH(aij, xj)} ≤ b1i

}
. Similarly, for each i ∈ I2, we define STαH (di, b

2
i ) ={

x ∈ [0, 1]n :
n

max
j=1
{TαH(dij, xj)} ≥ b2i

}
.

According to Definition 3 and the constraints stated in (2), sets STαH (ai, b
1
i ) and STαH (di, b

2
i )

actually denote the feasible solutions sets of the i’th inequality max
j∈J
{TαH (aij, xj)} ≤ b1i

(i ∈ I1) and max
j∈J
{TαH (dij, xj)} ≥ b2i (i ∈ I2) of problem (1), respectively. Based on (2) and

Definitions 1 and 3, it can be easily concluded that for a fixed i ∈ I1, STαH (ai, b
1
i ) 6= ∅ iff

STαH (ai, b
1
i ) 6= ∅ , ∀j ∈ J . On the other hand, by Corollary 1 we know that STαH (ai, b

1
i ) 6= ∅

, ∀i ∈ I1 and ∀j ∈ J . As a result, STαH (ai, b
1
i ) 6= ∅ for each i ∈ I1. However, in contrast

to STαH (ai, b
1
i ), set STαH (di, b

2
i ) may be empty. Actually, for a fixed i ∈ I2, STαH (di, b

2
i ) is

nonempty if and only if STαH (di, b
2
i ) is nonempty for at least some j ∈ J . Additionally, for

each i ∈ I2 and j ∈ J we have STαH (dij, b
2
i ) 6= ∅if and only if dij ≥ b2i . These results have

been summarized in the following lemma. Part (b) of the lemma gives a necessary and

sufficient condition for the feasibility of set STαH (di, b
2
i ) (∀i ∈ I2). It is to be noted that

the lemma 2 (part (b)) also provides a necessary condition for problem (1).

Lemma 2. (a) STαH (ai, b
1
i ) 6= ∅, ∀i ∈ I1. (b) For a fixed i ∈ I2, STαH (di, b

2
i ) 6= ∅ iff⋃n

j=1 STαH (dij, b
2
i ) 6= ∅. Additionally, for each i ∈ I2 and j ∈ J , STαH (dij, b

2
i ) 6= ∅iff dij ≥ b2i .

Definition 4. For each i ∈ I2 and j ∈ J2
i , we define STαH (di, b

2
i , j) = [0, 1]× ...× [0, 1]×

[Lij, 1]× [0, 1]× ...× [0, 1], where [Lij, 1] is in the j’th position.

In the following lemma, the feasible solutions set of the i’th fuzzy relational inequality is

characterized.

Lemma 3. (a) STαH (ai, b
1
i ) = [0 , Ui1] × [0 , Ui2] × ... × [0 , Uin], ∀i ∈ I1. (b) STαH (di, b

2
i ) =⋃

j∈J2
i
STαH (di, b

2
i , j), ∀i ∈ I2.

Proof. (a) Fix i ∈ I1 and let x ∈ STαH (ai, b
1
i ). By Definition 3, xj ∈ [0, 1] for each
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j ∈ J , and
n

max
j=1
{TαH(aij, xj)} ≤ b1i . The latter inequality implies TαH(aij, xj) ≤ b1i , ∀j ∈ J .

Thus, by Definition 1 and Corollary 3 we have xj ∈ STαH (aij, b
1
i ) = [0 , Uij], ∀j ∈ J ,

which necessitates x ∈ [0 , Ui1] × [0 , Ui2] × ... × [0 , Uin]. Conversely, suppose that x ∈

[0 , Ui1] × [0 , Ui2] × ... × [0 , Uin]. Then, by Corollary 3, xj ∈ [0 , Uij] = STαH (aij, b
1
i ),

∀j ∈ J , which implies xj ∈ [0 , 1] and TαH(aij, xj) ≤ b1i , ∀j ∈ J . Thus, x ∈ [0 , 1]n and
n

max
j=1
{TαH(aij, xj)} ≤ b1i . Therefore, by Definition 3, x ∈ STαH (ai, b

1
i ).

(b) Fix i ∈ I2 and let x ∈ STαH (di, b
2
i ). By Definition 3, x ∈ [0 , 1]n and

n
max
j=1
{TαH(dij, xj)} ≥

b2i . Then there exists some j0 ∈ J2
i such that TαH(dij0 , xj0) ≥ b2i . Therefore, from Definition

1 and Corollary 3, it is concluded that xj0 ∈ STαH (dij0 , b
2
i ) = [Lij0 , 1]. Now, from Definition

4 we have x ∈ STαH (di, b
2
i , j0). Thus, x ∈

⋃
j∈J2

i
STαH (di, b

2
i , j). Conversely, suppose that

x ∈
⋃
j∈J2

i
STαH (di, b

2
i , j). Then there exists some j0 ∈ J2

i such that x ∈ STαH (di, b
2
i , j0).

Therefore, by Definition 4, x ∈ [0 , 1]n and xj0 ∈ STαH (dij0 , b
2
i ) = [Lij0 , 1], which implies

TαH(dij0 , xj0) ≥ b2i . Thus, x ∈ [0 , 1]n and
n

max
j=1
{TαH(dij, xj)} ≥ b2i , which requires x ∈

STαH (di, b
2
i ).

Definition 5. Let

X(i) = [Ui1 , Ui2, ... , Uin], ∀i ∈ I1. Also, let X(i, j) = [X(i, j)1 , X(i, j)2, ... , X(i, j)n],

∀i ∈ I2 and ∀j ∈ J2
i , where

X(i, j)k =

 Lij k = j

0 k 6= j

Lemma 3 together with Definitions 4 and 5, results in Theorem 1, which completely

determines the feasible region for the i’th relational inequality.

Theorem 1. .(a) STαH (ai, b
1
i ) = [0 , X(i)], ∀i ∈ I1. (b) STαH (di, b

2
i ) =

⋃
j∈J2

i
[X(i, j) ,1],

∀i ∈ I2, where 0 and 1 are n–dimensional vectors with each component equal to zero and

one, respectively.

