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Abstract

Linear and homogeneous recurrence equations having polynomial coefficients are said to
be holonomic. These equations are useful for proving and discovering combinatorial and
hypergeometric identities. Given a field K of characteristic zero, an is a hypergeometric
term with respect to K, if the ratio an+1/an is a rational function over K. Two algorithms
by Marko Petkovšek (1993) and Mark van Hoeij (1999) were proposed to compute hy-
pergeometric term solutions of holonomic recurrence equations. The latter algorithm is
more efficient and was implemented by its author in the Computer Algebra System (CAS)
Maple through the command LREtools[hypergeomsols].
We describe a variant of van Hoeij’s algorithm that performs with the same efficiency
without considering certain recommendations of the original version. We implemented
our algorithm in the CASes Maxima and Maple. It also appears for some particular cases
that our code finds results where LREtools[hypergeomsols] fails.
Our implementation is part of the FPS software which can be downloaded at http://
www.mathematik.uni-kassel.de/˜bteguia/FPS_webpage/FPS.htm. The
command is HypervanHoeij for Maxima 5.44 and rectohyperterm for Maple
2021.
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1. Introduction

Let K be a field of characteristic zero. K is mostly a finite extension field of the rationals.
A hypergeometric term can always be written in the form

Cn ·R(n) · h(n), (1)

where C ∈ K, R(n) ∈ K(n), and h(n) is a hypergeometric term expressed in terms of
factorials and shifted factorials (Pochhammer symbols1) such that h(n+ 1)/h(n) ∈ K(n)
is monic (see [5], [15, Chapter 6]). Notice that the representation (1) is unique if we
choose to write Pochhammer terms as (p)n with the real part of p in a fixed half-open real
interval of unit amplitude. This rewriting creates a multiplicative rational function that is
taken into account when computing R(n). We will consider the interval I = (0, 1] in our
algorithm, and say that Pochhammer parts, corresponding to h(n), is taken modulo the
integers (Z) with respect to I.

Example 1. 3nn! and 7n n
2+1
n+2

(1/3)n
(3/4)n

are two hypergeometric terms of the form (1).

We consider recurrence equations of the form

d∑
i=0

Pi(n) · an+i = 0, d ∈ N, (2)

for the indeterminate term an, and the coefficients Pi(n) ∈ K[n], i = 0, . . . , d. Two main
algorithms were proposed to find all hypergeometric term solutions of (2).
Petkovšek’s approach presented in [12], focuses on the computation of ratios2 of hyper-
geometric term solutions and look for formulas afterward. However, his algorithm has an
exponential worst-case complexity on the degree of P0 and Pd. Thus this approach could
not be considered as conclusive for such computations. The commands solve rec of the
CAS Maxima and originally RSolve of Mathematica implement Petkovšek’s algorithm.
Van Hoeij’s approach first described in [19] is much more efficient, and finds, moreover,
a basis of hypergeometric term solutions of (2). Note that the final output in Petkovšek’s
algorithm is not necessarily a basis. Computational details of van Hoeij’s algorithm were
more explained and complemented in [5]. Another important point to notice in this algo-
rithm is how unnecessary splitting fields that increase the running time during computa-
tions are avoided.

1For a given constant p, the Pochhammer symbol (p)n is 1 if n = 0 and p · (p + 1) · · · (p + n − 1) if n
is a positive integer.

2an+1/an for a hypergeometric term an.
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Definition 2. (see [19, Definition 9], [5, Definition 8]) A point p+Z, p ∈ K is called finite
singularity of (2) if there exists τ ∈ Z such that p+ τ is a root of Pd(n− d) · P0(n).

From this definition where invariance modulo the integers is put forward, one can see the
connection between finite singularities and our rewriting of hypergeometric term Pochham-
mer parts.
The power of van Hoeij’s algorithm comes from the following main concepts:

(1) local types3 at infinity of hypergeometric term solutions of (2),

(2) local types or valuation growths of hypergeometric term solutions at finite singular-
ities of (2).

The computations of (1) and (2) constitute the key steps of van Hoeij’s algorithm and that
is where our approach proceeds differently (see [15, Chapter 6]).

• For (1), van Hoeij’s algorithm uses the Newton polygon algorithm whereas we use a
method based on asymptotic expansion inspired by Petkovšek’s algorithm Poly (see
[12]).

• Computing (2) is inherent in van Hoeij’s algorithm, but in our approach, this is
automatically considered in the way we construct h(n) in (1) by taking monic factors
modulo the integers of P0 and Pd(n − d). This consideration is valid thanks to
Petkovšek’s approach.

Apart from these essential differences, it is not trivial to notice that both algorithms do the
same thing, because their step orderings do not coincide either.
Hypergeometric terms are usually defined for evaluations at non-negative integers; for in-
stance, combinatorics and power series coefficients (see [9], [10, Section 10.26], [15],
[17]). This is settled in our approach by considering Pochhammer parts modulo the
integers with respect to I. Contrary to the current Maple (Maple 2021) LREtools
[hypergeomsols], this choice is independent of the recurrence equation considered.
Sometimes LREtools[hypergeomsols] uses different Gamma representations for
each hypergeometric term solution and this prevents the obtained basis to be used as a
whole. One should also notice that the Pochhammer or factorial notations are closer to
the combinatorial meaning than the Gamma notation which may give inconvenient results
with evaluation like Γ(1/2) =

√
π. We will use the terminology “simple” formula for

h(n) to denote the representation in terms of factorials or Pochhammer symbols modulo
the integers with respect to I.
Let us give an illustrative example.

3This notion was introduced to study the local properties of difference operators at infinity (see [4, 6])
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Example 3. Consider the following holonomic recurrence equation

81n3(− 2 + n)(2592n15 + 56592n14 + 566784n13 + 3438888n12 + 14040866

n11 + 40413165n10 + 83014167n9 + 118689722n8 + 105269208n7 + 24761376n6

−78424336n5−131026944n4−108917280n3−54383616n2−15593472n−1990656)

(− 1 + n)3(1 + 2n)5an − (− 1 + n)(6718464n24 + 165722112n23 + 1895913216n22

+ 13287379968n21 + 63281637504n20 + 213327813888n19 + 505402785504n18

+ 757111794432n17 + 271146179476n16 − 2121306037512n15 − 7223796390373n14

− 14217526943124n13 − 20381899157262n12 − 22697247078996n11

− 20140632084597n10− 14388789455784n9− 8294073141060n8− 3843447511168n7

− 1418994576624n6 − 411122122112n5 − 91298680512n4 − 14978958336n3

− 1708259328n2 − 120766464n− 3981312)(n+ 1)3an+1 + 32 (2592n15

+ 17712n14 + 46656n13 + 41208n12 − 78046n11 − 305161n10

− 498877n9 − 523438n8 − 374752n7 − 212350n6 − 77798n5

− 23024n4 − 4682n3 − 641n2 − 53n− 2)(n+ 2)3(3n+ 4)4an+2 = 0 (3)

