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ABSTRACT ARTICLE INFO

Cloud computing is a high-performance computing en-
vironment that can remotely provide services to cus-
tomers using a pay-per-use model. The principal chal-
lenge in cloud computing is task scheduling, in which
tasks must be effectively allocated to resources. The
mapping of cloud resources to customer requests (tasks)
is a popular Nondeterministic Polynomial-time (NP)-
Complete problem. Although the task scheduling prob-
lem is a multi-objective optimization problem, most
task scheduling algorithms cannot provide an effective
trade-off between makespan, resource utilization, and
energy consumption. Therefore, this study introduces
a Priority-based task scheduling algorithm using Har-
ris Hawks Optimizer (HHO) which is entitled as PHHO.
The proposed algorithm first prioritizes tasks using a hi-
erarchical process based on length and memory. Then,
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1 Abstract continued

the HHO algorithm is used for optimally assigning tasks to resources. The PHHO al-
gorithm aims to decrease makespan and energy consumption while increasing resource
utilization and throughput. To evaluate the effectiveness of the PHHO algorithm, it is
compared with other well-known meta-heuristic algorithms such as Genetic Algorithm
(GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Whale
Optimization Algorithm (WOA), Salp Swarm Algorithm (SSA), and Moth-Flame Opti-
mization (MFO). The experimental results show the effectiveness of the PHHO algorithm
compared to other algorithms in terms of makespan, resource utilization, throughput, and
energy consumption.

2 Introduction

Cloud computing is a distributed computing paradigm that provides services for users
around the world. Users can access the cloud computing environment through the cloud
user ID remotely or locally [44]. Task scheduling is an NP-Complete problem in the cloud
environment. To solve this problem, meta-heuristic algorithms can be used to decrease
the polynomial complexity [24]. Task scheduling with priority attention is one of the main
challenging issues in the cloud environment that can increase user and service provider
satisfaction. It can also achieve efficient utilization of resources with maximum profit [3].
To address this challenge, this paper presents a novel task scheduling algorithm that first
uses the Analytic Hierarchy Process (AHP) to prioritize tasks before sending them to the
scheduler. Then, the HHO algorithm is applied to improve task scheduling behavior by
taking into account parameters such as makespan, throughput, resource utilization, and
energy consumption.

2.1 Cloud Computing

Cloud computing has become a major part of modern Internet technologies due to its
unique feature [26],[28]. It consists of large and power-consuming data centers to provide
reconfigurable computing resources. Figure 1 shows various definitions of cloud computing
in various studies.
It can be seen that cloud computing has various definitions. However, one of the most
famous definitions of cloud computing is the National Institute of Standards and Tech-
nology (NIST) definition [30].The NIST’s definition is summarized in Fig. 2. The cloud
computing system provides on-demand computing and storage services with excellent
properties like reliability, scalability, pay-as-you-go pricing model, and reliability. As the
number of users and demands increased, various companies (e.g., Google Compute Engine,
Amazon EC2) began to offer software and hardware to users. Cloud Service Providers
(CSPs) provide various kinds of services however, services are generally categorized into
three main categories (i.e., Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS),
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Figure 1: Definitions of cloud computing [5].

and Infrastructure-as-a-Service (IaaS) that are provided based on the needs and demands
of users [38].
Cloud computing manages different types of virtual resources that make scheduling an
important component. In the cloud, a user may use several thousand virtual assets for
each task. Optimal allocation of tasks to resources can improve system performance and
efficiency and so play a key role in the cloud environment [61].

2.2 Task Scheduling

Cloud computing not only helps different types of applications but also creates virtual
conditions for applications to run efficiently. An appropriate task scheduler is required to
arrange the execution of tasks in a cloud system [19]. The task scheduler must utilize the
cloud resources to execute the tasks. In recent years, researchers have paid close attention
to the problem of task scheduling in the cloud system [56]. In a cloud environment, users
send their requests to the task manager component. The scheduler assigns the requests
(which are received from the task manager) to the appropriate Virtual Machines (VMs)
by utilization of suitable task scheduling algorithms to increase the efficiency of the cloud
system (available resources are analyzed using a resource information server). If the task
scheduling algorithm is efficient, it improves resource utilization and increases user and
CSP satisfaction. Figure 3 shows the problem of task scheduling in the cloud.
Prioritizing tasks is a significant issue in task scheduling because some tasks that cannot
stay in the system for long periods need to be serviced earlier than others. In other
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Figure 2: NISTs definitions of cloud computing.
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Figure 3: Task scheduling framework in the cloud [11].

words, priority indicates the urgency of a task to be completed as soon as possible. An
appropriate task scheduling algorithm should pay attention to the priority of tasks [51].
Priority can be set based on various criteria (e.g., deadline of a task, length of a task,
arrival time of a task, or memory size of a task). Since in cloud, there is a wide range
of features that must be considered, so a proper task scheduling algorithm in the cloud
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should pay attention to multi-attribute and multi-criteria features of tasks [37]. There are
various Multi-Criteria Decision-Making (MCDM) models that are based on mathematical
modeling. Based on a pairwise comparison according to the MCDM model, a model called
AHP was proposed in 1980 by Thomas Saaty [42]. AHP has been used in various fields over
the past few decades. AHP is an appropriate model for priority-based task scheduling
problems. In addition, task scheduling is a significant problem in cloud computing by
taking into account various factors such as makespan, energy consumption, completion
time, cost, resource utilization, and throughput. A good scheduler should execute tasks
with fewer resources and in a shorter time [43]. Using fewer resources means consuming
less energy. One of the most important matters in cloud environments is to minimize
makespan and energy consumption. The process of detecting the appropriate solution
according to conflicting criteria such as energy consumption and makespan by a parallel
application with priority limitation is a multi-objective problem. The solution to this type
of problem is a set of Pareto points (those that improvement in one goal can only happen
with the worsening of at least one other goal) [52]. Meta-heuristic algorithms have been
suggested as non-deterministic methods to solve scheduling problems in a polynomial time
[46].

2.3 Meta-heuristic Algorithm

One of the major challenges in the cloud system is optimal task scheduling. Various
optimization techniques like heuristic techniques are used to solve the scheduling problem
[27]. As the complexity of the problem increases, heuristic techniques have achieved very
restricted success between different applications. This restriction is due to the delay in
reaching the optimal solution. Therefore, heuristic techniques do not have the necessary
efficiency. On the other hand, there are meta-heuristic algorithms that are expected to
overcome these restrictions and provide the best solution in a shorter time [20]. Meta-
heuristic scheduling algorithms provide better scheduling outcomes than traditional and
heuristic algorithms. Figure 4 shows a schematic diagram for executing task scheduling
algorithms based on meta-heuristic algorithms.
Meta-heuristic algorithms have become very popular in recent years because of their
efficiency in solving large and complex problems. Meta-heuristic strategies have many
beneficial properties, such as the following [8]:

• Meta-heuristic algorithms are not problem-dependent.

• These algorithms effectively explore the search space so that they can find a near-
optimal solution to solve NP-complete problems.

• Meta-heuristic algorithms are usually approximate and non-deterministic.