Theorem 1 gives the upper and lower bounds for the feasible solutions set of the i’th

relational inequality. Actually, for each i ∈ I1, vectors 0 and X(i) are the unique minimum

and the unique maximum of set STαH (ai, b
1
i ). In addition, for each i ∈ I2, set STαH (di, b

2
i )

has the unique maximum (i.e., vector 1), but the finite number of minimal solutions

X(i, j)(∀j ∈ J2
i ). Furthermore, part (b) of Theorem 1 presents another feasible necessary
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condition for problem (1) as stated in the following corollary.

Corollary 4. If STαH (A,D, b1, b2) 6= ∅, then 1 ∈ STαH (di, b
2
i ), ∀i ∈ I2 (i.e., 1 ∈

⋂
i∈I2 STαH (di, b

2
i ) =

STαH (D, b2)).

Proof. Let STαH (A,D, b1, b2) 6= ∅. Then, STαH (D, b2) 6= ∅, and therefore, STαH (di, b
2
i ) 6= ∅,

∀i ∈ I2. Now, Theorem 1 (part (b)) implies 1 ∈ STαH (di, b
2
i ), ∀i ∈ I2.

Lemma 4 describes the shape of the feasible solutions set for the fuzzy relational inequal-

ities Aϕx ≤ b1 and Dϕx ≥ b2, separately.

Lemma 4. (a) STαH (A, b1) =
⋂
i∈I1 [0 , Ui1] ×

⋂
i∈I1 [0 , Ui2] × ... ×

⋂
i∈I1 [0 , Uin]. (b)

STαH (D, b2) =
⋂
i∈I2
⋃
j∈J2

i
STαH (di, b

2
i , j).

Proof. The proof is obtained from Lemma 3 and equations STαH (A, b1) =
⋂
i∈I1 STαH (ai, b

1
i )

and STαH (D, b2) =
⋂
i∈I2 STαH (di, b

2
i ).

Definition 6. Let e : I2 → J2
i so that e(i) = j ∈ J2

i , ∀i ∈ I2, and let ED be the set of all

vectors e. For the sake of convenience, we represent each e ∈ ED as an m2–dimensional

vector e = [j1, j2, ..., jm2 ] in which jk = e(k), k = 1, 2, ...,m2.

Definition 7. Let e = [j1, j2, ..., jm2 ] ∈ ED. We define X = min
i∈I1

{
X(i)

}
, that is, Xj =

min
i∈I1

{
X(i)j

}
, ∀j ∈ J . Moreover, let X(e) = [X(e)1, X(e)2, ..., X(e)n], where X(e)j =

max
i∈I2
{X(i, e(i))j} = max

i∈I2
{X(i, ji)j}, ∀j ∈ J .

Based on Theorem 1 and the above definition, we have the following theorem character-

izing the feasible regions of the general inequalities Aϕx ≤ b1 and Dϕx ≥ b2 in the most

familiar way.

Theorem 2. (a) STαH (A, b1) = [0 , X], ∀i ∈ I1. (b) STαH (D, b2) =
⋃
e∈ED [X(e),1].

Proof. (a) By considering Definitions 5 and 7, for each j ∈ J we have
⋂
i∈I1 [0 , Uij] =[

0 ,min
i∈I1
{Uij}

]
=

[
0 ,min

i∈I1

{
X(i)j

}]
= [0 , Xj]. Therefore, part (a) of lemma 4 can be

rewritten as STαH (A, b1) =
[
0 , X1

]
×
[
0 , X2

]
× ...×

[
0 , Xn

]
= [0, X], where 0 is the zero

vector. This proves part (a).

(b) From part (b) of lemma 4, STαH (D, b2) =
⋂
i∈I2
⋃
j∈J2

i
STαH (di, b

2
i , j). Now, by Definitions
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4 and 5, we have

STαH (D, b2) =
⋂
i∈I2

⋃
j∈J2

i

[0, 1]× ...× [0, 1]× [Lij, 1]× [0, 1]× ...× [0, 1] =
⋂
i∈I2

⋃
j∈J2

i

[X(i, j),1].

Therefore, from Definitions 6 and 7 we have

STαH (D, b2) =
⋂
i∈I2
⋃
e∈ED [X(i, e(i)),1] =

⋃
e∈ED

⋂
i∈I2 [X(i, e(i)),1]

=
⋃
e∈ED

[
max
i∈I2
{X(i, e(i))} ,1

]
=
⋃
e∈ED [X(e),1]where, the last equality is resulted from

Definition 7. This completes the proof.

Corollary 5. Assume that STαH (A,D, b1, b2) 6= ∅. Then, there exists some e ∈ ED such

that [0 , X]
⋂

[X(e),1] 6= ∅.

Corollary 6. Assume that STαH (A,D, b1, b2) 6= ∅. Then, X ∈ STαH (D, b2).

Proof. Let STαH (A,D, b1, b2) 6= ∅. By Corollary 5, [0 , X]
⋂

[X(e′),1] 6= ∅ for some

e′ ∈ ED. Thus, X ∈ [X(e′),1] that means X ∈
⋃
e∈ED [X(e),1]. Therefore, from Theorem

2 (part (b)), X ∈ STαH (D, b2).

3 Feasible solutions set and simplification operations

In this section, two operations are presented to simplify the matrices A and D, and

a necessary and sufficient condition is derived to determine the feasibility of the main

problem. At first, we give a theorem in which the bounds of the feasible solutions set of

problem (1) are attained. As is shown in the following theorem, by using these bounds,

the feasible region is completely found.

Theorem 3. Suppose that STαH (A,D, b1, b2) 6= ∅. Then STαH (A,D, b1, b2) =
⋃
e∈ED [X(e), X].