Our Maple and Maxima implementation finds the following output with CPU times 0.172
and 0.328 second, respectively.{

n !3(
1
3

)
n

4
(n− 1)3 n6

,
n (2n) !5

(n− 2) (n− 1) 45n n !4

}
. (4)

Observe that all Pochhammer parts can be evaluated at non-negative integers.
Maple 2021 LREtools[hypergeomsols] finds[

Γ (n− 2) (Γ (n+ 1/2))5 n2,
(Γ (n− 1))2 Γ (n− 2) (n− 2)

(Γ (n+ 1/3))4 n3

]
, (5)

with CPU time 0.375 second. In this output the Gamma terms Γ (n− 2) and Γ (n− 1)
cannot be evaluated at 0. Moreover their arguments differs by 1, which shows that different
integer shifts most be considered before initialization. However, we mention that (4) and
(5) are equivalent.
The Maxima (version 5.44) command solve rec finds

an =
Γ
(
1
3

)4
%k 1 (n− 2) !3 3−4n−8 81n

n3 Γ
(
3n+1

3

)4 +
%k 2 (n− 3) !n2 25n+15 Γ

(
2n+1

2

)5
π

5
2 32n

, (6)
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with CPU time 70.266 seconds. This result arises the issue of finding closed-form of hy-
pergeometric terms from their ratios computed with Petkovšek’s algorithm. Nevertheless,
the large computation time here is due to the degrees of the polynomial coefficients of (3).

This paper goes as follows. In the next section, we derive an algorithm to compute
holonomic recurrence equations satisfied by a list of linearly independent hypergeometric
terms. This algorithm is useful to generate examples and observe some properties of hy-
pergeometric terms by doing forward and backward computations. This can also be done
using the Maple package gfun (see [13]), but with a slightly different strategy.
In Section 3 we give more details on how we normalize the Pochhammer parts of hyper-
geometric terms.
Section 4 describes our variant of van Hoeij’s algorithm which efficiently computes a basis
of hypergeometric term solutions of (2), using the representation (1). The paper ends with
some comparisons with existing implementations.

2. Hypergeometric terms to holonomic recurrence equations

It is well known that linear combinations of holonomic functions are holonomic (see [14]).
Since hypergeometric terms are holonomic, there exist algorithms to compute a holonomic
recurrence equation of least order satisfied by a given linear combination4 of hypergeo-
metric terms. Throughout this section we assume there exists an algorithm for finding the
rational function defined by the ratio of a hypergeometric term (see [9, Algorithm 2.2]).
The algorithm of this section is a generalization of the case of two given linearly indepen-
dent hypergeometric terms. Thus, we treat this particular case and by simple analogy, we
give the general approach for a given list of linearly independent hypergeometric terms.

2.1. Case of two linearly independent hypergeometric terms
Let an and bn be two linearly independent hypergeometric terms over K such that

an+1 = r1(n)an and bn+1 = r2(n)bn, (7)

where r1 and r2 are rational functions in K(n). As we consider two terms, the order of the
recurrence equation sought is 2, so we are looking for a recurrence equation of the form

P2(n)sn+2 + P1(n)sn+1 + P0(n)sn = 0, (8)

4Note that this generally reduces to a sum of hypergeometric terms. Therefore the main information here
is that the given hypergeometric terms are distinct.
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where P0, P1, P2 are polynomials over K, satisfied by an and bn. We must assume that
P0 · P2 6= 0, otherwise the recurrence equation can be reduced to a first order recurrence
relation. Thus finding (8) is equivalent to searching for rational functions R2 and R1 such
that

R2(n)sn+2 +R1(n)sn+1 + sn = 0. (9)

Using (7), we have

an+2 = r1(n+ 1)an+1 and bn+2 = r2(n+ 1)bn+1. (10)

By substitution, an and bn satisfy (9) if and only ifr1(n+ 1)R2 +R1 = − 1
r1(n)

r2(n+ 1)R2 +R1 = − 1
r2(n)

, (11)

which is a linear system of two equations with two unknowns in K(n). Furthermore, a
solution exists and is unique since the determinant of the system

ra(n+ 1)− rb(n+ 1) 6= 0 (12)

by assumption. As a linear system of two equations, the exact solution is easy to compute,
that is

R1(n) =
r2(n+ 1)r2(n)− r1(n+ 1)r1(n)

r1(n)r2(n)(r1(n+ 1)− r2(n+ 1))
, (13)

R2(n) =
r1(n)− r2(n)

r1(n)r2(n)(r1(n+ 1)− r2(n+ 1))
. (14)

Finally, the holonomic recurrence equation sought is found by multiplying the equation
(9) by the common denominator of R1(n) and R2(n).

2.2. General case
Now we want to generalize the above approach for finitely many linearly independent
hypergeometric terms. Let a[i]n , i = 1, . . . , d (d > 1) be d given linearly independent
hypergeometric terms over K such that

a
[i]
n+1 = ri(n)a[i]n , i = 1, . . . , d, (15)

for some rational functions ri. The vector (R1(n), R2(n), . . . , Rd(n))T ∈ K(n)d of ratio-
nal coefficients of the recurrence equation

Rd(n)sn+d +Rd−1(n)sn+d−1 + . . .+R1(n)sn+1 + sn = 0 (16)
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satisfied by each hypergeometric term a
[i]
n , is the unique vector solution v ∈ K(n)d of the

matrix system [
j−1∏
k=1

ri(n+ k)

]
i,j=1,...,d

· v = −
(

1

ri(n)

)T
i=1,...,d

. (17)

In case there are linearly dependent hypergeometric terms, one can still use this process
by replacing the arbitrary constants appearing in the solution of (17) by zero. This is how
we implemented this method. The steps of the algorithm can be summarized as follows.

Algorithm 1 Compute the holonomic recurrence equation of least order for the sum of
hypergeometric terms

Input: A list L := [h1, . . . , hd] of hypergeometric terms in the variable n and a symbol a.
Output: A holonomic recurrence equation in an of least order satisfied by the elements

in L.

1. Let R := [ri(n), . . . , rd(n)] be the ratios of the elements in L.

2. If there are some irrational functions in R then stop and return FALSE. No holo-
nomic recurrence equation can be found.

3. Let

M :=

[
j−1∏
k=1

ri(n+ k)

]
i,j=1,...,d

.

4. Let

b :=

(
1

ri(n)

)T
i=1,...,d

.

5. Let V be the solution of the matrix system M · v = b.

6. If there are arbitrary constants in V then substitute those by zero.

7. Let RE := an +
∑d

i=1 V [i] · an+i, where V [i] denotes the ith component in V .

8. Multiply RE by the common denominator of the components of V and return
the result with equality to 0, after factoring the coefficients.

Example 4. We implemented this algorithm as sumhyperRE. Let us consider Example 4.1
in [12] and make a backward computation to find the recurrence equation for

1

(n+ 1)(n+ 2)
, and

(−1)n(2n+ 3)

(n+ 1)(n+ 2)
.
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Our Maxima code gets

(% i1) sumhyperRE([1/((n+1)*(n+2)), (-1)ˆn*(2*n+3)/((n+1)*(n+2))],a[n]);

− (n+ 4) an+2 − an+1 + (n+ 1) an = 0, (% o1)

which is the expected result. Next, we recover the Fibonacci recurrence from the golden
number and its conjugate.