Meta-heuristic algorithms are executable to solve problems in various fields with very
acceptable performance because they are independent of the problem to be solved. Gen-
erally, meta-heuristic algorithms have two types: i) single solution-based (processing only
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Figure 4: The schematic diagram for executing the scheduling algorithm [50].

one solution in the optimization phase) and ii) population-based (processing a set of solu-
tions in each iteration) [54]. The population-based strategies usually discover an optimal
or near-optimal. In the population-based strategies, the optimization process begins with
the creation of the initial population (each individual indicates a candidate solution),
then the population is updated by using some random operators and the optimization
process continues until the stop condition is reached [16]. As shown in Fig. 5, the
population-based algorithms can be categorized into four principal categories: evolution-
based methods that are inspired by the laws of natural evolution, physics-based methods
that are inspired by the physical laws in the world, human-based methods that are in-
spired by advancement in the level of searching strategy, and swarm-based methods that
are expanded based on mathematical models inspired by the activities and cooperative
behavior of various species like birds, ants, and bacteria, which live in groups and coop-
erate for searching and collecting food. Although there are differences between various
meta-heuristic algorithms, they divide the search process into two stages of exploration
and exploitation. In the exploration stage, the algorithm must use random operators to
search the promising regions of the search space randomly and globally. In the exploita-
tion stage, the algorithm must perform a local search in the promising areas achieved in
the exploration stage. One of the main challenges of meta-heuristic algorithms is finding
the right balance between exploration and exploitation [49].
One of the recent population-based optimization algorithms is the Harris Hawks Opti-
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Figure 5: Categorization of the meta-heuristic algorithms [39].

mizer (HHO) [17]. HHO is inspired by the cooperative behavior and chasing style of
Harris’s hawks in nature, which is named surprise pounce. In this clever technique, sev-
eral hawks work together to pounce a prey from various directions to surprise it. Harris
hawks can show various types of chasing patterns according to the different scenarios
and escaping approaches of the prey. Based on the results obtained in [17], the HHO
algorithm have better performance compared to the PSO [23], GA [18], Biogeography-
Based Optimizer (BBO) [48], Gray Wolf Optimization (GWO) [34], Differential Evolution
(DE) [53], Cuckoo Search (CS) [59], Teaching Learning Based Optimization(TLBO) [40],
BAT Algorithm (BA) [57], Flower Pollination Algorithm (FPA) [60], Moth-Flame Opti-
mization (MFO) [31], and Firefly Algorithm (FA) [58]. The HHO algorithm can have a
significant role in solving various real-world optimization problems (e.g., pattern recogni-
tion, geotechnical engineering, engineering design, optimization, feature selection, image
segmentation, manufacturing optimization, power quality, and drug design). Moreover,
the HHO can be used for problems with the unknown types of search space or problems
containing discrete and continuous spaces, provide better quality solutions, provide high
accuracy in extracting optimal parameters, and enhance the prediction performance. In
addition, the results demonstrated that HHO is a powerful optimizer that aids to solve
complex nonlinear problems and can find the optimal solution quicker [2]. The results
showed that the main hawk starts the search operation with sudden movements and first
increases the variety and explores the favorable regions of the solution space. The range
of these changes covers more than 50% of the solution space. This indicates the explo-
ration capability of HHO. Over time, the range of the fluctuations gradually reduces. This
ensures the transfer of HHO from exploratory processes to exploitative stages. Finally,
the first hawk movement pattern becomes very stable, indicating that HHO is exploiting
promising areas in the final stages. Avoiding local optimization and a smooth transi-
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tion from exploration to exploiting are the main benefits of the HHO algorithm. The
results show that the HHO can reveal an accelerated convergence process. The main
contributions of this paper are listed below:

• A priority-based task scheduler is proposed, which sorts user tasks by priority. The
priority is computed using AHP based on tasks length and memory.

• A task scheduling problem is formulated and a mathematical model and objective
functions are defined that optimally assign tasks to VMs.

• The multi-objective fitness function has been used concerning makespan, through-
put, resource utilization as well as energy consumption.

• To improve the efficiency of tasks execution in a cloud environment, the HHO al-
gorithm is used to solve the problem, which can find excellent solutions, easy to
executed, and flexible.

• To confirm the effectiveness of the presented algorithm, the efficiency of the PHHO
algorithm is compared with six popular meta-heuristic algorithms. Evaluation is
performed using four objective criteria: makespan, average resource utilization, av-
erage throughput, and total energy consumption.

The rest of this paper is organized as follows: Section 3 explains some previous works
related to the scheduling in the cloud, Section 5 presents a background of AHP and HHO,
Section 6 describes the PHHO algorithm task scheduling algorithm, Section 7 represents
the experimental result, and finally Section 8 discusses conclusion and future works.