Proof. Since STαH (A,D, b1, b2) = STαH (A, b1)
⋂
STαH (D, b2), then by Theorem 2, STαH (A,D, b1, b2) =

[0 , X]
⋂

(
⋃
e∈ED [X(e),1] ) and the statement is established.

In practice, there are often some components of matrices A and D, which have no effect

on the solutions to problem (1). Therefore, we can simplify the problem by changing the

values of these components to zeros. We refer the interesting reader to [13] where a brief
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review of such these processes is given. Here, we present two simplification techniques

based on the Hamacher family of t-norms.

Definition 8. If a value changing in an element, say aij, of a given fuzzy relation matrix

A has no effect on the solutions of problem (1), this value changing is said to be an

equivalence operation.

Corollary 7. Suppose that i ∈ I1 and TαH(aij0 , xj0) < bi,∀x ∈ STαH (A, b1). In this case, it

is obvious that
n

max
j=1
{TαH(aij, xj)} ≤ b1i is equivalent to

n
max
j=1
j 6=j0

{TαH(aij, xj)} ≤ b1i

, that is, “resetting aij0 to zero” has no effect on the solutions of problem (1) (since com-

ponent aij0 only appears in the i‘th constraint of problem (1). Therefore, if TαH(aij0 , xj0) <

b1i ,∀x ∈ STαH (A, b1), then “resetting aij0 to zero” is an equivalence operation.

Lemma 5 (simplification of matrix A). Suppose that matrix Ã = (ãij)m1×n is resulted

from matrix A as follows:

ãij =

 0 aij < b1i

aij aij ≥ b1i

for each i ∈ I1 and j ∈ J . Then, STαH (A, b1) = STαH (Ã, b1).

Proof. From corollary 7, it is sufficient to show that TαH(aij0 , xj0) < b1i ,∀x ∈ STαH (A, b1).

But, from the monotonicity and identity laws of TαH , we have TαH(aij0 , xj0) ≤ TαH(aij0 , 1) =

aij0 < b1i , ∀xj0 ∈ [0, 1]. Thus, TαH(aij0 , xj0) < b1i ,∀x ∈ STαH (A, b1).

Lemma 5 gives a condition to reduce the matrix A. In this lemma, Ã denote the simplified

matrix resulted from A after applying the simplification process. Based on this notation,

we define J̃1
i =

{
j ∈ J : STαH (ãij, b

1
i ) 6= ∅

}
(∀i ∈ I1) where ãij denotes (i, j)‘th component

of matrix Ã. So, from Corollary 1 and Remark 2, it is clear that J̃1
i = J1

i = J . Moreover,

since STαH (A,D, b1, b2) = STαH (A, b1)
⋂
STαH (D, b2), from Lemma 5 we can also conclude
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that

STαH (A,D, b1, b2) = STαH (Ã,D, b1, b2).

By considering a fixed vector e ∈ ED in Theorem 3, interval [X(e), X] is meaningful

iff X(e) ≤ X. Therefore, by deleting infeasible intervals [X(e), X] in which X(e) 6≤

X, the feasible solutions set of problem (1) stays unchanged. In order to remove such

infeasible intervals from the feasible region, it is sufficient to neglect vectors e generating

infeasible solutions X(e) (i.e., solutions X(e) such that X(e) 6≤ X). These considerations

lead us to introduce a new set E ′D =
{
e ∈ ED : X(e) ≤ X

}
to strengthen Theorem

3. By this new set, Theorem 3 can be written as STαH (A,D, b1, b2) =
⋃
e∈E′

D
[X(e), X], if

STαH (A,D, b1, b2) 6= ∅.

Lemma 6. Let Ij(e) = {i ∈ I2 : e(i) = j} and J(e) = {j ∈ J : Ij(e) 6= ∅}, ∀e ∈ ED.

Then,

X(e)j =


max
i∈Ij(e)

{
Li e(i)

}
j ∈ J(e)

0 j /∈ J(e)

Proof. From Definition 7, X(e)j = max
i∈I2
{X(i, e(i))j}, ∀j ∈ J . On the other hand, by

Definition 5, we have

X(i, e(i))j =

 Li e(i) j = e(i)

0 j 6= e(i)

Now, the result follows by combining these two equations.

Corollary 8. e ∈ E ′D if and only if Li e (i) ≤ Xe (i), ∀i ∈ I2.

Proof. Firstly, from the definition of set E ′D, we note that e ∈ E ′D if and only if

X(e)j ≤ Xj, ∀j ∈ J . Now, let e ∈ E ′D and by contradiction, suppose that Li0 e (i0) > Xe (i0)

for some i0 ∈ I2. So, by setting e(i0) = j0, we have j0 ∈ J(e), and therefore lemma

6 implies X(e)j0 = max
i∈Ij0 (e)

{
Li e(i)

}
≥ Li0 e (i0) > Xe (i0). Thus, X(e)j0 > Xe (i0) that

contradicts e ∈ E ′D. The converse statement is easily proved by Lemma 6.

As mentioned before, to accelerate identification of the meaningful solutions X(e), we

reduce our search to set E ′D instead of set ED. As a result from Corollary 8, we can

confine set J2
i by removing each j ∈ J2

i such that Lij > Xj before selecting the vectors
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e to construct solutions X(e). However, lemma 7 below shows that this purpose can

be accomplished by resetting some components of matrix D to zeros. Before formally

presenting the lemma, some useful notations are introduced.

Definition 9 (simplification of matrix D). Let D̃ = (d̃ij)m2×n denote a matrix resulted

from D as follows:

d̃ij =

 0 j ∈ J2
i and Lij > Xj

dij otherwise

Also, similar to Definition 1, assume that J̃2
i =

{
j ∈ J : STαH (d̃ij, b

2
i ) 6= ∅

}
(∀i ∈ I2)

where d̃ij denotes (i, j)‘th components of matrix D̃.

According to the above definition, it is easy to verify that J̃2
i ⊆ J2

i , ∀i ∈ I2. Furthermore,

the following lemma demonstrates that the infeasible solutions X(e) are not generated,

if we only consider those vectors e generated by the components of the matrix D̃, or

equivalently vectors e generated based on the set J̃2
i instead of J2

i .