(% i2) sumhyperRE([(1-sqrt(5))ˆn/2ˆn, (1+sqrt(5))ˆn/2ˆn], a[n]);

−an+2 + an+1 + an = 0 (% o2)

The latter example illustrates an important point of the algorithm. Indeed, when con-
sidering extension fields to determine hypergeometric term solutions, the conjugates of
algebraic numbers involved are also part of the solution basis. We will give more details
about this in Section 4.

3. “Simple” formulas for hypergeometric terms

Let an be a hypergeometric term over a field K of characteristic zero. Then by definition
r(n) := an+1/an ∈ K(n). K is taken as the minimal extension field of Q where the
numerator and the denominator of r(n) split. We wish to write the formula of an using
only numbers appearing in the splitting field of r(n) with factorials, and when not triv-
ially possible, Pochhammer symbols, thus allowing evaluations at non-negative integers.
This is what we call a “simple” formula. One could say that a formula is considered to
be “simple” when it presents more familiar objects from mathematical dictionaries in a
reduced form. In the sense of computing formulas of hypergeometric terms, this consists
of simplifying as much as possible, Pochhammer symbols to rational multiples of factori-
als with positive integer-linear arguments. In this section, we present preliminary steps to
recover the representation (1) and gather some classical rules as an algorithm to simplify
its Pochhammer part. Similar computations can be found in [8]; what is worth noticing is
the consideration we make to get “simple” formulas in Section 4.
Consider a rational function

r(k) :=
P (k)

Q(k)
, P (k), Q(k) ∈ K[k], Q(k) 6= 0 for integers k > 0 (18)

such that P and Q do not have non-negative integer roots. We also assume that roots
of P and Q are all distinct. We will see in the next section how the computations are
done to satisfy these assumptions. For example, a hypergeometric term ratio r(k) with
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non-negative integer zeros and poles would implicitly be replaced by r(k + m), where
m = max{j ∈ N>0 : Q(j) · P (j) = 0}5.
We consider a hypergeometric term defined with the property

ak+1 = r(k)ak, for integer k > 0. (19)

Computing a “simple” formula of such a term is to find its general expression an for a
positive integer n provided that the corresponding initial values a0 is given. That is the
result of the product

n−1∏
k=0

r(k). (20)

For that purpose, the first step is to split the polynomials of r as follows

r(k) = C
(k + a1)(k + a2) · · · (k + ap)

(k + b1)(k + b2) · · · (k + bq)
, (21)

where p and q are, respectively, the degrees of P and Q; C is a constant representing the
ratio of the leading coefficients of P and Q; and −ai’s6, 0 6 i 6 p, and −bj’s, 0 6 j 6 q
are the zeros and poles of r, respectively. From the Pochhammer symbol definition, using
(21) it follows that

n−1∏
k=0

r(k) = Cn (a1)n(a2)n · · · (ap)n
(b1)n(b2)n · · · (bq)n

. (22)

Thus we are called to try simplifications of ratios and products of Pochhammer symbols
and some isolated ones. Many such computations can be found in books or undergraduate
courses, see for example [9, Exercises 1.1 - 1.5]. Bellow, we recall some classical ones.
x and y denote some numbers, and j an integer.

Isolated Rule Assume x is rational, then one can simplify (x)n, according to the follow-
ing cases.

1. if x ∈ N, then

(x)n = x · (x+ 1) · · · (x+ n− 1) =
(x+ n− 1)!

(x− 1)!
(23)

5N>0 = {0, 1, 2, . . .}
6To not confuse with ak in (19).
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2. Else if x has a denominator equal to 2, then let s ∈ N such that x = s
2
. s is

necessarily an odd integer since x /∈ N. We set s = 2t + 1, t ∈ N>0, then it
follows that

(x)n =
s

2
·
(s

2
+ 1
)
· · ·
(s

2
+ n− 1

)
=

(2t+ 1) · (2(t+ 1) + 1) · · · (2(t+ n− 1) + 1)

2n

=
(2 (t+ n)) !

(2t)! ·(2t+ 2) · · · (2(t+ n− 1) + 2) · 2n

=
(2(t+ n)) !

(2t)! 4n
(
t+n
n

)
n!
. (24)

3. Otherwise no simplification is done for (x)n.

Ratio Rule Assume x− y = j > 0. Then we have

(y)n
(x)n

=
(y)j · (y + j) · · · (y + n− 1)

(y + j) · · · (y + j + n− 1)
=

(y)j
(y + n)j

. (25)

Therefore for x− y = j ∈ Z,

(y)n
(x)n

=


(y)j

(y+n)j
if j > 0

(x+n)−j

(x)−j
if j < 0

. (26)

This shows that differences between zeros and poles of r in (21) should be checked
before applying the Isolated Rule in order to apply (25) which can simplify two
Pochhammer symbols at the same time. Fortunately, these nice computations can be
done in Maxima by combining makegamma(), makefact(), minfactorial()
and factor() as below.

(% i1) r:pochhammer(7/3,n)/pochhammer(1/3,n);(
7
3

)
n(

1
3

)
n

(% o1)

(% i2) factor(minfactorial(makefact(makegamma(r))));

(3n+ 1) (3n+ 4)

4
(% o2)
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Product Rule We consider the following two rules to simplify (x)n(y)n.

• Assume y−x = 1/2, then multiplying (x)n and (y)n = (x+1/2)n by 2n leads
to the relation

(x)n ·
(
x+

1

2

)
n

=
(2x)2n

4n
. (27)

• Assume y − x = j > 0, it is easy to see that

(x)n · (y)n = (x)n · (x+ j)n =
(x)2n+j

(x)j(x+ n)j
. (28)

More generally, one can find a “simple” formula of a hypergeometric term Pochhammer
part with ratio having non-negative integer zeros and poles by applying the following
algorithm.

Algorithm 2 Compute
∏n−1

k=1 r(k)

Input: A rational function r := r(n) and a variable n.
Output: A formula of

∏n−1
k=1 r(k) in terms of factorial and Pochhammer symbols.

1. Factorize r and write it in terms of linear factors and set

h := r = C
(n+ a1)(n+ a2) · · · (n+ ap)

(n+ b1)(n+ b2) · · · (n+ bq)
.

2. Substitute C by Cn in h.

3. For each ai, i = 1, . . . , p do

(a) if there is bj in h such that ai − bj ∈ Z then substitute n+ai
n+bi

by applying the
Ratio Rule accordingly.

4. For the remaining ai’s (resp. bj’s) do

(a) if there is ai′ (resp. bj′) such that ai − ai′ = ±1/2 or ai − ai′ ∈ Z (resp.
aj − aj′ = ±1/2 or aj − aj′ ∈ Z) then substitute (n + ai)(n + ai′) (resp.
(n+ bj)(n+ bj′)) by applying the Product Rule accordingly.

5. Substitute the remaining n+ ai’s and n+ bj’s by the result of the Isolated Rule
applied to (ai)n and (bj)n respectively.