3 Related Works

In recent years, many researchers have paid attention to many issues facing cloud comput-
ing. Task scheduling is one of the main problems in the cloud environment because it can
have a huge impact on system performance. However, there is no exact optimal solution
that optimizes all parameters in cloud scheduling. Some of the scheduling strategies are
discussed below.
Shojafar et al. [45] proposed a hybrid algorithm named FUGE, which used GA [18] as
the basis of their algorithm and modified it with the help of fuzzy theory for allocating
jobs. The purpose of the presented algorithm is to decrease the makespan, cost, and
degree imbalance in the cloud when scheduling tasks. In the FUGE algorithm, two kinds
of chromosomes are created based on various Quality of Service (QoS) parameters. Then
the fuzzy theory is used to calculate the fitness values of all chromosomes and for crossover
operation. The presented algorithm allocates tasks to resources based on VM memory,
job lengths, VM processing speed, and VM bandwidth. The experimental results showed
that FUGE performed better than other algorithms in terms of execution time, execution
cost, and average degree of imbalance. The experimental results also showed that FUGE
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improved by about 45% in terms of execution cost and about 50% in terms of total
execution time compared to GA. The main weakness of the FUGE algorithm is that it is
not considered energy consumption.
Chen et al. [6] offered a WOA [33]-based multi-objective task scheduling algorithm that
purposes to improve system performance based on given computational resources. The
focus of the algorithm was to decrease the execution time, load, and price cost. To
improve the efficiency of the WOA, the authors also suggested the improved WOA algo-
rithm for assigning tasks to resources in the cloud environment and called it IWC. The
experimental results showed that IWC has a better convergence speed and accuracy and
also can perform better in system resource utilization for both small-scale and large-scale
tasks compared to other meta-heuristic algorithms. However, the IWC algorithm is not
considered constraints such as priority constraints.
Mansouri and Javidi [29] suggested a job scheduling algorithm based on the cost and
named it CJS. The CJS simultaneously considered both types of jobs, data-intensive and
computation-intensive. The presented algorithm uses data, processing power, and network
features to assign tasks to resources. The scheduler chooses the best location according
to the dynamic state of the network, the location of the data, the size of the data, and
the pool of processing cycles. The simulation results showed that CJS performed better
in terms of makespan and success rate than other algorithms. But, energy consumption
is not considered.
Er-raji et al. [12] suggested a task scheduling algorithm to execute tasks efficiently. The
authors improved tasks execution time using task length and VM processing speed, and
the number of tasks per VM. The purpose of the proposed algorithm is to reduce the
execution time of the tasks. The authors used CloudSim to evaluate the performance
of the presented algorithm. The experimental results represented that the presented
algorithm has better performance in terms of total execution time compared to other
algorithms. The main weakness of the presented algorithm is that this algorithm focuses
only on reducing execution time and is not considered other key QoS parameters such as
energy consumption and resource utilization.
Jacob and Pradeep [21] offered a hybrid task scheduling algorithm called CPSO, which is
a combination of CS [59] and PSO [23]. The goal of the presented algorithm is to decrease
the makespan, cost, and deadline violation rate. The CPSO algorithm decreases all cost
factors such as performance cost and user costs. The simulation results showed that the
CPSO algorithm has better performance than other algorithms in terms of makespan,
cost, deadline violation rate. In the proposed algorithm, the probability of resources
overloading is high.
Kumar and Venkatesan [25] introduced an effective task scheduling algorithm called HG-
PSO. The proposed algorithm first stores the user’s tasks in the queue manager, their
priority is computed, and if it is a repeated task, it is assigned to the appropriate resource.
Novel tasks are analyzed and stored in the on-demand queue. The HGPSO algorithm (a
combination of the GA and PSO algorithms) gets the results of the on-demand queue.
Then, the HGPSO assigns tasks of the on-demand queue to the appropriate resources.
The experimental results showed that the HGPSO performs better in terms of execution
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time, scalability, and availability compared to other algorithms. However, the energy
efficiency of the HGPSO algorithm is very low.
Abd Elaziz et al. [1] suggested a new hybrid algorithm called MSDE, which is a combina-
tion of the Moth Search Algorithm (MSA) [55] and DE [53]. The purpose of the MSDE
algorithm is to reduce the makespan. The MSA algorithm is inspired by the behavior of
moths insects and their relationships. However, MSA’s exploitation capability is not as
good as its exploratory capability, so the authors used the DE algorithm as a local search
strategy to enhance MSA exploitation capability. The experimental results showed that
MSDE performs better in terms of makespan than other algorithms and can assign tasks
to VMs effectively. The major weakness of the MSDE algorithm is that it focuses only
on makespan and doesnt consider other QoS parameters like energy consumption and
resource utilization.
Guo [15] introduced a multi-objective task scheduling algorithm based on the fuzzy self-
defense algorithm. The author considered the shortest time that customers need to wait,
the degree of resource load balance, and the cost as the objective function. Then, the
optimal solution is determined based on fuzzy self-defense algorithm. The experimen-
tal results showed that the presented algorithm performed better in terms of maximum
completion time, deadline violation rate, and resource utilization compared to other al-
gorithms. But, the author didnt consider the energy consumption during the scheduling
process.
Table 1 summarizes the discussed scheduling algorithms in terms of various parameters.
An analysis of the related works in Table 1 represents that most traditional scheduling
algorithms in the cloud environment focused on minimizing makespan regardless of energy
consumption and priority constraint. Therefore, this paper introduces a novel algorithm
to address these issues. The proposed algorithm first sorts the tasks using a hierarchical
process and then optimally assigns the tasks to the resources using the HHO algorithm.
The goal of the PHHO is to make a trade-off between four objectives (i.e., makespan,
energy consumption, throughput, and resource utilization).

4 Background

This section describes the background of the AHP and the HHO algorithm.

4.1 Analytic Hierarchy Process (AHP)

AHP is a multi-criteria decision-making tool for dealing with complex decision problems
[7], [36]. In the AHP method, it is not necessary to define a complex expert system and
AHP decides based on the set of evaluation criteria and a set of alternative options. The
hierarchical model includes three levels of goal, criteria, and alternatives [10]. Figure 8
shows the hierarchical structure of AHP.
The relative values of alternatives or criteria are determined by the Saaty Rating Scale
[41]. Table 4 shows the AHP numerical scales, which vary from 1 to 9.
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Table 1: Summary of discussed scheduling strategies.
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Shojafar et
al. [45]

2015 + - - - - CloudSim Fuzzy theory and
GA

- Does not consider VM migra-
tion and energy consumption,
- The monitoring overhead is
high.

Chen et al.
[6]

2019 - + - - - Matlab Improved WOA - Does not consider sufficient
agents to search for the best re-
source,
- As the workload increases,
the scheduling overhead in-
creases,
- Does not perform well in con-
vergence speed and accuracy.

Mansouri
and Javidi
[29]

2019 + - - - - CloudSim Data, process-
ing power, and
network charac-
teristics in the job
assignment process

- Does not pay attention to
security aspect for business
clouds,
- Does not use optimization
methods.

Er-raji et al.
[12]

2018 + - - - + CloudSim Quicksort algo-
rithm

- Does not take into account
VM classification and task mi-
gration,
- The algorithm focuses only on
user satisfaction,
- Does not consider the depen-
dent tasks.

Jacob and
Pradeep [21]

2019 + - - - - CloudSim PSO and CS - Does not consider a priority,
- Does not discuss the reliabil-
ity or energy QoS parameters.

Kumar and
Venkatesan
[25]

2018 + - - - + — GA and PSO - Energy consumption is high,
-Does not take into account
SLA violation and deadline.

Elaziz et al.
[1]

2019 + - - - - CloudSim MSA and DE - Time complexity of the algo-
rithm is high,
- The presented algorithm
is single-objective and focuses
only on makespan reduction
and does not consider other
QoS parameters such as re-
source usage, energy, reliabil-
ity, etc.

Guo [15] 2021 - + - - - — Fuzzy self-defense Energy consumption is high,
- Does not consider priority
constraint.

AHP provides a way to break down a problem into a hierarchy of sub-problems for easy
evaluation. AHP steps are as follows:
Step 1) Divide the problem into hierarchies of goal, criteria, and alternatives.
Step 2) Collect data of the hierarchical structure from experts.
Step 3) Paired comparisons of the different criteria created in step 2 are organized into a
square matrix called the paired comparison matrix. The basis of AHP is the comparison
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Figure 6: AHP hierarchical structure.

Table 2: The Saaty Rating Scale.
Intensity of Im-
portance

Definition Explanation

1 Equal preference Equal contribution of two activities to the goal
3 Moderate preference One activity is slightly more important than another
5 Strong preference One activity is strongly more important than another
7 Very strong preference One activity is very strongly more important than another
9 Extreme preference One activity is extremely more important than another and is at the

highest possible level of approval
2, 4, 6, 8 Intermediate values When compromise is required
Reciprocals of the
above

If there is one of the above non-zero numbers for activity i compared to activity j, j has a reciprocal
value compared to i

matrix that can be represented as Eq. (7) [14]:

C =

{
cij = 1

cji
if i 6= j

1 if i = j
(1)

Where C ∈ Rk×k.
Step 4) For each comparison matrix, a priority vector (vector of weights) must be calcu-
lated. Calculating the priority vector is one of the basic steps in AHP. There are several
methods for computed the priority vector [13].
Step 5) The consistency of the comparison matrices is computed. If this consistency ratio
fails to reach the required level, comparisons may be reconsidered. The Consistency Ratio
(CR) is computed as follows [14]:

CR =
CI

RI
(2)

Where RI represents the random index that can be computed randomly based on the rank
of the comparison matrix. Some RI values are shown in Table 5. Also, CI represents the
consistency index and is computed based on Eq. (9) [14]:
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CI =
λmax − k
k − 1

(3)

Where λmax indicates the maximum eigenvalue of the comparison matrix. Saaty has
proved that the comparison matrix is consistent if CR < 0.1.

