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ABSTRACT ARTICLE INFO

Eclat is an algorithm that finds frequent itemsets. It
uses a vertical database and calculates item’s support by
intersecting transactions. However, Eclat suffers from
the exponential time complexity of calculating the in-
tersection of transactions. In this paper, a randomized
algorithm called BloomEclat based on Bloom filter is
presented to improve the Eclat algorithm complexity in
finding frequent itemsets. Through Bloom Filter, an el-
ementâĂŹs membership to a set, can be checked and set
operations such as intersection and union of two sets can
be executed in a time efficient manner. By using these
capabilities, Eclat algorithmâĂŹs intersecting problem
can significantly improve. In BloomEclat algorithm with
slight false positive error, the speed of the intersecting
transactions is increased, and consequently the execu-
tion time is reduced.
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1 Introduction
The problem of frequent itemset discovery is finding the association rules in a market-
basket model of data and also finding sets of items that appears in many of the same
baskets. To distinguish the frequent itemsets from ordinary items the number of rep-
etitions in the baskets must exceed a predefined minimum support S. If ’I ’ is a set of
items, the size of support for âĂŸI âĂŹ equals the number of baskets that contain ’I ’.
So ’I ’ is frequent as long as it supports a value greater than âĂŸSâĂŹ. Finding the fre-
quent itemset was initially proposed to analyze market-basket models, but over time it
has become one of the methods of data mining in various domains, like bioinformatics
[13], image classification [5], network traffic [6], and e-learning [12]. The algorithm for
finding frequent itemsets was first introduced by R. Aggrawal [2]. Then, the Apriori [1]
algorithm was introduced which suffers from a long execution time. Eclat algorithm was
introduced to improve the performance of Apriori. However, if the number of transactions
are high, then the operation of intersecting transactions become time-consuming. Normal
intersecting uses a sequential comparison method of elements. In this paper, we use the
Bloom Filter method, which calculates intersecting operation at a more reasonable time
compared to the normal Eclat algorithm.
The rest of the paper is organized as follows: after discussing the Preliminaries in Section
2, Section 3, gives an illustration of the main algorithm, and in Section 4, we analyze the
accuracy and time complexity of the proposed algorithm. Finally, Section 5, summarizes
the results and proposes future research topics.

2 PRELIMINARIES
According to [4], algorithms seeking frequent itemsets can be divided into three separate
categories:

2.1 Join-based algorithms

These algorithms use the bottom-up method for frequent itemsets mining and are used
to generate larger itemsets as long as the itemsetsâĂŹ length is more than the minimum
number of supports (defined by the user) in the database. The popular algorithm in this
category is A-Priori. The algorithmâĂŹs name, Apriori, is because this method uses prior
knowledge (prior step) to mine new frequent itemsets. It first creates a table with two
columns. The first column contains items with length k = 1 and the second column holds
the size of support for these items. If an itemâĂŹs support is less than the minimum
support, it will be removed from the table. The same procedure continues for items
with a length of k + 1 so that items with a length of k + 1 are formed by joining items
with a length of k. And this occurs when the final joined itemâĂŹs support is less than
the minimum (support). This algorithm often increases the speed of finding itemsets by
removing items that are not frequent, but the number of k+1 candidate items generated
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by joining the items of size k is very high. Through this algorithm for each k value, the
database needs to be scanned once.

2.2 Tree-based algorithms

These algorithms use the set-enumeration concept to find frequent itemsets. By creating
a lexicographic tree, the algorithm can search for itemsets in two ways: first level or first
depth. The popular algorithm in this category is Eclat. Eclat [18] algorithm first converts
the horizontal database to a vertical one with a single scan and mines frequent itemsets
with enhanced performance compared to the Apriori method. Eclat directly calculates
support by intersecting the transactions of each item with transactions of another one in
the vertical database. If the two transactions t(X) and t(Y ) are transactions of items X
and Y , then we have:

t(XY ) = t(X) ∩ t(Y )

The size of support for XY itemsets equals | t(XY ) |. The Eclat algorithm does not
require sequential and costly database scanning and requires a single database scan. If
the number of transaction is high, the cost of finding intersecting transactions will increase.