6. Return h.

For a “fair” comparison of efficiency between our implementation and the current Maple
LREtools[hypergeomsols], we did not considered the Product Rule in our imple-
mentation since LREtools[hypergeomsols] does not apply simplifications as we
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do. Indeed, these computations are supplementary steps that we use in the algorithm of
Section 4. However, for power series computations (see [17]), all rules are applied to
get nice power series formulas. Algorithm 2 is implemented in our Maxima package as
pochfactorsimp(r,n).

Example 5.

(% i1) pochfactorsimp(-1/(2*(n+1)*(2*n+1)),n);

(−1)n

(2n) !
(% o1)

(% i2) pochfactorsimp((2*n+3)ˆ2/((n+1)*(2*n+1)),n);

(2n+ 1) 2n−1 (2 (n+ 1)) !

(n+ 1) 4n n !2
(% o2)

4. Basis of hypergeometric term solutions

Let us rewrite (2) as follows.

Pd(n)an+d + Pd−1(n)an+d−1 + · · ·P1(n)an+1 + P0(n)an = 0, (29)

with polynomials Pi(n) ∈ K[n], i = 0, . . . , d such that P0(n) · Pd(n) 6= 0. K is a field of
characteristic zero.
We have seen how to compute a holonomic recurrence equation of lowest order satisfied
by a given number of linearly independent hypergeometric terms. Any computed hyper-
geometric term solution of such a holonomic recurrence equation is a linear combination
of these linearly independent terms. The algorithm of this section is a kind of reverse pro-
cess which for a given holonomic recurrence equation (29) computes a basis of at most d
hypergeometric term solutions of (29).
In the first place, we establish (1) to see hypergeometric terms in normal forms (see [7,
Chapter 3]). Let an, n ∈ N>0, be a hypergeometric sequence such that r(n) = an+1/an
∈ K(n). Then we have

a1
a0

= r(0),
a2
a1

= r(1), . . . ,
an
an−1

= r(n− 1), n > 1,

and therefore
an
a0

=
n−1∏
k=0

ak+1

ak
=

n−1∏
k=0

r(k)⇒ an = a0

n−1∏
k=0

r(k). (30)
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Factorizing r(n) over K gives

r(n) = C

∏I
i=1(n− αi)∏J
j=1(n− βj)

, (31)

where C is a constant. Note that contrary to (21), in (31) r(n) is considered in a more
general setting; αi and βj are not uniquely determined and may have negative or positive
real parts, which is more general than avoiding non-negative integer values.
Combining (30) and (31) leads to

an = a0 · Cn · (−α1)n · · · (−αI)n
(−β1)n · · · (−βJ)n

. (32)

Now we want to write each Pochhammer symbol modulo Z in a certain real interval,
i.e., the real parts of the arguments of Pochhammer terms can be chosen to belong to an
interval of amplitude 1. This is an interesting observation made by van Hoeij. In our case,
we choose to rewrite the Pochhammer symbols modulo Z so that αi, βj ∈ I := [−1, 0).
Each Pochhammer symbol is then substituted by the product of a polynomial and another
Pochhammer term whose argument differs by an integer u. Precisely, let y be a real number
(for the case of complex numbers, the computations are applied on their real parts), then
its corresponding value in I is u = y − byc − 1 and we have

(y)n =
(u)n · (u+ n) · · · (y + n− 1)

u · (u+ 1) · · · (y − 1)

= (u)n ·
(u+ n)y−u

(u)y−u
(33)

= (y − byc − 1)n ·
(n+ y − byc − 1)byc+1

(y − byc − 1)byc+1

. (34)

After applying (34) to each Pochhammer symbol in (32), the remaining expression will
have Pochhammer terms having arguments with real parts in (0, 1]. These terms may have
more coincidence than the (−αi)n and (−βj)n in (32) since all Pochhammer terms in (32)
whose arguments differ by an integer give the same Pochhammer term modulo Z after
substitution. Therefore there exists a rational function R(n) ∈ K(n) and some constant
numbers α̃1, . . . , α̃I , β̃, . . . , β̃J , with real parts in I, such that

an = R(n) · Cn · (−α̃1)n · · · (−α̃I)n
(−β̃1)n · · · (−β̃J)n

. (35)

The constant a0 is neglected by linearity since we will look for a basis of hypergeometric
term solutions of (29).
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Considering multiplicities ek over Z \ {0} and replacing −α̃i and −β̃j , by θk, we get the
normal form

an = Cn ·R(n) · h(n) := Cn ·R(n) ·
K∏
k=1

(θk)
ek
n (θk ∈ K, with real part in I), (36)

K 66 I + J . This time all the involved data are uniquely determined. The ratio r(n) can
be rewritten as

r(n) =
an+1

an
=
R(n+ 1)

R(n)
·C ·h(n+1)/h(n) =

R(n+ 1)

R(n)
·C ·

K∏
k=1

(n+θk)
ek ∈ K(n). (37)

Mark van Hoeij uses Gamma representations in (36) and denotes it singularity structure
of an (see [19, 5]). This representation can be seen as the endpoint of our algorithm when
it computes an element of the basis of hypergeometric terms sought. In fact, the goal of
computing a basis of all hypergeometric term solutions of (29) is equivalent to finding
solutions of (29) with the structure (36).

4.1. Monic factors modulo Z
Lemma 6. ([12, Algorithm Hyper], [5, Left and Right solutions]) The ratio of the Pochham-
mer part h(n + 1)/h(n) of hypergeometric term solutions of (29) are built from monic
factors of Pd(n− d) for the numerators and P0(n− 1) for the denominators.

This lemma allows us to apply factorization modulo Z on P0(n) and Pd(n). In fact the
ratio of the Pochhammer part h(n + 1)/h(n) in (37) is obtained from factorization of
P0(n) and Pd(n) modulo Z. Let us generate a recurrence equation that will be used while
describing the steps of our algorithm.

(% i1) RE:sumhyperRE([binomial(n+3,n),1/n!,(-1)ˆn/n,
(-1)ˆn/pochhammer(1/2,n)ˆ2],a[n])$

We do not display the output to save space. We will refer to this recurrence equation as
(RE). The leading term is

(% i2) first(lhs(RE));

(n+ 2) (n+ 3) (n+ 4) (2n+ 7)2 ( 64n11+1536n10+16176n9+98080n8+377372n7

+955200n6+1584741n5+1631354n4+852544n3−25229n2−264212n−94472 ) an+4,
(% 2)

and the trailing term

14



(% i3) last(lhs(RE));

4n (n+ 4) ( 64n11 + 2240n10 + 35056n9 + 323344n8 + 1949788n7 + 8053956n6

+23188049n5+46338535n4+62583534n3+53821965n2+26011175n+5133154 ) an.
(% o3)

For more clarity, we will present computations over the rationals. The case of extension
fields works similarly, this choice is just to avoid lengthy notations for roots labeling.
For the leading polynomial coefficient, the monic factors to be considered after factoriza-
tion in Q modulo Z with roots real parts in I are

(n+ 1)e1
(
n+

1

2

)e2
, for 0 6 e1 6 3, 0 6 e2 6 2.