Lemma 7. ED̃ = E ′D, where ED̃ is the set of all functions e : I2 → J̃2
i so that e(i) = j ∈

J̃2
i , ∀i ∈ I2.

Proof. Let e ∈ E ′D. Then, by Corollary 8, Li e (i) ≤ Xe (i), ∀i ∈ I2. Therefore, we have

d̃i e(i) = di e(i), ∀i ∈ I2, that necessitates J̃2
i = J2

i , ∀i ∈ I2. Hence, e(i) ∈ J̃2
i , ∀i ∈ I2, and

then e ∈ ED̃. Conversely, let e ∈ ED̃. Therefore, e(i) ∈ J̃2
i , ∀i ∈ I2. Since J̃2

i ⊆ J2
i ,

∀i ∈ I2, then e(i) ∈ J2
i , ∀i ∈ I2, and therefore e ∈ ED. By contradiction, suppose

that e /∈ E ′D. So, by Corollary 8, there is some i0 ∈ I2 such that Li0 e (i0) > Xe (i0).

Hence, d̃i0 e(i0) = 0 (since e(i0) ∈ J2
i0

and Li0 e (i0) > Xe (i0)) and Li0 e (i0) > 0. The latter

inequality together with Definition 2 and Remark 3 implies b2i0 > 0. But in this case,

TαH(d̃i0 e(i0), x) = TαH(0, x) = 0 < b2i0 , ∀x ∈ [0, 1], that contradicts e(i0) ∈ J2
i0

.

By Lemma 7, we always have X(e) ≤ X for each vector e, which is selected based on the

components of matrix D̃. Actually, matrix D̃ as a reduced version of matrix D, removes all

the infeasible intervals from the feasible region by neglecting those vectors e generating

the infeasible solutions X(e). Also, similar to Lemma 5 we have STαH (A,D, b1, b2) =

STαH (A, D̃, b1, b2). This result and Lemma 5 can be summarized by STαH (A,D, b1, b2) =
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STαH (Ã, D̃, b1, b2).

Definition 10. Let L = (Lij)m2×n be a matrix whose (i, j)’th component is equal to Lij.

We define the modified matrix L∗ = (L∗ij)m2×n from the matrix L as follows:

L∗ij =

 +∞ Lij > Xj

Lij otherwise

As will be shown in the following theorem, matrix L∗ is useful for deriving a necessary

and sufficient condition for the feasibility of problem (1) and accelerating identification

of the set STαH (A,D, b1, b2).

Theorem 4. STαH (A,D, b1, b2) 6= ∅ iff there exists at least some j ∈ J2
i such that

L∗ij 6= +∞, ∀i ∈ I2.

Proof. Let x ∈ STαH (A,D, b1, b2). Then, from Corollary 5, there exists some e′ ∈ ED such

that [X(e′), X] 6= ∅. Therefore, X(e′) ≤ X that implies e′ ∈ E ′D. Now, by Corollary 8, we

haveLi e′ (i) ≤ Xe′ (i), ∀i ∈ I2. Hence, by considering Definition 10, L∗i e′(i) 6= +∞ ,∀i ∈ I2.

Conversely, suppose that L∗iji 6= +∞ for some ji ∈ J2
i , ∀i ∈ I2. Then, from Definition 10

we have

Liji ≤ Xji ,∀i ∈ I2 (3)

Consider vector e′ = [j1, j2, ..., jm] ∈ ED. So, by noting Lemma 6, X(e′)ji = max
i∈Ij(e′)

{
Li e′(i)

}
=

max
i∈Ij(e′)

{Liji} , ∀i ∈ I2, and X(e′)j = 0 for each j ∈ J − {j1, j2, ..., jm}. These equations

together with (3) imply X(e′) ≤ X that means [X(e′), X] 6= ∅. Now, the result follows

from Corollary 5.

4 Optimization of the problem

According to the well-known schemes used for optimization of linear problems such as

(1) [9, 13,16,28], problem (1) is converted to the following two sub-problems:
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min Z1 =
∑n

j=1 c
+
j xj

Aϕx ≤ b1

Dϕx ≥ b2

x ∈ [0, 1]n

(4)

and

min Z2 =
∑n

j=1 c
−
j xj

Aϕx ≤ b1

Dϕx ≥ b2

x ∈ [0, 1]n

(5)

Where c+j = max{cj, 0} and c−j = min{cj, 0} for j = 1, 2, ..., n. It is easy to prove that X

is the optimal solution of (5), and the optimal solution of (4) is X(e′) for some e′ ∈ E ′D.

Theorem 5. Suppose that STαH (A,D, b1, b2) 6= ∅, and X and X(e∗) are the optimal

solutions of sub-problems (5) and (4), respectively. Then cTx∗ is the lower bound of the

optimal objective function in (1), where x∗ = [x∗1, x
∗
2, ..., x

∗
n] is defined as follows:

x∗j =

 Xj cj < 0

X(e∗)j cj ≥ 0
(6)

for j = 1, 2, ..., n.

Proof. Let x ∈ STαH (A,D, b1, b2). Then, from Theorem 3 we have x ∈
⋃
e∈ED [X(e), X].

Therefore, for each j ∈ J such that cj ≥ 0, inequality x∗j ≤ xj implies c+j x
∗
j ≤ c+j xj. In

addition, for each j ∈ J such that cj < 0, inequality x∗j ≥ xj implies c−j x
∗
j ≤ c−j xj. Hence,∑n

j=1 cjx
∗
j ≤

∑n
j=1 cjxj.

Corollary 9. Suppose that STαH (A,D, b1, b2) 6= ∅. Then, x∗ = [x∗1, x
∗
2, ..., x

∗
n] as defined

in (6), is the optimal solution of problem (1).