Table 3: Random Index (RI) [56].
n 1 2 3 4 5 6 7 8 9

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.51

4.2 Harris hawks optimization (HHO)

HHO is a recent gradient-free, population-based, and nature-inspired optimizer introduced
by Heidari et al. [17] to solve global optimization problems. The HHO is a rapid, powerful,
and high-performance optimization algorithm. The main idea of the HHO algorithm is
to imitate the social behavior of Harris hawk in nature. The HHO algorithm is largely
inspired by the chasing strategy and cooperative behavior of Harris hawks. In HHO, the
prey is considered as the best solution (that is shown with the rabbit in the HHO). The
stages of exploration and exploitation of the HHO optimizer are modeled by exploring
a prey, performing a surprise pounce, and then attacking the target prey. Depending
on the dynamic nature of the conditions and the escape behaviors of prey, the HHO
algorithm can display various attack strategies. The logical and mathematical model of
HHO consists of three main phases (i.e., exploration phase, the transition from exploration
to exploitation, and the exploitation phase) which are represented in Fig. 9. These phases
will be described in more detail below.
Exploration phase: This phase defines the hawks’ position in exploring the prey. At this
point, Harris Hawks searches for prey. In each iteration of HHO, the fitness value for each
hawk is calculated based on the target prey because all hawks are candidate solutions.
Although hawks can track and identify prey with their strong eyes, it is sometimes hard
to see prey. Hence, the hawks are waiting and monitoring the site in the hope of seeing
prey. Therefore, hawks identify prey based on two strategies. In the first strategy, hawks
find the prey based on the position of the other members. In the second strategy, hawks
detect the prey based on the perch on a random tree (Xrand).

Xi(t+ 1) =

{
Xrand(t)− r1 |Xrand(t)− 2r2X(t)| if q ≥ 0.5

(Xprey(t)−Xm(t))− ω if q < 0.5
(4)

Where Xi(t + 1) indicates the updated position of hawks in next iteration t, Xrand(t)
indicates the current position of hawks, r1, r2, r3, r4, and q indicates random numbers in
the interval (0, 1), Xprey(t) indicates the position of prey, and Xm(t) indicates the average
of the positions for all hawks, which is computed according to Eq. (11):
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Figure 7: Various phases of HHO [17].

Xm(t) =

N∑
i=1

Xi(t)

N
(5)

ω = r3(LB + r4(UBLB)) indicates the difference among upper and lower bounds of
variables.
The transition from exploration to exploitation: At this phase, the hawks transfer from
exploration to exploitation based on the escaping energy (E) of the prey. During the
escape, the prey’s energy decreases. The prey’s energy can be modeled as below:

E = 2E0

(
1− t

tmax

)
(6)

Where E represents escaping energy, E0 indicates the initial state of energy that randomly
changing in the interval (−1, 1), and tmax indicates the total number of iterations. When
the escaping energy of the prey |E| ≥ 1, HHO guides the hawk to explore various areas
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in search of the prey (exploration phase). When escaping energy of the prey is decreased
|E| < 1, hawks are in the exploitation phase and they are searching the neighborhood to
find a solution.
Exploitation Phase: At this phase, the Harris hawks attack the prey according to the
situation discovered in the previous phase. The exploitation phase has two main elements:
hawks chase strategies and prey escape behaviors because the prey always tries to escape
and the hawks follow the chase strategy. To model the hawk’s surprise pounce behavior
on prey, the following chasing strategies are introduced:
i. Soft besiege,
ii. Hard besiege,
iii. Soft besiege with progressive rapid dives, and
iv. Hard besiege with progressive rapid dives.
In HHO, the two variables |E| and r determine which strategy to use. |E| represents
the escaping energy of the prey and r represents the probability of escaping, if r < 0.5
indicates the prey has a higher chance of successful escape and if r ≥ 0.5 indicates the
failure to escape. The different types of exploitation and exploration phases are presented
in Fig. 10.

5 Background

This section describes the background of the AHP and the HHO algorithm.

5.1 Analytic Hierarchy Process (AHP)

AHP is a multi-criteria decision-making tool for dealing with complex decision problems
[7], [36]. In the AHP method, it is not necessary to define a complex expert system and
AHP decides based on the set of evaluation criteria and a set of alternative options. The
hierarchical model includes three levels of goal, criteria, and alternatives [10]. Figure 8
shows the hierarchical structure of AHP.
The relative values of alternatives or criteria are determined by the Saaty Rating Scale
[41]. Table 4 shows the AHP numerical scales, which vary from 1 to 9.

Table 4: The Saaty Rating Scale.
Intensity of Im-
portance

Definition Explanation

1 Equal preference Equal contribution of two activities to the goal
3 Moderate preference One activity is slightly more important than another
5 Strong preference One activity is strongly more important than another
7 Very strong preference One activity is very strongly more important than another
9 Extreme preference One activity is extremely more important than another and is at the

highest possible level of approval
2, 4, 6, 8 Intermediate values When compromise is required
Reciprocals of the
above

If there is one of the above non-zero numbers for activity i compared to activity j, j has a reciprocal
value compared to i
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Figure 8: AHP hierarchical structure.

AHP provides a way to break down a problem into a hierarchy of sub-problems for easy
evaluation. AHP steps are as follows:
Step 1) Divide the problem into hierarchies of goal, criteria, and alternatives.
Step 2) Collect data of the hierarchical structure from experts.
Step 3) Paired comparisons of the different criteria created in step 2 are organized into a
square matrix called the paired comparison matrix. The basis of AHP is the comparison
matrix that can be represented as Eq. (7) [14]:

C =

{
cij = 1

cji
if i 6= j

1 if i = j
(7)

Where C ∈ Rk×k.
Step 4) For each comparison matrix, a priority vector (vector of weights) must be calcu-
lated. Calculating the priority vector is one of the basic steps in AHP. There are several
methods for computed the priority vector [13].
Step 5) The consistency of the comparison matrices is computed. If this consistency ratio
fails to reach the required level, comparisons may be reconsidered. The Consistency Ratio
(CR) is computed as follows [14]:

CR =
CI

RI
(8)

Where RI represents the random index that can be computed randomly based on the rank
of the comparison matrix. Some RI values are shown in Table 5. Also, CI represents the
consistency index and is computed based on Eq. (9) [14]:

CI =
λmax − k
k − 1

(9)
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Where λmax indicates the maximum eigenvalue of the comparison matrix. Saaty has
proved that the comparison matrix is consistent if CR < 0.1.