2.3 Pattern growth algorithms

These algorithms use divide and conquer algorithms for partitioning and projecting databases
depending on frequent patterns that are already found, and Use these patterns for form-
ing longer projecting databases. The popular algorithm in this category is FP-Growth
algorithm, that [7] was introduced in 2000 by Han to improve Apriori algorithmâĂŹs
performance by eliminating consecutive database scans. This method uses the divide and
conquer algorithm. It initially compresses the database data into a tree called FP-Tree.
The tree then becomes a conditional FP-Tree for each item so that the items can be
explored separately. This will reduce searching expenses for frequent itemsets but will be
time-consuming to build an FP-Tree database.
Eclat directly calculates support for candidate itemsets by intersecting transactions. This
algorithm computes frequent itemsets of size k+1 by intersecting frequent itemsets of size
k. The main step of this algorithm is to calculate the intersection of transactions. For a
large transaction, this algorithm is inefficient. So, improving the transaction intersecting
calculation is crucial.
Table 1 shows the Eclat algorithm.
In the algorithm above, The inputs are the minimum supports and for each i ⊆ I is a set
of frequent itemset [i, t(i)] that have support values greater than or equal to the minimum
support.
Our goal in this algorithm is to intersect the set of itemsets (tidsets) Xa ∈ P with the
set of other itemsets Xb ∈ P so that Xb 6= Xa. Candidate itemset Xab can be computed
from the union of Xa and Xb (Line 6) to determine itâĂŹs frequency.
It is enough to intersect t(Xa) with t(Xb) (line 7). Xab is then added to a new variable
Pa that contains all itemsets with the prefix Xa. The Eclat function is called recursively
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Algorithm 1. Eclat algorithm
Input: minimum support threshold minsup
Input P ← {(i, t(i))|i ∈ I, |t(i) |,≥ minsup}, F ← ∅
Output : all frequent itemsets F

1 ECLAT(P , minsup, F )
2 For each (Xa, t(Xa))Pdo
3 F ← F ∪ [(Xa, sup (Xa))]
4 Pa ← ∅
5 For each (Xb, t (Xb)) ∈ P , with Xb > Xa do
6 Xab = Xa ∪Xb

7 t(Xab) = t(Xa) ∩ t(Xb)
8 if sup(Xab) ≥ minsup then
9 Pa ← Pa ∪ [(Xab, t (Xab))]
10 End if
11 End For each
12 End For each
13 if Pa 6= ∅ then ECLAT(Pa,minsup, F )
14 End if

and finds all items that have the prefix Xa. This process continues until Xa can no longer
be expanded.
Eclat algorithm suffers from intersection exponential time complexity. For this reason,
in recent years, various algorithms have been introduced to improve Eclat’s performance,
including the Diffset [18] algorithm, which only saves the difference between the item’s
transaction ID instead of keeping the transaction intersection. Other methods, such as
bit operations [16], FPGAs [15], and Pruning [10], have been introduced to reduce the
intersection calculation time of two transactions. Parallel algorithms have also been intro-
duced based on MapReduce [20]. One of the recently introduced randomized algorithms
to improve subscription speed is HashEclat [19], which uses the minhash technique to
calculate transaction intersecting.

2.4 Bloom Filter

Bloom Filter [3] is a space-efficient probabilistic data structure for storing data. Using
Bloom Filter, membership of an element to a set can be checked. Bloom Filter also allows
two sets to intersect in a reasonable time. The first and base element of this randomized
data structure is an m-sized bit array in which initially all elements are set to zero. The
second element is a group of ′k′ hash functions. The first operation in this data structure
is add operation, where the k hash functions are calculated for input element x. Then,
the bits at k indices of the base array corresponding to the output of the hash functions
h1(x), h2(x), · · · , hk(x) are set to one, So for each input value, the value of k bits in
the base array of Bloom Filter changes from zero to one. The second operation is to
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find an element w in Bloom Filter. Separate hash functions are calculated for w and all
corresponding indices are checked to be set to 1 in the base array. If all the bits are set,
then it can be said that w is probably a member. If any of the bits at these indices is 0
then w is certainly not a member. It is said that âĂĲw is probably a memberâĂİ because
this method has a false positive error. In this way, a Bloom member element may not be
in filter, but it may be mistakenly identified as a member of a bloom filter. According
to the following formulas, the optimal values of Bloom Filter (m) size, number of a hash
function (k), and also false positive error value (FP ) can be computed [11].