Proof. As in the poof of Theorem 5, cTx∗ is the lower bound of the optimal objective

function. According to the definition of vector x∗, we have X(e∗)j ≤ x∗j ≤ Xj, ∀j ∈ J ,

which implies x∗ ∈
⋃
e∈ED [X(e), X] = STαH (A,D, b1, b2).
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We now summarize the preceding discussion as an algorithm.

Algorithm 1 (solution of problem (1))

Given problem (1):

1. Compute Uij (∀i ∈ I1 and ∀j ∈ J) and Lij (∀i ∈ I2 and ∀j ∈ J) by Definition 2.

2. If 1 ∈ STαH (D, b2), then continue; otherwise, stop, the problem is infeasible (Corollary

4).

3. Compute vectors X(i) (∀i ∈ I1) from Definition 5, and then vector X from Definition

7.

4. If X ∈ STαH (D, b2), then continue; otherwise, stop, the problem is infeasible (Corollary

6).

5. Compute simplified matrices Ã and D̃ from Lemma 5 and Definition 9, respectively.

6. Compute modified matrix L∗ from Definition 10.

7. For each i ∈ I2, if there exists at least some j ∈ J2
i such that L∗ij 6= +∞, then continue;

otherwise, stop, the problem is infeasible (Theorem 4).

8. Find the optimal solution X(e∗) for the sub-problem (4) by considering vectors e ∈ ED̃
and set J̃2

i , ∀i ∈ I2( Lemma 7).

9. Find the optimal solution x∗ = [x∗1, x
∗
2, ..., x

∗
n] for the problem (1) by (6) (Corollary

9).

It should be noted that there is no polynomial time algorithm for complete solution of

FRIs with the expectation N 6= NP . Hence, the problem of solving FRIs is an NP-hard

problem in terms of computational complexity [2].

5. Construction of test problems and numerical example

In this section, we present a method to generate random feasible regions formed as the

intersection of two fuzzy inequalities with Hamacher family of t-norms. In section 5.1, we

prove that the max-Hamacher fuzzy relational inequalities constructed by the introduced

method are actually feasible. In section 5.2, the method is used to generate a random test

problem for problem (1), and then the test problem is solved by Algorithm 1 presented
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in section 4.

5.1. Construction of test problems

There are several ways to generate a feasible FRI defined with max-Hamacher composi-

tion. In what follows, we present a procedure to generate random feasible max-Hamacher

fuzzy relational inequalities:

Algorithm 2 (construction of feasible Max-Hamacher FRI)

1. Generate randon scalars aij ∈ [0, 1] , i = 1, 2, ...,m1 and

j = 1, 2, ..., n, and b1i ∈ [0, 1], i = 1, 2, ...,m1.

2. Compute X by Definition 7.

2. Randomly select m2 columns { j1, j2, ..., jm2} from J= {1,2, ...,n} .

2. For i ∈ {1, 2, ...,m2} , assign a random number from [0, Xji ] to b2i .

3. For i ∈ {1, 2, ...,m2} , if b2i 6= 0, then

Assign a random number from interval
[
max

{
b2i ,

[α+(1−α)Xji
] b2i

Xji
−(1−α)(1−Xji

)b2i

}
, 1
]

to diji .

End

4. For i ∈ {1, 2, ...,m2}

For each k ∈ {1, 2, ...,m2} − { i }

Assign a random number from [0 , 1] to dk ji .

End

End

5. For each i ∈ {1, 2, ...,m2} and each j /∈ { j1, j2, ..., jm2}

Assign a random number from [0, 1] to dij.

End

By the following theorem, it is proved that Algorithm 2 always generates random feasible

max-Hamacher fuzzy relational inequalities.

Theorem 6. Problem (1) with feasible region constructed by Algorithm (2) has the

nonempty feasible solutions set (i.e., STαH (A,D, b1, b2) 6= ∅).



135 Amin Ghodousian / JAC 49 issue 1, June 2017, PP. 115–150

Proof. By considering the columns { j1, j2, ..., jm2} selected by Algorithm 2, let e′ =

[j1, j2, ..., jm2 ]. We show that e′ ∈ ED and X(e′) ≤ X. Then, the result follows from

Corollary 5. From Algorithm 2, the following inequalities are resulted for each i ∈ I2:

1. b2i ≤ Xji .

2. b2i ≤ diji .

3.
[α+(1−α)Xji

] b2i
Xji
−(1−α)(1−Xji

)b2i
≤ diji .

By (I), we have
[α+(1−α)Xji

] b2i
Xji
−(1−α)(1−Xji

)b2i
≤ 1. This inequality together with b2i ∈ [0, 1], ∀i ∈ I2,

implies that the interval
[
max

{
b2i ,

[α+(1−α)Xji
] b2i

Xji
−(1−α)(1−Xji

)b2i

}
, 1
]

is meaningful. Also, by (II),

e′(i) = ji ∈ J2
i , ∀i ∈ I2. Therefore, e′ ∈ ED. Moreover, since the columns { j1, j2, ..., jm2}

are distinct, sets Iji(e
′) (i ∈ I2) are all singleton, i.e.,

Iji(e
′) = {i} , ∀i ∈ I2 (7)

As a result, we also have J(e′) = { j1, j2, ..., jm2} and Ij(e
′) = ∅ for each j /∈ { j1, j2, ..., jm2}.

On the other hand, from Definition 5, we have X(i, e′(i))e′(i) = X(i, ji)ji = Liji and

X(i, e′(i))j = 0 for each j /∈ J − { ji}. This fact together with (7) and Lemma 6 implies

X(e′)ji = Li ji , ∀i ∈ I2, and X(e′)j = 0 for j /∈ { j1, j2, ..., jm2}. So, in order to prove

X(e′) ≤ X, it is sufficient to show that X(e′)ji ≤ Xji , ∀i ∈ I2. But, from Definition 2

and Remark 3,

X(e′)ji = Li ji =

 0 b2i = 0
[α+(1−α)diji ] b

2
i

diji−(1−α)(1−diji )b
2
i

b2i 6= 0
(8)

Now, inequality (III) implies

[α + (1− α)diji ] b
2
i

diji − (1− α)(1− diji)b2i
≤ Xji (9)

Therefore, by relations (8) and (9), we have X(e′)ji ≤ Xji , ∀i ∈ I2. This completes the

proof.