Table 5: Random Index (RI) [56].
n 1 2 3 4 5 6 7 8 9

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.51

5.2 Harris hawks optimization (HHO)

HHO is a recent gradient-free, population-based, and nature-inspired optimizer introduced
by Heidari et al. [17] to solve global optimization problems. The HHO is a rapid, powerful,
and high-performance optimization algorithm. The main idea of the HHO algorithm is
to imitate the social behavior of Harris hawk in nature. The HHO algorithm is largely
inspired by the chasing strategy and cooperative behavior of Harris hawks. In HHO, the
prey is considered as the best solution (that is shown with the rabbit in the HHO). The
stages of exploration and exploitation of the HHO optimizer are modeled by exploring
a prey, performing a surprise pounce, and then attacking the target prey. Depending
on the dynamic nature of the conditions and the escape behaviors of prey, the HHO
algorithm can display various attack strategies. The logical and mathematical model of
HHO consists of three main phases (i.e., exploration phase, the transition from exploration
to exploitation, and the exploitation phase) which are represented in Fig. 9. These phases
will be described in more detail below.
Exploration phase: This phase defines the hawks’ position in exploring the prey. At this
point, Harris Hawks searches for prey. In each iteration of HHO, the fitness value for each
hawk is calculated based on the target prey because all hawks are candidate solutions.
Although hawks can track and identify prey with their strong eyes, it is sometimes hard
to see prey. Hence, the hawks are waiting and monitoring the site in the hope of seeing
prey. Therefore, hawks identify prey based on two strategies. In the first strategy, hawks
find the prey based on the position of the other members. In the second strategy, hawks
detect the prey based on the perch on a random tree (Xrand).

Xi(t+ 1) =

{
Xrand(t)− r1 |Xrand(t)− 2r2X(t)| if q ≥ 0.5

(Xprey(t)−Xm(t))− ω if q < 0.5
(10)

Where Xi(t + 1) indicates the updated position of hawks in next iteration t, Xrand(t)
indicates the current position of hawks, r1, r2, r3, r4, and q indicates random numbers in
the interval (0, 1), Xprey(t) indicates the position of prey, and Xm(t) indicates the average
of the positions for all hawks, which is computed according to Eq. (11):

Xm(t) =

N∑
i=1

Xi(t)

N
(11)
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Figure 9: Various phases of HHO [17].

ω = r3(LB + r4(UBLB)) indicates the difference among upper and lower bounds of
variables.
The transition from exploration to exploitation: At this phase, the hawks transfer from
exploration to exploitation based on the escaping energy (E) of the prey. During the
escape, the prey’s energy decreases. The prey’s energy can be modeled as below:

E = 2E0

(
1− t

tmax

)
(12)

Where E represents escaping energy, E0 indicates the initial state of energy that randomly
changing in the interval (−1, 1), and tmax indicates the total number of iterations. When
the escaping energy of the prey |E| ≥ 1, HHO guides the hawk to explore various areas
in search of the prey (exploration phase). When escaping energy of the prey is decreased
|E| < 1, hawks are in the exploitation phase and they are searching the neighborhood to
find a solution.
Exploitation Phase: At this phase, the Harris hawks attack the prey according to the
situation discovered in the previous phase. The exploitation phase has two main elements:
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hawks chase strategies and prey escape behaviors because the prey always tries to escape
and the hawks follow the chase strategy. To model the hawk’s surprise pounce behavior
on prey, the following chasing strategies are introduced:
i. Soft besiege,
ii. Hard besiege,
iii. Soft besiege with progressive rapid dives, and
iv. Hard besiege with progressive rapid dives.
In HHO, the two variables |E| and r determine which strategy to use. |E| represents
the escaping energy of the prey and r represents the probability of escaping, if r < 0.5
indicates the prey has a higher chance of successful escape and if r ≥ 0.5 indicates the
failure to escape. The different types of exploitation and exploration phases are presented
in Fig. 10.

Figure 10: The exploration phase and the exploitation phases of the HHO [47].

i) Soft besiege: It |E| ≥ 0.5 and r ≥ 0.5, then soft besiege occurs. Since in this case the
prey still has some energy to escape, the hawks softly surround the prey to losing more
energy before a surprise pounce. Thus, the prey cannot escape successfully because the
prey’s energy is discharged during the escape from the hawks. The soft besiege is modeled
by Eq. (13).

Xi(t+ 1) = ∆X(t)− E |JXprey(t)−X(t)| (13)

∆X(t) = Xprey(t)−X(t) (14)

Where ∆X(t) represents the difference between prey position and the current position in
iteration t, J = 2 (1− r5) refers to the random jump strength of the prey throughout the
escaping procedure which changed randomly in each iteration, and r5 refers to a random
number in the interval (0, 1).
ii) Hard besiege: When |E| < 0.5 and r ≥ 0.5 hard besiege takes place. In this case, the
prey cannot escape successfully because it is very tired and has a low chance of escape.
In this position, the hawk hardly encircles around the prey to make the final surprise
pounce. The updated positions of the hawks are obtained by Eq. (15).
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X(t+ 1) = Xprey(t)− E |∆X(t)| (15)

iii) Soft besiege with progressive rapid dives: If |E| ≥ 0.5 and r < 0.5, then soft besiege
with progressive rapid dives occurs. In this case, the prey still has enough energy to
successfully escape from the attack. In such a situation, the hawks must decide to make
the best possible dive toward the prey. For this purpose, the hawks can make several
moves, evaluate the new moves using Eq. (16), and then compare the result of the move
with the last dive towards the prey. If the result of the comparison does not lead to the
specification of the best dive towards the prey, then hawks start performing rapid and
irregular dives based on Levy flight (LF), as formulated in Eq. (17).

Y = Xprey(t)− E|JXprey(t)−X(t)| (16)

Z = Y + S × LF (D) (17)

Where D and S show the problem dimension and a random vector with size 1 × D,
respectively. The levy flight function (LF ) is calculated as below:

LF = 0.01× u× σ
|v|

1
β

, σ =

(
Γ (1 + β)× sin

(
πβ
2

)
Γ
(

1+β
2

)
× β × 2

(β−1)
2

) 1
β

(18)

Where u and v indicate random values in the range (0, 1), and β indicates a constant set
to 1.5.
Thus, the final equation for updating the positions of hawks in soft besiege with progressive
rapid dives strategy can be computed as follows:

X(t+ 1) =

{
Y if F (Y ) < F (X(t))

Z if F (Z) < F (X(t))
(19)

Where F represents a fitness function for an optimization problem, and Y and Z are
computed using Eq. 16 and Eq. 17, respectively.
iv) Hard besiege with progressive rapid dives: If |E| < 0.5 and r < 0.5, then hard besiege
with progressive rapid dives takes place. In this case, the prey does not have enough
energy to escape, and the hawks create a hard besiege. In such a situation, the Harris
hawks try to approach the prey with rapid dives to reduce the distance before making a
surprise pounce to catch the prey. This strategy is modeled based on Eq. 20.

X(t+ 1) =

{
Y ′ if F (Y ′) < F (X(t))

Z ′ if F (Z ′) < F (X(t))
(20)

Where Y ′ and Z ′ are calculated as follows:

Y ′ = Xprey(t)− E|JXprey(t)−Xm(t)| (21)



133 N. Mansouri / JAC 53 issue 2, December 2021, PP. 113 - 156

Z ′ = Y ′ + S × LF (D) (22)

Where Xm(t) is obtained using Eq. 11.
The flowchart of the HHO algorithm is represented in Fig. 11.

Figure 11: Flowchart of HHO algorithm.

6 Proposed Task Scheduling Algorithm (PHHO)

Figure 12 describes the proposed algorithm architecture in the cloud environment. The
cloud environment receives a variety of tasks. The PHHO algorithm applies the AHP to
manage the priority of tasks based on length and memory. The main goal of the pro-
posed task algorithm is to decrease makespan and energy consumption while improving
resource utilization and throughput. when tasks are prioritized, they are managed in the
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task queue. The proposed algorithm uses HHO to optimally assign tasks to resources.
This section includes four sub-sections. In subsection 6.1, the related concepts of task
scheduling in the cloud system are given. Subsection 6.2 describes the hierarchical pro-
cess for assigning priority to tasks, Subsection 6.3 describes the objective functions and
mathematical models, and Subsection 6.4 presents the proposed algorithm.