FP =

(
1−

[
1− 1

m

]kn)k

(1)

m = −n lnFP

(ln 2)2
(2)

k =
m

n
ln 2 (3)

3 PROPOSED ALGORITHM
In this paper, we utilize Bloom Filter to calculate the intersecting of sets or lists at a
more reasonable time compared to the normal Eclat algorithm.

3.1 Intersection with bloom filter

To find the intersection of two lists, two separate Bloom filters with a fixed size of m and
k are constructed. Then a bitwise AND operation is done on these two bloom filters. A
more efficient way is to enter one of the lists in a Bloom filter and check if each member
of the second list is inside this Bloom filter or not. If the desired member is inside the
Bloom filter, we save it in a new intersection list and if not, we check the membership of
the other members. We do this for all members of the second list. The list ’Intersection’
is the result of intersecting these lists. In algorithm 1, line 7, the proposed method can
be analyzed as follows:
First, we enter t(Xa), which includes transactions containing Xa itemsets, into Bloom
Filter B. Now we check each member of t(Xb) for whether they are a member of Bloom
Filter B or not. If any is a member, we save it in the ’Intersection’ list, otherwise, we
proceed to the next member of t(Xb).

3.2 Union with bloom filter

The Bloom Filter method can also be used for the union of two lists. One suggested
method is to enter each of the lists in a separate Bloom Filter with a fixed size of m and
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Intersection with Bloom Filter
1 Input: Intersection← ∅
2 Output : Intersection of transactions
3 B ← empty Bloom Filter of size m
4 For each i ∈ t(Xa) do
5 B.Add(j)
6 End For each
7 For each j ∈ t(Xb) do
8 if j ∈ B do
9 Intersection.Add(j)
10 End if
11 End For each

k, and then bitwise union the two resulting Bloom Filters. A more efficient approach is to
enter one of the lists in a Bloom Filter and check to see if each member from the second
list is included in the Bloom Filter that carries the first list. If the desired member is
inside the Bloom Filter, we proceed to another member and if not, we save it in a new
’Union’ list. We do this for all members of the second list. Then we save all the members
of the first list in ’Union’. The list ’Union’ is the result of intersecting these lists.
In the algorithm 1 in line 6, the proposed method can be analyzed as follows:

Union with Bloom Filter
1 Input: Union← ∅
2 Output : Union of transactions
3 B ← empty Bloom Filter of size m
4 For each i ∈ Xa do
5 B.Add(j)
6 Union.Add(j)
7 End For each
8 For each j ∈ Xb do
9 if j ∈ B do
10 Union.Add(j)
11 End if
12 End For each

First, we insert the Xa itemsets into Bloom Filter B and add the Xa members to the
’Union’ list. Now we check for each member of Xb to see whether it is a member of
Bloom Filter B or not. If it is, we go to the next Xb member, otherwise, we save it in the
Union list.
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4 EXPERIMENT RESULTS
The experiment was run in Python programming language on a Lenovo Ideapad 510
Intel Core i7-7500U CPU @ 2.70GHz 2.90GHz system with 12GB RAM in Win10 64-bit
platform. To test the BloomEclat algorithm, we used the Mushroom dataset [8], which
is one of the most popular datasets for working with frequent itemsets, The number of
transactions in this database is 8123 and The dataset is of a dense type. the minimum
support value is set to 10%.
The value of the Bloom filterâĂŹs input n should be set to equal the size of the data
transactions, which is 8123. Because in a worst case scenario, an item will be present in
all transactions and ItâĂŹs support size is equal to the size of all transactions. By doing
this, we can find the most frequent itemsets of the densest datasets at a more efficient
time compared to the normal Eclat algorithm, and and it wonâĂŹt effect the proposed
algorithm that the dataset is dense or sparse.
Based on the optimal formulas for k, m, and FP , we need the value of m to find the
optimal value of FP , and we also need to have the value of FP in hand to find the
optimal value of m. thus we have two ways to examine the proposed algorithm [14]:
1) Let n = 8123, with the optimal default value of FP (which is equal to 0.001, which
means 0.1%), we calculate the optimal value for m (which according to equation (2) is
equal to 116790).
According to equation (1), (2), and (3), the optimal value for hash functions based on m
and n is 10 (k = 10).