For the trailing term we have

(n+ 1)e for 0 6 e 6 2.

Therefore ratios of Pochhammer parts of hypergeometric term solutions are among the
following

1,
1

(n+ 1)
,

1

(n+ 1)2
,

1

(n+ 1)3
,

1(
n+ 1

2

) , 1(
n+ 1

2

)2 , (n+ 1)

(n+ 1)(
n+ 1

2

) , (n+ 1)(
n+ 1

2

)2 , (n+ 1)2(
n+ 1

2

) , (n+ 1)2(
n+ 1

2

)2 (38)

Observe that none of these ratios has a non-negative integer zero or pole, hence the type
of rational function that we treat with Algorithm 2.
Moreover, not all ratios in (38) should be considered because the exponents of each linear
factor appearing in the possible ratios of hypergeometric term solutions can be bounded
from the given holonomic recurrence equation. For this purpose van Hoeij’s algorithm uses
the notion of valuation growth or local types of difference operators at finite singularities
[19, Definition 9]. Such a point is simply a root modulo Z of the trailing or the leading
polynomial coefficient of (29) as we considered.
Since we are already computing ratios of Pochhammer parts of hypergeometric term solu-
tions, we proceed in a slightly different way than what is described in ([19, 5]) to compute
exponent bounds at finite singularities.

Theorem 7. The exponent bounds at finite singularities result from taking the minimum
exponents (or valuations) taken by a factor modulo Z in the trailing and the leading poly-
nomial coefficients of the initial recurrence equation as lower bounds; this makes the upper
bounds to be automatically considered while computing ratios of Pochhammer parts.
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Coming back to our example, it follows that ratios with denominator (n+ 1/2) should be
removed. Therefore the remaining ratios are

1,
1

(n+ 1)
,

1

(n+ 1)2
,

1

(n+ 1)3
,

1(
n+ 1

2

)2 , (n+ 1)

(n+ 1)(
n+ 1

2

)2 , (n+ 1)2(
n+ 1

2

)2 . (39)

Note that these considerations already present an important gain of efficiency compared to
the algorithm in [12].

4.2. Local type at infinity
Without ambiguity, we will more often use the terminology “local type” instead of “local
type at infinity” since we only consider computations at infinity. This is about a character-
istic property of hypergeometric term solutions of holonomic recurrence equations.
We study the behavior of a hypergeometric term (an) ratio r(n) at infinity. Indeed, at∞
we can write

r(n) = c · nν ·
(

1 +
b

n
+O

(
1

n2

))
, (40)

with the unique triple (ν, c, b) called the local type of an at∞.

Theorem 8 (Fuchs Relations). Let R(n) = N(n)
U(n)

with N(n), U(n) ∈ K[n]. The following
relations between the local type of a hypergeometric term an given by (36) hold:

i. ν =
∑K

k=1 ek,

ii. b =
∑K

k=1 θk ek + deg(N(n))− deg(U(n)),

iii. c = C,

where (ν, c, b) denotes the local type of an at∞.

Proof. From (37) we know that

r(n) =
an+1

an
= C ·

(
R(n+ 1)

R(n)
·
K∏
k=1

(n+ θk)
ek

)
. (41)

We would like to compute a truncated asymptotic expansion of (41). This can be seen as
the result of the product of asymptotic expansions of the form (40) of R(n+1)

R(n)
and

∏K
k=1(n+
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θk)
ek times C. Since R(n) = N(n)

U(n)
, the highest degree of n in its asymptotic expansion is

δ = deg(N(n))− deg(U(n)). So we can write

R(n) = cR · nδ ·
(

1 +
bR
n

+O

(
1

n2

))
, (42)

for some constants cR, bR. Let us now deduce a truncated asymptotic expansion of R(n+
1).

R(n+ 1) = cR · (n+ 1)δ ·
(

1 +
bR

n+ 1
+O

(
1

n2

))

= cR · nδ
(

1 +
1

n

)δ
·

1 +
bR

n

(
1 +

1

n

) +O

(
1

n2

)
= cR · nδ

(
1 +

δ

n
+

δ∑
j=2

(
δ

j

)(
1

n

)j)
·
(

1 +
bR
n

+O

(
1

n2

))
= cR · nδ

(
1 +

bR + δ

n
+O

(
1

n2

))
. (43)

Thus from (42) and (43) the first order asymptotic expansion of R(n+1)
R(n)

yields

R(n+ 1)

R(n)
=

1 +
bR + δ

n
+O

(
1

n2

)
1 +

bR
n

+O

(
1

n2

)
=

(
1 +

bR + δ

n
+O

(
1

n2

))
·
(

1− bR
n

+O

(
1

n2

))
= 1 +

δ

n
+O

(
1

n2

)
= 1 +

deg(N(n))− deg(U(n))

n
+O

(
1

n2

)
. (44)

On the other hand

(n+ θk)
ek = nek ·

(
1 +

θk
n

)ek
= nek ·

(
1 +

θkek
n

+

ek∑
j=2

(
ek
j

)(
θk
n

)j)

= nek ·
(

1 +
θkek
n

+O

(
1

n2

))
, (45)
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therefore
K∏
k=1

(n+ θk)
ek = n

∑K
k=1 ek ·

(
1 +

∑K
k=1 θkek
n

+O

(
1

n2

))
. (46)

Finally according to (41), the expansion sought is obtained by the product of (44) and (46)
times C. That is

r(n) = C · n
∑K

k=1 ek ·

(
1 +

∑K
k=1 θkek
n

+O

(
1

n2

))

·
(

1 +
deg(N(n))− deg(U(n))

n
+O

(
1

n2

))
= C · n

∑K
k=1 ek

(
1 +

∑K
k=1 θkek + deg(N(n))− deg(U(n))

n
+O

(
1

n2

))
,(47)

from which one easily read off the data of the theorem.

The first two relations in this theorem show that ν and b can be found directly from a
Pochhammer part ratio. Indeed, observe that modulo Z, the second relation of the theorem
reads as

b =
K∑
k=1

θk ek. (48)

The third relation will be considered later in this subsection. The next step is then to find
candidates for ν and b from the ratios in (39). These can be found easily; for example
(n + 1)/(n + 1/2)2 = n−1(1 − 1/(4n2) + O(1/n3)) and therefore ν = −1 and b =
−1 (modulo Z). As mentioned earlier, the map y 7→ y − byc − 1 is used to find the
correspondence of y modulo Z in I.
Next, we explain how the local types of hypergeometric term solutions of (29) are com-
puted. This step is considered with the highest priority in our algorithm, because if the
set of local types of a given holonomic recurrence equation is empty, then there is no
hypergeometric term solution over the considered field.
For this step, van Hoeij’s algorithm uses the Newton polygon of the difference operator
(see [19, Section 3]). However, we proceed differently. Our idea is to rewrite (29) for
ratios of hypergeometric term solutions, substitute (40) inside, and compute the asymptotic
expansion of the nonzero side to find equations for the local types by equating the result
to 0. This process is the same Petkovšek used to develop its algorithm Poly (see [12,
Algorithm Poly]).
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Let an be a hypergeometric term solution of (29) such that an+1 = r(n)an for a rational
function r. We can write the equation for r(n) as

d∑
i=0

Pi

i−1∏
j=0

r(n+ i) = 0. (49)

We assume

r(n) = c · nν ·
(

1 +O

(
1

n

))
(50)

and we substitute this in (49). Similarly as we did in the proof of Theorem 8, we make
computations that yield the possible values of ν and c. If such values are found, say
(νcand, ccand), then we rewrite r(n) as

ccand · nνcand ·
(

1 +
b

n
+O

(
1

n2

))
(51)

and we make new computations to find b.
Summarized, our procedure to find local types (ν, c, b) of hypergeometric term solutions
of (29) consists in the following items:

1. we compute the possible values for ν;

2. for each value of ν,

2-a we compute possible values for c,

2-b for each value found for c, we use ν and c to compute the possible values for b;

2-c for each value found for b, (ν, c, b) constitutes a local type of a hypergeometric
term solution of (29).