136 Amin Ghodousian / JAC 49 issue 1, June 2017, PP. 115–150

5.2. Numerical example

Consider the following linear optimization problem (1) in which the feasible region has

been randomly generated by Algorithm 2 presented in section 5.1.

min Z = 6.2945x1+ 8.1158x2 − 7.4603x3 + 8.2675 x4+ 2.6472 x5

−8.0492x6 − 4.4300x7 + 0.9376x8



0.9575 0.4218 0.6787 0.2769 0.4387 0.7094 0.9597 0.8909

0.9649 0.9157 0.7577 0.0462 0.3816 0.7547 0.3404 0.9593

0.1576 0.7922 0.7431 0.0971 0.7655 0.2760 0.5853 0.5472

0.9706 0.9595 0.3922 0.8235 0.7952 0.6797 0.2238 0.1386

0.9572 0.6557 0.6555 0.6948 0.1869 0.6551 0.7513 0.1493

0.4854 0.0357 0.1712 0.3171 0.4898 0.1626 0.2551 0.2575

0.8003 0.8491 0.7060 0.9502 0.4456 0.1190 0.5060 0.8407

0.1419 0.9340 0.0318 0.0344 0.6463 0.4984 0.6991 0.2543



ϕx ≤



0.8143

0.2435

0.9293

0.3500

0.1966

0.2511

0.6160

0.4733




0.5870 0.7802 0.2963 0.5631 0.8116 0.3063 0.9561 0.0430

0.2077 0.0811 0.7447 0.7803 0.5328 0.5085 0.4287 0.1690

0.3012 0.9294 0.1890 0.3897 0.3507 0.5108 0.5752 0.4539

0.4709 0.7757 0.5621 0.2417 0.9390 0.8176 0.0598 0.6491

0.2305 0.9967 0.6868 0.4039 0.8759 0.7948 0.2348 0.7317

0.8443 0.4868 0.1835 0.0965 0.5502 0.8017 0.3532 0.6477

0.1948 0.4359 0.3685 0.1320 0.9436 0.6443 0.8212 0.4509

0.5657 0.4468 0.6256 0.9421 0.6225 0.3786 0.0154 0.5470



ϕx ≥



0.1366

0.0736

0.0481

0.1525

0.2546

0.1795

0.1643

0.0784


x ∈ [0, 1]n

where |I1| = |I2| = |J | = 8 and ϕ (x, y) = T 2
H(x, y) = xy

2−x−y+xy (i.e., α = 2). Moreover,

Z1 = 6.2945x1+ 8.1158x2 + 8.2675 x4+ 2.6472 x5 + 0.9376x8 is the objective function of sub-

problem (4) and Z2 = −7.4603x3−8.0492x6−4.4300x7 is that of sub-problem (5) By Definition
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2, matrices U = (Uij)8×8 and L = (Lij)8×8 are as follows:

U =



0.8556 1.0000 1.0000 1.0000 1.0000 1.0000 0.8534 0.9218

0.2590 0.2820 0.3704 1.0000 0.7406 0.3724 0.8067 0.2615

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.3673 0.3740 0.9302 0.4651 0.4864 0.5836 1.0000 1.0000

0.2123 0.3653 0.3655 0.3399 1.0000 0.3657 0.3068 1.0000

0.6188 1.0000 1.0000 0.8649 0.6137 1.0000 0.9909 0.9855

0.8005 0.7526 0.8985 0.6593 1.0000 1.0000 1.0000 0.7607

1.0000 0.5227 1.0000 1.0000 0.7874 0.9659 0.7317 1.0000



L =



0.2999 0.2056 0.5930 0.3151 0.1939 0.5768 0.1482 ∞

0.4958 0.9495 0.1210 0.1127 0.1904 0.2016 0.2457 0.5856

0.2440 0.0552 0.3821 0.1848 0.2077 0.1340 0.1150 0.1548

0.4228 0.2305 0.3487 0.7504 0.1706 0.2133 ∞ 0.2932

∞ 0.2560 0.4362 0.7313 0.3153 0.3622 ∞ 0.4036

0.2379 0.4693 0.9879 ∞ 0.4126 0.2569 0.6300 0.3415

0.9068 0.4861 0.5676 ∞ 0.1821 0.3169 0.2277 0.4703

0.1875 0.2484 0.1645 0.0876 0.1656 0.2975 ∞ 0.1956


Therefore, by Corollary 3 we have, for example:

STαH (a23, b
1
2) = [0 , U23] = [0, 0.3704] and STαH (a61, b

1
6) = [0 , U61] = [0, 0.6188].

STαH (d35, b
2
3) = [L35, 1] = [0.2077, 1] and STαH (d48, b

2
4) = [L48, 1] = [0.2932, 1].