Figure 1: The comparison of the proposed method with the optimal size for m and for
different values of k against the normal Eclat algorithm
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Fig.1 shows the comparison of the proposed method with the optimal size of m and
for different values of k against the normal Eclat algorithm. The red column in the fig 1
displays of normal eclat algorithm and the blue columns represent the proposed algorithm
for different hash functions. the proposed algorithm in the worst case(for k = 10), runs
faster than the normal eclat algorithm.
According to equation (3), the optimal value for k based on n and m is 10. For k less
than 10, the FP value will increase according to equation (1).

Figure 2: The value of FP for different k

Based on equation (1) the value of FP for different k is given in Fig.2.
Fig. 2 shows the FP value for different hash functions. based on equation (1), for optimal
FP , if the number of hash functions is higher, the value of FP is shorter. But if the
number of hash functions increases, the execution time of the algorithm will increases.
The accuracy of the proposed algorithm is also shown in Fig.3.
Fig.3 shows the accuracy for different hash functions. if the number of hash functions
is higher, the accuracy gets higher. But if the number of hash functions increases, the
execution time of the algorithm will increases.
2) In the next method, by assigning n = 8123 and fixing to FP = 0.001, we calculate the
value of m for different values of k. The difference between this method and the above,
is that the value of m is not optimal, but instead, for all values of k, the value of FP will
be constant and equal to 0.001.
Fig.4 shows a comparison of the proposed method with the size FP = 0.001, for different
values of k and m with the normal Eclat algorithm. Fig.1 shows the comparison of the
proposed method with the optimal size of m and for different values of k against the
normal Eclat algorithm. The red column in the fig.1 displays of normal eclat algorithm
and the blue columns represent the proposed algorithm for different hash functions. the
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Figure 3: The accuracy of proposed algorithm for different k.

Figure 4: The comparison of the proposed method with the size FP = 0.001, for different
values of k and m with the normal Eclat algorithm.

proposed algorithm in the worst case(for k = 10), runs faster than the normal eclat
algorithm.
In method 1, the value of m, and in this method the value of FP is constant.
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Figure 5: The values of m (size of Bloom Filter) for different values of k.

According to equation (2) the values of m for different values of k are shown in Fig.5.
Fig.5 shows the FP value for different hash functions. based on equation (1), for optimal
FP, if the number of hash functions is higher, the value of FP is shorter. But if the
number of hash functions increases, the execution time of the algorithm will increases.
The method 2 can be used when the amount of memory consumption is important.

5 CONCLUSION
In this paper, we proposed the BloomEclat algorithm, which uses the Bloom Filter data
structure to improve the intersecting of the Eclat algorithm for mining frequent itemsets.
The Eclat algorithm directly calculates support by intersecting the transactions of each
itemset in the vertical database with the transactions of another itemset. To improve
intersection and union in the Eclat algorithm, we entered the members of the first list
into the Bloom Filter and checked if each second-list member is a member of the bloom
filter or not. As our experimental results show, this method can intersect transactions
with a small error percentage in less time compared to the normal Eclat algorithm. In
future work, we will look at data that have very high number of items and to increase the
union time in the Eclat algorithm. We will also look at the XNOR logic operator in the
Bloom Filter method, which can be used for infrequent itemset mining [9].
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