Figure 12: Presented architecture for task allocation.

6.1 System Model

Task Scheduling is the utilization of available resources by organizing incoming requests
(tasks) in a specific style. In the cloud environment, tasks are scheduled to improve
the performance of different QoS parameters. To model the task scheduling problem,
it is assumed that all submitted tasks are independent, tasks cannot migrate between
VMs, and VMs are heterogeneous and have various processing and power consumption
capabilities. Consider the cloud consists of m number of VMs that are represented as
VM = {VM1, V M2, ..., V Mm}, where VMj indicates the j − th VM. The task set is
defined by T = {T1, T2, ..., Tn}, where Ti represents the i− th task.
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6.2 Analytic Hierarchy Process for task priorities

The hierarchical process optimizes decisions based on various criteria. The AHP as a
multi-criteria decision-maker has different applications such as strategic scheduling, busi-
ness or public policy, resource allocation, resource selection, and many more. One of
AHP’s applications is that it can be used to prioritize tasks in the task scheduling prob-
lem. The PHHO algorithm applies the AHP to prioritize input tasks. Before executing
the optimization algorithm, a hierarchical process is applied to the tasks. The proposed
algorithm considers two parameters (i.e. task length and task memory). Tasks priorities
are determined by task length and task memory. In the PHHO algorithm, the arithmetic
mean method is applied to calculate the weights. The AHP procedure for prioritizing
tasks is shown in Algorithm 1.

Algorithm 1. AHP

Input: Set of tasks T = {T1, T2, ..., Tn} includes their length L = {L1, L2, ..., Ln} and memory M =
{M1,M2, ...,Mn}
Output: Prioritized tasks TP
Begin

1. Submit input T to the cloud
2. Consider the parameters length and memory of each task Ti
3. Assign priority to each task to create comparison matrices
4. Add the values on each column X = (X1, X2, , Xn)
5. Divide each matrix element into Xi
6. Convert the value of each element to a decimal
7. Calculate the average of each row
8. Calculate the final weight by the sum of the product of the significance of the criteria in the weight of the

alternatives
9. Calculate Consistency Ratio using Eq. (8)
10. Rearrange tasks according to priorities

End

6.3 Objective Function

This section explains the different objectives (i.e., makespan, resource utilization, through-
put, and energy consumption) that are used during the scheduling process. The objectives
are makespan, resource utilization, throughput, and energy consumption. The objective
function is computed as follows:
Makespan: Makespan can be defined as the time it takes from the moment a user sends
a request to the completion of the last task. Minimizing the entire execution time, while
mapping tasks to VMs, also decreases execution costs. Therefore, makespan is considered
as one of the principal objectives in task scheduling, which decreases the length of the
schedule while meeting the needs of the user. Makespan can be defined by Eq. (23) [22]:

MS = max (ETj) , 1 ≤ j ≤ m (23)

Where ETj represents the execution time of the VMj and it is computed based on the
decision variable Aij.

Aij =

{
1 if Ti is assigned to VMj

0 if Ti is not assigned to VMj

(24)
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ETj =
n∑
i=1

Aij × CTij (25)

Where CTij represents the completion time of the task Ti in the VMj and it is calculated
by Eq. (26):

CTij =
Leni
PTj

(26)

Where Leni is the length of the task Ti and length of the task is described in terms of
the number of instructions (Millions of Instruction) and PTj is the processing time of the
VMj in the cloud.
Resource Utilization: Resource utilization is another important parameter in task schedul-
ing, which refers to the most use of leased cloud resources for effective task allocation.
This parameter is very significant for CSPs because service providers want to get the max-
imum profit by renting a limited number of resources. Any time when leased resources
(VMs) are not used is a cost. We try to maximize the utilization of resources because
it decreases costs and increases the profits of service providers. The resources utilization
with an inverse linear relationship is related to makespan as follows [35]:

RU(VMij) =
CTij
MS

(27)

The average resource utilization can be calculated by Eq. (28):

ARU(VMij) =

m∑
j=1

RU(VMij)

m
(28)

Throughput: Throughput is the rate of success at which a resource can execute a certain
number of tasks in a given time. In other words, it measures the number of tasks completed
per unit of time. The term throughput is commonly applied to show the ability of a system
to deliver (i.e., the speed rate in processing) customer requests. It can be computed by
Eq. (29) [35]:

Th =
RU(VMij)

MS
(29)

The average throughput can be applied by Eq. (30).

ATh =
m∑
j=1

Th (30)

Energy Consumption: In recent years, reducing energy consumption has become one of
the critical challenges of organizations, and governments. There are worldwide concerns
about minimizing energy consumption, as increasing energy consumption will increase
carbon emissions and hurt the environment. In the cloud environment, executing tasks
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consumes a lot of energy due to a large number of tasks. During the execution of tasks, a
VM can be in an active state or idle state. The idle state of a VM consumes 60%-70% of
the energy consumption of the active state of that VM. Accordingly, consider αj joules/
Millions of instruction consumed by VMj in the active state and βj joules/Millions of
instruction consumed by VMj in the idle state. A VMj remains (ETj) second in active
state and (MS−ETj) second in the idle state. The mathematical representation of total
energy consumption can be calculated by Eq. (31) [4]:

TEC =
m∑
j=1

[[ETj × αj + (MS − ETj)× βj]× PSj] (31)

To measure the efficiency of each algorithm and user satisfaction, the makespan must be
minimized. Resource utilization must be considerably improved on the server to maximize
overall system throughput. Energy must also be minimized to increase system efficiency.
Although these parameters are conflicting, the PHHO algorithm has considered all four
parameters in the fitness function (e.g., although using a powerful CPU speeds up the
processing of a task, energy consumption also increases). The effectiveness of each meta-
algorithm is evaluated based on a fitness function that is problem-dependent. Therefore,
the fitness function is formulated by considering the weight value for each objective as
follows:

Fopt = min

{
λ1 ×

MS

MaxMS
+ λ2 ×

1

ARU
+ λ3 ×

1

ATh
+ λ4 ×

TEC

MaxEC

}
(32)

Where λ1, λ2, λ3, λ4 are weight values in the range [0, 1], MaxMS indicates maximum
makespan, and MaxEC indicates maximum energy consumption.

6.4 Proposed Algorithm

The flowchart of the PHHO algorithm is demonstrated in Fig. 13. The major steps of
the presented algorithm can be summarized as below:
1) Initialize parameters such as number of tasks, number of VMs, upper bound and lower
bound, number of search agents, positions of Harris hawks, and maximum number of
iterations.
2) Prioritize tasks according to the AHP model.
3) Rearrange tasks based on their priority.
4) Start searching for the optimal solution using the HHO algorithm. In this step, ac-
cording to the position of each hawk, the fitness value of each hawk is calculated using
Eq. (32). The hawk with the smallest fitness value is recorded as the current optimal
solution (considered as the position of the prey).
5) Update the position of the Harris hawks.
6) When the position of all the hawks is updated, one iteration is performed. If the
maximum number of iterations is reached, the search process ends. Otherwise, go to
step 4 for a new search. Once the specified iterations are reached, the prey position is
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considered the best solution and transferred to the decision variables aij as the best task
scheduling solution.