Let us now explain how each value is computed.

• Computing ν:

Substitute (50) in (49) gives the following terms on the left-hand side

ci · ni·ν · Pi ·
(

1 +O

(
1

n

))
, (0 6 i 6 d) (52)

which is equivalent to

li · ci · ni·ν+deg(Pi) ·
(

1 +O

(
1

n

))
, (0 6 i 6 d) (53)
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where li denotes the leading coefficient of Pi. Since we are dealing with an equality
with right-hand side 0, the terms having the highest power of n in the asymptotic
expansion of the equation left-hand must be zero. However this is only possible if a
term of the form (53) has the same power of n with some other terms so that they
add to 0. Therefore we deduce that possible candidates for ν are integer solutions
of linear equations coming from equalities of powers of n for two different terms of
the form (53). That is for 0 6 i 6= j 6 d, we have the equation

i · ν + deg(Pi) = j · ν + deg(Pj) (54)

and therefore a possible value for ν is

νi,j =
deg(Pj)− deg(Pi)

i− j
, (55)

if the computed value is an integer.

We then compute
(
d
2

)
such values for (29) and keep the integers. Note that two

different couples (i, j) and (i′, j′) may give the same value for ν, meaning that the
corresponding addition to zero involves all their constant coefficients. This is the
point of the next item.

• Computing c:

Assume that we have found a value νi,j ∈ Z corresponding to k terms in the equation
(49) with indices 0 6 u1 6= u2 6= . . . 6= uk 6 d. Then from (53) one easily see that
a candidate for c is a solution of the polynomial equation

lu1 · cu1 + lu2 · cu2 + · · ·+ luk · cuk = 0. (56)

Since the corresponding terms must add to zero in the asymptotic expansion, their
leading coefficients must equal zero. Note that (56) is solved over the considered
field K.

Thus, for each value ci,j ∈ K which is a zero of (56) for a given νi,j , (νi,j, ci,j) is
already a possible couple to be completed to get the local type of a hypergeometric
term solution of (29).

• Computing b:

For a computed couple (νi,j, ci,j) as explained above, we rewrite r(n) as

ci,j · nνi,j ·
(

1 +
b

n
+O

(
1

n2

))
, (57)
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with unknown b.

After substituting (57) in (49) and computing again the asymptotic expansion, terms
with highest powers of n add to zero, and therefore the left-hand side of the resulting
equation must have a leading term with coefficient as a polynomial in the variable
b. Since that polynomial must be zero, the possible values for b are its roots. This
can be done by computing asymptotic expansion and solving the coefficients equal
to zero for the unknown b. Finally if we find values for b ∈ K then we have found
for each b a local type (ν, c, b) of a possible hypergeometric term solution of (29)
over K.

Thus we get the following algorithm.

Algorithm 3 Compute local types of all hypergeometric term solutions of (29)

Input: Polynomials

Pi(n) ∈ K[n], i = 0, . . . , d | Pd(n) · P0(n) 6= 0

Output: The set of all local types of hypergeometric term solutions of the holonomic RE

d∑
i=0

Pi(n)an+i = 0.

1. Set L = {}.
2. For all pairs {i, j} ∈ {0, 1, . . . , d}, compute

νi,j =
deg(Pj)− deg(Pi)

i− j
. (58)

3. For each integer νi,j computed in (58), compute the set of solutions in K, say
Sc,i,j , of the polynomial equation

lu1 · cu1 + lu2 · cu2 + · · ·+ luj · cuk = 0, (59)

where lu1 , lu2 , . . . , luk are the leading coefficients of the polynomials
Pu1 , Pu2 , . . . , Puk , 0 6 u1 6= u2 6= . . . 6= uk 6 d satisfying (58) for the same
integer νi,j .
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Algorithm 3 Compute the local types of all hypergeometric term solutions of (29)

3. (a) For each element ci,j of Sc,i,j set

r(n) = ci,j · nνi,j ·
(

1 +
b

n

)
. (60)

(b) Compute the coefficient Ti,j(b) of the first non-zero term of the asymptotic
expansion of

d∑
i=0

Pi

i−1∏
j=0

r(n+ i). (61)

(c) Solve Ti,j(b) = 0 in K for the unknown b and define Sb,i,j to be the set of
solutions.

(d) For each element bi,j ∈ Sb,i,j, add the triple (νi,j, ci,j, b) to L.

4. Return L.

Theorem 9. Algorithm 3 finds all the local types (ν, c, b) of hypergeometric term solutions
of (29).

Remark 10.
• When extension fields are allowed, Algorithm 3 can be used to bound the degree

of such extensions from the computation of c. However, this is not always enough
because the singularities of the linear operator may define a larger bound. Heuristic
tests are often used to decide on how to fix the bound of algebraic extensions. More
theoretical details on dealing with algebraic extensions are described in [5, Section
8].

• Another important notice about extension fields is a property similar to the conju-
gate root theorem (see [5, Lemma 3]). Indeed, when a local type (ν, c, b) where c is
defined over an extension field leads to a basis of hypergeometric term solutions, say
Bc, then local types corresponding to conjugates of c lead to bases of same dimen-
sions as Bc, that only differ from Bc by conjugations of c. Therefore an important
efficiency is gained by using this property. This is used in our implementations to
reduce computations of conjugate solutions into a single one.

• We mention that computations of Algorithm 3 can sometimes be used to reduce the
number of iterations in the implementation. Indeed, when two linearly independent
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hypergeometric term solutions have the same local type, Algorithm 3 computes it at
least twice. Therefore collecting local types in a list might be advantageous, so that
when a basis of hypergeometric terms corresponding to a particular local type is
found, the latter is discarded from the list of local types. This is a useful tool when
the number of computed local types (with repeated values) is less than the order of
the given holonomic recurrence equation.