Also, from Definition 1, J2
1 = {1, 2, ..., 7}, J2

2 = J2
3 = {1, 2, ..., 8}, J2

4 = J2
8 = {1, 2, ..., 6, 8},

J2
5 = {2, 3, ..., 6, 8} and J2

6 = J2
7 = {1, 2, 3, 5, 6, 7, 8}. Moreover, the only components of

matrix Dsuch that dij < b2i are as follows: d18 (in the first row), d47 (in the fourth row),

d51 and d57 (in the fifth row), d64 (in the sixth row), d74 (in the seventh row) and d87 (in

the eighth row). Therefore, by Lemma 2 (part (b)), STαH (di, b
2
i ) =

⋃n
j=1 STαH (dij, b

2
i ) 6= ∅,

∀i ∈ I2.
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By Definition 5, we have

X(1) = [0.8556 1 1 1 1 1 0.8534 0.9218]

X(2) = [0.2590 0.2820 0.3704 1 0.7406 0.3724 0.8067 0.2615]

X(3) = [1 1 1 1 1 1 1 1]

X(4) = [0.3673 0.3740 0.9302 0.4651 0.4864 0.5836 1 1]

X(5) = [0.2123 0.3653 0.3655 0.3399 1 0.3657 0.3068 1]

X(6) = [0.6188 1 1 0.8649 0.6137 1 0.9909 0.9855]

X(7) = [0.8005 0.7526 0.8985 0.6593 1 1 1 0.7607]

X(8) = [1 0.5227 1 1 0.7874 0.9659 0.7317 1]

Also, for example

X(5, 2) = [0 0.2560 0 0 0 0 0 0], X(5, 3) = [0 0 0.4362 0 0 0 0 0],

X(5, 4) = [0 0 0 0.7313 0 0 0 0], X(5, 5) = [0 0 0 0 0.3153 0 0 0],

X(5, 6) = [0 0 0 0 0 0.3622 0 0], X(5, 8) = [0 0 0 0 0 0 0 0.4036].

Therefore, by Theorem 1, STαH (ai, b
1
i ) = [0 , X(i)] , ∀i ∈ I1, and for example STαH (d5, b

2
5) =⋃6

j=2[X(5, j) ,1]
⋃

[X(5, 8) ,1], for the fifth row of matrix D(i.e., i = 5 ∈ I2).

From Corollary 4, the necessary condition holds for the feasibility of the problem. More
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precisely, we have

Dϕ1 =



0.9561

0.7803

0.9294

0.9390

0.9967

0.8443

0.9436

0.9421



≥



0.1366

0.0736

0.0481

0.1525

0.2546

0.1795

0.1643

0.0784



= b2

that means 1 ∈ STαH (D, b2).

From Definition 7,

X = [0.21232 0.28202 0.36549 0.33993 0.48641 0.36575 0.3068 0.26149]

which determines the feasible region of the first inequalities, i.e., STαH (A, b1) = [0 , X]

(Theorem 2, part (a)). Also,

DϕX =



0.3599

0.2342

0.2495

0.4429

0.4005

0.2605

0.4461

0.3084



≥



0.1366

0.0736

0.0481

0.1525

0.2546

0.1795

0.1643

0.0784



= b2

Therefore, we have X ∈ STαH (D, b2), which satisfies the necessary feasibility condition

stated in Corollary 6. On the other hand, from Definition 6, we have |ED | = 6453888.

Therefore, the number of all vectors e ∈ ED is equal to 6453888. However, each solution

X(e) generated by vectors e ∈ ED is not necessary a feasible solution. For example, for
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e′ = [1 , 2 , 2 , 3 , 5 , 5 , 5 , 8], we attain from Definition 7

X(e′) = max
i∈I2
{X(i, e′(i))}

= max {X(1, 1), X(2, 2), X(3, 2), X(4, 3), X(5, 5), X(6, 5), X(7, 5), X(8, 8)}

where

X(1, 1) = [0.2999 0 0 0 0 0 0 0]

X(2, 2) = [0 0.9495 0 0 0 0 0 0]

X(3, 2) = [0 0.0552 0 0 0 0 0 0]

X(4, 3) = [0 0 0.3487 0 0 0 0 0]

X(5, 5) = [0 0 0 0 0.3153 0 0 0]

X(6, 5) = [0 0 0 0 0.4126 0 0 0]

X(7, 5) = [0 0 0 0 0.1821 0 0 0]

X(8, 8) = [0 0 0 0 0 0 0 0.1956]

Therefore, X(e′) = [0.2999 0.9495 0.3487 0 0.4126 0 0 0.1956]. It is obvious

that X(e′) 6≤ X (actually, X(e′)1 > X1 and X(e′)2 > X2) which means X(e′) /∈

STαH (A,D, b1, b2) from Theorem 3.

From the first simplification (Lemma 5), “resetting the following components aij to zeros”

are equivalence operations: a12, a13, a14, a15, a16; a24;a3j (j = 1, 2, ..., 8); a47, a48;a55,a58;
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a62, a63, a66; a75, a76 , a77;a81, a83, a84,a88. So, matrix Ã is resulted as follows:

Ã =



0.9575 0 0 0 0 0 0.9597 0.8909

0.9649 0.9157 0.7577 0 0.3816 0.7547 0.3404 0.9593

0 0 0 0 0 0 0 0

0.9706 0.9595 0.3922 0.8235 0.7952 0.6797 0 0

0.9572 0.6557 0.6555 0.6948 0 0.6551 0.7513 0

0.4854 0 0 0.3171 0.4898 0 0.2551 0.2575

0.8003 0.8491 0.7060 0.9502 0 0 0 0.8407

0 0.9340 0 0 0.6463 0.4984 0.6991 0


Also, by Definition 9, we can change the value of components d11, d13, d16; d21, d22, d28;

d31, d33; d41, d44, d48; d53, d54, d58; d61, d62, d63, d67, d68; d71,d72, d73, d78 to zeros. For

example, since 4 ∈ J2
5 and L54 = 0.7313 > 0.33993 =X4, then d̃54 = 0. Simplified matrix

D̃ is obtained as follows:

D̃ =



0 0.7802 0 0.5631 0.8116 0 0.9561 0.0430

0 0 0.7447 0.7803 0.5328 0.5085 0.4287 0

0 0.9294 0 0.3897 0.3507 0.5108 0.5752 0.4539

0 0.7757 0.5621 0 0.9390 0.8176 0.0598 0

0.2305 0.9967 0 0 0.8759 0.7948 0.2348 0

0 0 0 0.0965 0.5502 0.8017 0 0

0 0 0 0.1320 0.9436 0.6443 0.8212 0

0.5657 0.4468 0.6256 0.9421 0.6225 0.3786 0.0154 0.5470


Additionally, J̃2

1 = {2, 4, 5, 7, 8}, J̃2
2 = {3, 4, ..., 7}, J̃2

3 = {2, 4, 5, 6, 7, 8}, J̃2
4 = {2, 3, 5, 6, 7},

J̃2
5 = {1, 2, 5, 6, 7}, J̃2

6 = {4, 5, 6}, J̃2
7 = {4, 5, 6, 7} and J̃2

8 = {1, 2, ..., 8}. Based on these

results and Lemma 7, we have |ED̃| = |E ′D| = 60480. Therefore, the simplification pro-

cesses reduced the number of the minimal candidate solutions from 6453888 to 60480,

by removing 6393408 infeasible points X(e). Consequently, the feasible region has 60480
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minimal candidate solutions, which are feasible. In other words, for each e ∈ ED̃, we have

X(e) ∈ STαH (A,D, b1, b2). However, each feasible solution X(e) (e ∈ ED̃) may not be a

minimal solution for the problem. For example, by selecting e′ = [5 , 3 , 2 , 2 , 5 , 6 , 7 , 8],

the corresponding solution is obtained as

X(e′) = [0 0.2305 0.121 0 0.3153 0.2569 0.2277 0.1956]. Although X(e′) is

feasible (because of the inequality X(e′) ≤ X) but it is not actually a minimal solution.

To see this, let e′′ = [5 , 5 , 5 , 5 , 5 , 6 , 5 , 5]. Then,

X(e′′) = [0 0 0 0 0.3153 0.2569 0 0]. Obviously, X(e′′) ≤ X(e′)

which shows that X(e′) is not a minimal solution.

Now, we obtain the modified matrix L∗ according to Definition 10:

L∗ =



∞ 0.2056 ∞ 0.3151 0.1939 ∞ 0.1482 ∞

∞ ∞ 0.1210 0.1127 0.1904 0.2016 0.2457 ∞

∞ 0.0552 ∞ 0.1848 0.2077 0.1340 0.1150 0.1548

∞ 0.2305 0.3487 ∞ 0.1706 0.2133 ∞ ∞

∞ 0.2560 ∞ ∞ 0.3153 0.3622 ∞ ∞

∞ ∞ ∞ ∞ 0.4126 0.2569 ∞ ∞

∞ ∞ ∞ ∞ 0.1821 0.3169 0.2277 ∞

0.1875 0.2484 0.1645 0.0876 0.1656 0.2975 ∞ 0.1956


As is shown in matrix L∗, for each i ∈ I2 there exists at least some j ∈ J2

i such that

L∗ij 6= +∞. Thus, by Theorem 4 we have STαH (A,D, b1, b2) 6= ∅.

Finally, vectorX is optimal solution of sub-problem (5). For this solution, Z2 = −7.4603X3−

8.0492X6 − 4.4300X7 = −7.0295. Also, Z = cTX = 0.93873. In order to find the op-

timal solution X(e∗) of sub-problems (4), we firstly compute all minimal solutions by

making pairwise comparisons between all solutions X(e) (∀e ∈ ED̃), and then we find

X(e∗) among the resulted minimal solutions. Actually, the feasible region has 9 minimal

solutions as follows:

e1 = [7 , 6 , 6 , 6 , 6 , 6 , 6 , 6]
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X(e1) = [0 0 0 0 0 0.36222 0.14819 0]

e2 = [5 , 5 , 6 , 5 , 6 , 6 , 5 , 5]

X(e2) = [0 0 0 0 0.19386 0.36222 0 0]

e3 = [5 , 5 , 5 , 5 , 5 , 6 , 5 , 5]

X(e3) = [0 0 0 0 0.31533 0.25694 0 0]

e4 = [5 , 5 , 5 , 5 , 5 , 5 , 5 , 5]

X(e4) = [0 0 0 0 0.41257 0 0 0]

e5 = [2 , 6 , 2 , 6 , 6 , 6 , 6 , 6]

X(e5) = [0 0.20562 0 0 0 0.36222 0 0]

e6 = [2 , 6 , 2 , 2 , 2 , 6 , 6 , 2]

X(e6) = [0 0.25604 0 0 0 0.3169 0 0]

e7 = [2 , 6 , 2 , 2 , 2 , 6 , 7 , 2]

X(e7) = [0 0.25604 0 0 0 0.25694 0.22766 0]

e8 = [2 , 6 , 2 , 2 , 2 , 6 , 5 , 2]

X(e8) = [0 0.25604 0 0 0.18212 0.25694 0 0]
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e9 = [4 , 4 , 4 , 6 , 6 , 6 , 6 , 4]

X(e9) = [0 0 0 0.31513 0 0.36222 0 0]

By comparison of the values of the objective function for the minimal solutions, X(e1) is

optimal in (4) (i.e., e∗ = e1). For this solution,

Z1 =
∑n

j=1 c
+
j X(e1)j

= 6.2945X(e1)1+ 8.1158X(e1)2 + 8.2675 X(e1)4+ 2.6472 X(e1)5 + 0.9376X(e1)8

= 0

Also, Z = cTX(e1) = − 3.572. Thus, from Corollary 9,

x∗ = [0 0 0.36549 0 0 0.36575 0.3068 0] and then Z∗ = cTx∗ = − 7.0298.

Conclusion

In this paper, we proposed an algorithm to find the optimal solution of linear problems

subjected to two fuzzy relational inequalities with Hamacher family of t-norms. The fea-

sible solutions set of the problem is completely resolved and a necessary and sufficient

condition and three necessary conditions were presented to determine the feasibility of

the problem. Moreover, depending on the max- Hamacher composition, two simplification

operations were proposed to accelerate the solution of the problem. Finally, a method

was introduced for generating feasible random max-Hamacher inequalities. This method

was used to generate a test problem for our algorithm. The resulted test problem was

then solved by the proposed algorithm. As future works, we aim at testing our algorithm

in other type of linear optimization problems whose constraints are defined as FRI with

other well-known t-norms.
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