Figure 13: Flowchart of the PHHO algorithm.

7 Experimental results and performance analysis

The scheduling algorithms are simulated on Intel(R) Core(TM) i5-7200U CPU with 2.50
GHz, Windows 10 Pro platform, and using MATLAB R2018a. The meta-heuristic algo-
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rithms proposed for comparison are GA [18], PSO [23], ACO [9], MFO [31], WOA [33],
and SSA [32]. To evaluate the efficiency of the PHHO algorithm, the comparison is based
on four parameters: makespan, resource utilization, throughput, and energy consumption.
In the following, four different scenarios are presented to validate the proposed algorithm.

7.1 Simulation with different numbers of tasks

In this scenario, the number of input tasks varies from 200 to 800 at intervals of 200, and
the total number of VMs is considered constant. Table 6 lists the characteristics of the
cloud system and the HHO algorithm.

Table 6: Simulation environment (different number of tasks).
Parameters Values
Number of tasks 200-800
Tasks size (MI) 100-5000
Task Memory 256-512 MB
Number of VMs 50
VMs execution speed (MIPS) 500-9000
Maximum iteration 100
Population size 50
E0 (-1, 1)

Makespan represents the necessary time to complete all tasks of the system. Measuring
the makespan is one of the most significant parameters in the scheduling problem because
reducing the makespan helps to minimize execution cost and meet the deadline of the task.
Figure 14 represents the performance result of the PHHO algorithm for makespan. The y-
axis shows the effect on a makespan when the number of tasks is increasing. As illustrated
in Fig. 14, with the increasing number of tasks, makespan increases. In addition, the HHO
algorithm performs better in terms of makespan minimization compared to other methods.
Makespan minimization by HHO is 27%38% lower than that of GA for 200 through 800
number of tasks, respectively. Also, makespan minimization by HHO is 74%49% lower
than that of ACO for 200 through 800 number of tasks, respectively. This is because GA
and ACO have poor exploitation capability.
The resource utilization criterion represents how resources are used. It can be observed
from Fig. 15 that the HHO algorithm is the best in terms of resource utilization for
a higher number of tasks. The comparison results for 400 tasks show that calculated
resource utilization by HHO is approximately 29%, 20%, 58%, 16%, 12%, 14%, more
than GA, PSO, ACO, WOA, SSA, and MFO, respectively.
Higher throughput values indicate that the scheduling algorithm is more efficient. High
throughput means that more tasks are executed per unit time. Figure 16 represents the
experimental results for different algorithms. It can be observed that HHO for 800 tasks
achieves 59%, 27%, 71%, 19%, 13%, and 24% higher throughput than GA, PSO, ACO,
WOA, SSA, and MFO, respectively. This indicates that HHO has increased scheduling
efficiency in terms of the number of tasks processed by VMs.
In the cloud data center, task scheduling is the heart of successful energy management.
CPU utilization and resource utilization will directly affect a task’s energy consumption.



140 N. Mansouri / JAC 53 issue 2, December 2021, PP. 113 - 156

Figure 14: Makespan for the different number of tasks.

Figure 15: Resource utilization for the different number of tasks.

If the CPU is not used properly, the energy consumption will be high because idle power
has not been used effectively. Sometimes due to high demand for resources, energy con-
sumption is high and this may reduce the efficiency of the system. Scheduling decisions
are significant to finding the right assignment of tasks to resources to reduce energy con-
sumption by resources. Figure 17 shows the amount of energy consumption using different
algorithms. As the results show, HHO reduces energy consumption compared to other
algorithms and thus improves performance. Also, it can be seen that ACO has the worst
performance among all algorithms due to its low exploitation capability. The results in-
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Figure 16: Throughput for the different number of tasks.

dicate that HHO can be used effectively for task scheduling for the different number of
tasks with a fixed number of VMs. This is because HHO does not get involved in local
optimal and has good exploration and exploitation capabilities.

Figure 17: Energy consumption for the different number of tasks.

7.2 Simulation with different numbers of VMs

In the second scenario, the number of input tasks is 500 which is fixed, and the number
of VMs varies from 10 to 40 at intervals of 10. The parameters setting are shown in Table
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7.

Table 7: Simulation environment (different number of VMs).
Parameters Values
Number of tasks 500
Tasks size (MI) 100-5000
Task Memory 256-512 MB
Number of VMs 10-40
VMs execution speed (MIPS) 500-9000
Maximum iteration 100
Population size 60
E0 (-1, 1)

To have efficient scheduling, makespan must be decreased. Makespan is described as
the maximum completion time of the tasks between VMs. Figure 23 represents the per-
formance of different algorithms in terms of makespan for various numbers of VMs. It
is expected that the makespan reduces as the number of VMs increases. These results
show that HHO improves the performance compared to other algorithms and the use of a
variable number of VMs does not negatively affect HHO performance. The improvement
rates for 40 VMs are 42%, 21%, 67%, 15%, 38%, and 31% over GA, PSO, ACO, WOA,
SSA, and MFO, respectively.

Figure 18: Makespan for the different number of VMs.

One of the main parameters in scheduling is maximizing resource utilization, which means
keeping resources as busy as possible. An efficient scheduling algorithm is needed to
make better utilization of resources. Resource utilization is significantly affected by the
makespan reduction for different numbers of VMs. This is due to the consideration of
fitness function which is inversely proportional to the makespan. Figure 24 represents
the improvement of the HHO algorithm in resource utilization compared to the other
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algorithms with different numbers of VMs. Also, it can be found that ACO has the worst
performance compared to other algorithms. The X-axis represents the number of VMs,
and the Y-axis indicates resource utilization.

Figure 19: Resource utilization for the different number of VMs.

Throughput is a significant criterion in specifying the success of an efficient scheduling
algorithm. Throughput is the number of tasks being processed by VMs per unit time.
Higher values of throughput indicate better results. The results are illustrated in Figure
25. It can be observed that the throughput maximization by HHO is 40%52% higher than
that of SSA for 10 through 40 VMs, respectively. Also, the throughput maximization by
HHO is 8%40% higher than that of MFO for 10 through 40 VMs, respectively.
Energy consumption is one of the key parameters in maximizing the overall performance
of the cloud system. There is a direct relationship between energy consumption and
resource utilization because the optimal use of resources reduces energy consumption in a
server. Figure 19 shows the energy consumption of varying VMs for different algorithms.
As shown in Fig. 26, the energy consumption is proportional to the number of VMs in the
cloud. As the number of VMs increases, the energy consumption increases. The proposed
algorithm decreases energy consumption by up to 29%, 11%, 57%, 6%, 27%, and 18%,
compared to GA, PSO, ACO, WOA, SSA, and MFO, respectively. It can be seen that the
HHO can perform better for a various number of VMs with a certain number of tasks than
other algorithms. This is due to the balance between the exploration and exploitation
capability of the HHO algorithm.

7.3 Simulation with different number of iterations

In this scenario, the number of input tasks and the number of VMs are fixed (see Table
10).
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Figure 20: Throughput for the different number of VMs.

Figure 21: Energy consumption for the different number of VMs.