Thus any ratio candidates whose local type is not in the list of local types (deprived of
values for c) should not be used in further steps. We implemented a Maxima function
localtype(L,n) which takes the polynomial coefficients of a holonomic recurrence
equation in L in the variable n and returns a list of triples [ν, c, b]. Applying it for (RE)
yields

(% i1) localtype(expand(REcoeff(RE,a[n])),n);

[[−2 ,−1 ,−1] ,[−1 , 1 ,−1] ,[0 ,−1 ,−1] ,[0 , 1 ,−1]]. (% o1)

The command REcoeff is our code to collect coefficients, which are expanded afterward
using the Maxima command expand. From the obtained output it follows that 1/(n+1)3

and (n + 1) should also be removed from potential ratios of Pochhammer parts in (39).
Note, however, that it is from the computed local types that we get the possible values for
C in (36) according to the third relation in Theorem 8. These will be used in the next step
together with their corresponding Pochhammer part ratios.

4.3. Rational part of hypergeometric terms
The algorithm goes further in filtering the set of Pochhammer part ratios. Indeed, once we
have found all those better candidates for ratios of Pochhammer parts, we need to use again
the second Fuchs relation from Theorem 8 in order to find δ = deg(N(n)) − deg(U(n)),
where N(n) and U(n) are the numerator and the denominator of R in (37). In fact, since
we have found values for b and its possible ratio candidates, which means that we can
compute

∑K
k=1 θk · ek, we therefore deduce that these candidates are valid if and only if

they satisfy

δ = b−
K∑
k=1

θk · ek ∈ Z. (62)

In this case the verification of ratios of Pochhammer parts for the value of b should consist
in checking if the difference b −

∑K
k=1 θk · ek is an integer.

However, (62) can be used in the algorithm only if b is not computed modulo Z. Another
approach is to use an asymptotic expansion. Since now we have the ratios with their
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corresponding values of c, according to (37) we can write

r(n) =
R(n+ 1)

R(n)
· c · h(n+ 1)

h(n)
. (63)

Moreover
R(n+ 1)

R(n)
= 1 +

δ

n
+O

(
1

n2

)
, (64)

where δ is as in (62). Thus the asymptotic expansion of (49) (left-hand side) with r(n)
used by combining (63) and (64) must have a leading term as a polynomial coefficient
in the variable δ. Therefore the values of δ are integer roots (if there are some) of that
polynomial. If there are not such roots, then the rational function c · h(n + 1)/h(n) is
removed from the potential Pochhammer parts of (29). Our implementation uses this
second approach.
Mostly after this step the number of Pochhammer part ratios of (29) is considerably re-
duced or equal to the exact number of hypergeometric term solutions.
Now, it only remains to find the rational function R in (36) whose a holonomic recurrence
equation can be easily computed. Let c · h(n + 1)/h(n) be one of the remaining ratios
times its corresponding c for the local type. Then the recurrence equation

d∑
i=0

Pi ·R(n+ i) · cn+i · h(n+ 1 + i)

h(n+ i)
= 0, (65)

is an equation for the unknown rational function R(n) that we can easily modify to a
holonomic recurrence equation. However, there is no need to use a complete algorithm
for computing rational solutions of holonomic recurrence equations. Indeed, since we
already have the difference between the degrees of the numerators and the denominators
of rational solutions of (65), it is enough to use an algorithm that computes a universal
denominator7 U(n) of all rational solutions of (65), and use δ or its maximum value (for
the second approach we proposed) (see (62)) to compute a degree bound δ + deg(U(n))
for the degrees of the corresponding numerators. Substituting N(n)/U(n) in (65) where
N(n) is an arbitrary polynomial of degree δ + deg(U(n)) results in a linear system in the
coefficients of the arbitrary polynomial N(n). Finally solving that system gives a basis of
all the rational functions R(n) = N(n)/U(n) sought.
Regarding the computation of a universal denominator, Abramov has proposed most key
results for that purpose (see [2, 1, 3]). A crucial step in Abramov’s original algorithm is

7A universal denominator of rational solutions of a holonomic recurrence equation is a polynomial that
is divisible by all the denominators of rational solutions of that holonomic equation [1].
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to compute the dispersion set of two polynomials8. The dispersion set can efficiently be
obtained from full factorization as described in [11]. We use this method in our implemen-
tation of Abramov’s algorithm to compute universal denominators. As a little story, note
that we have found neither in Maxima nor in Maple a satisfactory (in terms of efficiency)
implementation for computing dispersion sets. Therefore we implemented the algorithm
in [11] and added it as a by-product to our FPS package. This will be used in Maple
starting from the 2022 release.
We think this last step of computingR(n) might sometimes make a difference in efficiency
between our algorithm and van Hoeij’s original version. In his approach, van Hoeij uses a
special algorithm from his idea of finite singularities to determineR(n) (see [18]). Though
we mentioned that a complete algorithm for that purpose is not necessary, the algorithm
in [18] is sometimes suitable with the computations in [19]. However, comparisons in [3]
show that using our approach or van Hoeij’s at this step does not guarantee the efficiency
gain of one over the other.

4.4. Our algorithm
We can now present the complete algorithm of this paper.

Algorithm 4 Compute hypergeometric term solutions of (29)

Input: Polynomials

Pi(n) ∈ K(n), i = 0, . . . , d, | Pd(n) · P0(n) 6= 0.

Output: A basis of hypergeometric term solutions of the holonomic recurrence equation

d∑
i=0

Pi(n)an+i = 0 (66)

over K.

1. Set H = {}.
2. Use Algorithm 3 to compute the set L of all local types at infinity of hypergeomet-

ric term solutions of (66).

3. If L = ∅, then stop and return H .

8The dispersion set of A(n) and B(n) can be defined as the set of all non-negative integer roots of the
resultant polynomial of A(n) and B(n+ h) in the variable h.

25



Algorithm 4 Compute hypergeometric term solutions of (29)

4. Construct the set of couple (numerator, denominator)

P :=

{
(p(n), q(n)) ∈ K[n]2 : p(n) and q(n) are monic factors modulo Z

with roots real parts in [−1, 0) of P0(n− 1) and Pd(n− d) respectively
}
, (67)

for ratio candidates of Pochhammer parts.

5. Remove from P all couple whose p(n) exponents are less than the minimum mul-
tiplicity of the corresponding root modulo Z in the trailing polynomial coefficient
P0(n). Similarly, clear P by the same consideration for q(n) exponents and the
leading polynomial coefficient Pd(n). Finally substitute each remaining couple
(p(n), q(n)) in P by p(n)

q(n)
.

6. Fix the bound of algebraic extensions and remove elements in P and L that have
a larger algebraic degree.

7. Construct the set F1 of c · r, r ∈ P such that c · r has its local type at infinity as an
element of L.

F1 :=

{
c · r : r = nνr

(
1 +

br
n

+O

(
1

n2

))
∈ P and (νr, c, bn) ∈ L

}
. (68)

8. Set F2 := {}. For each element f(n) of F1

(a) Compute a recurrence equation, say Ef with the coefficients

Pi ·
i∏

j=0

f(n+ i), i = 0, . . . , d, (69)

for the rational function R(n) in (37) of the possible hypergeometric term
solutions.

(b) Substitute the terms R(n + i) by (1 + δ
n+i

), i = 0, . . . , d, in Ef and compute
the coefficient of the leading term of the asymptotic expansion of the left hand
side of Ef , say Qf (δ).