Figure 27 shows a comparison of seven algorithms with an increasing number of iterations.
As can be seen, PSO and WOA work better than GA and ACO, respectively. Because
GA and ACO have poor exploitation capability. Also, it can be found that SSA and
MFO are more efficient than PSO and WOA because they have better search capability.
In addition, it can be found that HHO has the best performance. This is because HHO
can find its optimal solution faster than other algorithms. In other words, HHO has much
better convergence speed and accuracy than other algorithms. Therefore, it can be found
that HHO can have a strong ability to solve complex optimization problems due to its
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Table 8: Simulation environment (different number of iterations).
Parameters Values
Number of tasks 500
Tasks size (MI) 100-5000
Task Memory 256-512 MB
Number of VMs 25
VMs execution speed (MIPS) 500-9000
Maximum iteration 100
Population size 60
E0 (-1, 1)

suitable transition from exploration to exploitation.

Figure 22: Convergence plot according to the number of iterations.

7.4 Comparison between priority and non-priority scheduling
algorithm

In the last scenario, the proposed algorithm is compared with the case that does not take
into account the priority. Table 11 shows the setting of parameters.

Table 9: Simulation environment (different number of iterations).
Parameters Values
Number of tasks 800
Tasks size (MI) 100-5000
Task Memory 256-512 MB
Number of VMs 15
VMs execution speed (MIPS) 500-9000
Maximum iteration 100
Population size 40
E0 (-1, 1)
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To have efficient scheduling, makespan must be decreased. Makespan is described as
the maximum completion time of the tasks between VMs. Figure 23 represents the per-
formance of different algorithms in terms of makespan for various numbers of VMs. It
is expected that the makespan reduces as the number of VMs increases. These results
show that HHO improves the performance compared to other algorithms and the use of a
variable number of VMs does not negatively affect HHO performance. The improvement
rates for 40 VMs are 42%, 21%, 67%, 15%, 38%, and 31% over GA, PSO, ACO, WOA,
SSA, and MFO, respectively.

Figure 23: Makespan for the different number of VMs.

One of the main parameters in scheduling is maximizing resource utilization, which means
keeping resources as busy as possible. An efficient scheduling algorithm is needed to
make better utilization of resources. Resource utilization is significantly affected by the
makespan reduction for different numbers of VMs. This is due to the consideration of
fitness function which is inversely proportional to the makespan. Figure 24 represents
the improvement of the HHO algorithm in resource utilization compared to the other
algorithms with different numbers of VMs. Also, it can be found that ACO has the worst
performance compared to other algorithms. The X-axis represents the number of VMs,
and the Y-axis indicates resource utilization.
Throughput is a significant criterion in specifying the success of an efficient scheduling
algorithm. Throughput is the number of tasks being processed by VMs per unit time.
Higher values of throughput indicate better results. The results are illustrated in Figure
25. It can be observed that the throughput maximization by HHO is 40%52% higher than
that of SSA for 10 through 40 VMs, respectively. Also, the throughput maximization by
HHO is 8%40% higher than that of MFO for 10 through 40 VMs, respectively.
Energy consumption is one of the key parameters in maximizing the overall performance
of the cloud system. There is a direct relationship between energy consumption and
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Figure 24: Resource utilization for the different number of VMs.

Figure 25: Throughput for the different number of VMs.

resource utilization because the optimal use of resources reduces energy consumption in a
server. Figure 19 shows the energy consumption of varying VMs for different algorithms.
As shown in Fig. 26, the energy consumption is proportional to the number of VMs in the
cloud. As the number of VMs increases, the energy consumption increases. The proposed
algorithm decreases energy consumption by up to 29%, 11%, 57%, 6%, 27%, and 18%,
compared to GA, PSO, ACO, WOA, SSA, and MFO, respectively. It can be seen that the
HHO can perform better for a various number of VMs with a certain number of tasks than
other algorithms. This is due to the balance between the exploration and exploitation
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capability of the HHO algorithm.

Figure 26: Energy consumption for the different number of VMs.

7.5 Simulation with different number of iterations

In this scenario, the number of input tasks and the number of VMs are fixed (see Table
10).

Table 10: Simulation environment (different number of iterations).
Parameters Values
Number of tasks 500
Tasks size (MI) 100-5000
Task Memory 256-512 MB
Number of VMs 25
VMs execution speed (MIPS) 500-9000
Maximum iteration 100
Population size 60
E0 (-1, 1)

Figure 27 shows a comparison of seven algorithms with an increasing number of iterations.
As can be seen, PSO and WOA work better than GA and ACO, respectively. Because
GA and ACO have poor exploitation capability. Also, it can be found that SSA and
MFO are more efficient than PSO and WOA because they have better search capability.
In addition, it can be found that HHO has the best performance. This is because HHO
can find its optimal solution faster than other algorithms. In other words, HHO has much
better convergence speed and accuracy than other algorithms. Therefore, it can be found
that HHO can have a strong ability to solve complex optimization problems due to its
suitable transition from exploration to exploitation.
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Figure 27: Convergence plot according to the number of iterations.

7.6 Comparison between priority and non-priority scheduling
algorithm

In the last scenario, the proposed algorithm is compared with the case that does not take
into account the priority. Table 11 shows the setting of parameters.

Table 11: Simulation environment (different number of iterations).
Parameters Values
Number of tasks 800
Tasks size (MI) 100-5000
Task Memory 256-512 MB
Number of VMs 15
VMs execution speed (MIPS) 500-9000
Maximum iteration 100
Population size 40
E0 (-1, 1)

Figures 28 to 31 show the performance of the task scheduling algorithm with and without
priority phase. It can be observed that when tasks are prioritized, the task scheduling
algorithm performs better in terms of makespan, resource utilization, throughput, and
energy consumption compared to the case where priority is not considered. This is because
tasks with less length and memory have higher priority and are performed faster, which
improves system efficiency.

8 Conclusion and Future works

Assigning tasks to VMs properly is a challenging issue in the cloud environment. Many al-
gorithms have been presented to optimize the scheduling process in the cloud but existing
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Figure 28: Makespan for PHHO vs. HHO.

Figure 29: Resource utilization for PHHO vs. HHO.

algorithms usually do not take into account conflicting parameters such as makespan and
energy consumption. Therefore, this paper presents an efficient task scheduling algorithm
that uses a hierarchical process to prioritize tasks before sending them to the scheduler.
Then, it optimally assigns tasks to resources using the new meta-heuristic HHO algorithm.
The goal of the proposed algorithm is to make a trade-off between makespan, energy con-
sumption, throughput, and resource utilization. The experimental results showed that
the proposed algorithm performed better in terms of makespan, energy consumption, re-
source utilization, and throughput compared to GA, PSO, WOA, SSA, ACO, and MFO.
In addition, the HHO has a better convergence speed compared to other algorithms due
to the balance between exploration and exploitation capability. In future studies, the
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Figure 30: Throughput for PHHO vs. HHO.

Figure 31: Energy consumption for PHHO vs. HHO.

other QoS parameters like security, and availability need to be applied. We will also use
a combination of the HHO algorithm with other meta-heuristic algorithms to improve
scheduling efficiency. Finally, to reduce the scheduling overhead of the algorithm for a
large workload, the parallel implementation of the algorithm in cloud environments is
suggested.
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