(c) Compute the set Sδf of integer roots of Qf (δ).
(d) If Sδf = ∅ then f(n) is discarded.
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Algorithm 4 Compute hypergeometric term solutions of (29)

8. (e) Else set δf := max(Sf ), rewrite Ef in a holonomic form and add
(f(n), δf , Ef ) in F2.

9. If F2 = ∅ then stop and return H .

10. For each (f(n), δf , Ef ) ∈ F2

(a) Compute the universal denominatorUf (n) of rational solutions ofEf by using
the approach in [11] to find the needed dispersion set.

(b) Update Ef as E ′f with Uf (n) to get a holonomic recurrence for numerators of
rational solutions of Ef .

(c) Set dNf
:= deg(Uf (n)) + δf , and find a basis of polynomial solutions of

degree at most dNf
of E ′f .

(d) Use Algorithm 2 to compute hf (n) =
∏n−1

k=0 f(k).

(e) For each Nf (n) ∈ SNf
add Nf (n)

Uf (n)
· hf (n) to H .

11. Return H

We implemented Algorithm 4 in Maxima as HypervanHoeij(RE,a[n],[K]), with
the default value Q (for rationals9) for K representing the field where solutions are com-
puted. One must specify C for K to allow computations over extension fields of Q. Using
this implementation to solve (RE) yields

(% i1) HypervanHoeij(RE,a[n]);

Evaluation took 0.2970 seconds (0.3020 elapsed) using 96.149MB.

{
(n+ 1) (n+ 2) (n+ 3) ,

(−1)n

n
,

1

n !
,
(−1)n 42n n !2

(2n) !2

}
, (% o1)

with timing (allowed with the Maxima command showtime) 0.2970 second and 96.149
MB memory used. In Maple, we implemented our algorithm as rectohyperterm(RE,a(n)).
Let us do the same computation with our Maple implementation and LREtools[hypergeomsols].

> RE:=FPS[sumhyperRE]([binomial(n+3,n),1/n!,(-1)ˆn/n
,(-1)ˆn/pochhammer(1/2,n)ˆ2],a(n)):

9Rationally valued, not symbolically rational: a parameter declared as rational is not considered as such
in the implementation.
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> Usage(FPS[rectohyperterm](RE,a(n)))
memory used=12.92MiB, alloc change=0 bytes, cpu time=219.00

ms, real time=223.00ms, gc time=0ns

(70)
{

1

n!
,
(−1)n

n
, (n+ 3) (n+ 2) (n+ 1) ,

n!2 (−16)n

(2n) !2

}
> Usage(LREtools[hypergeomsols](RE,a(n),\{\},output=

basis))
memory used=20.12MiB, alloc change=25.99MiB, cpu time

=375.00ms, real time=337.00ms, gc time=156.25ms

(71)

[
n3 + 6n2 + 11n+ 6,

(−1)n

n
,

1

Γ(n+ 1)
,

(−1)n

Γ
(
1
2

+ n
)2
]

The Usage command from the CodeTools package is used to display timings and mem-
ory used. Here one can see the advantage of having an implementation that uses extension
fields from user specifications. Allowing extension fields for this example unnecessarily
increases the timing (will be the same as for LREtools[hypergeomsols]) of com-
putations since (RE) is of order 4 and we already have 4 hypergeometric term solutions
in the output.
Next, we give examples to show how conjugate hypergeometric terms are computed in
our Maple implementation. To allow computations over algebraic extension fields with
rectohyperterm, the third argument to specify is complex.

> RE:=FPS[sumhyperRE]([Iˆn/n!,(-I)ˆn/n!,n!*(1+I*sqrt
(7))ˆn/kˆn,n!*(1-I*sqrt(7))ˆn/kˆn],a(n)):

> S:=FPS[rectohyperterm](RE,a(n),complex)

(72)S :=

{
RootOf

(
Z2 + 1

)n
n!

,RootOf
(
k2 Z2 − 2k Z + 8

)n
n!

}
One can recover the four hypergeometric term solutions by applying the Maple command
allvalues.

> map(allvalues,S)

(73)

(−I)n

n!
,

In

n!
,

2
(

1
2
− I
√
7

2

)
k

n

n! ,

2
(

1
2

+ I
√
7

2

)
k

n

n!


The latter is directly obtained using the internal command as shown below.
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> LREtools[hypergeomsols](RE,a(n),{},output=basis)

(74)

[
In

Γ(n+ 1)
,

(−I)n

Γ(n+ 1)
,

(
1 + I

√
7

k

)n

Γ(n+ 1) ,

(
−I
√

7− 1

k

)n

Γ(n+ 1)

]

However, in certain cases this direct method complicates the outputs for further use (see
[15]) because it reconstructs the solutions itself. In the following example, the output given
by LREtools[hypergeomsols] contains the one of FPS[rectohyperterm]which
is enough to recover the hypergeometric term solutions sought.

> S:=[solve(zˆ3+7*zˆ2+z+28,z)]:
> RE:=FPS[sumhyperRE]([S[1]ˆn,S[2]ˆn,S[3]ˆn],a(n))

(75)RE := 28a(n) + a(n+ 1) + 7a(n+ 2) + a(n+ 3) = 0

> LREtools[hypergeomsols](RE,a(n),{},output=basis)

[(
−7− RootOf

(
Z3 + 7 Z2 + Z + 28

)
− RootOf

(
Z2 +

(
7 + RootOf

(
Z3 + 7 Z2 + Z + 28

))
Z

+RootOf
(

Z3 +7 Z2 + Z+28
)2

+7RootOf
(

Z3 +7 Z2 + Z+28
)

+1
))n

,RootOf
(

Z3

+ 7 Z2 + Z + 28
)n
,RootOf

(
Z2 +

(
7 + RootOf

(
Z3 + 7 Z2 + Z + 28

))
Z

+ RootOf
(

Z3 + 7 Z2 + Z + 28
)2

+ 7RootOf
(

Z3 + 7 Z2 + Z + 28
)

+ 1
)n]

(76)

> FPS[rectohyperterm](RE,a(n),complex)

(77)
{
RootOf

(
Z3 + 7 Z2 + Z + 28

)n}
5. Some comparisons

Our Maple implementation of the given algorithm was tested on many recurrence equa-
tions. Regarding efficiency, the difference between our implementation and that of van
Hoeij is in the order of milliseconds: for solutions over the rationals, our implementation
generally gives a better efficiency; and for solutions over extension fields, van Hoeij’s code

29



is generally faster, but in both cases, the timings are very closed. Our Maxima implemen-
tation usually comes third when we compare efficiencies, though there are some examples
where this is not verified. However, we think that for comparisons involving implementa-
tions in Maple and Maxima or two different CASes in general, a first look must be taken at
kernels and data structures of both systems. Without going into details on these computer
science “buildings”, we only mention that Maple has a C-based kernel whereas Maxima
has a Common Lisp-based one, and this could make some differences in the speed of both
systems. The reader can visit the programming website https://open.kattis.com
to see how often C programs are the fastest.
The new Maple command LREtools[RightFactors] is a new implementation of
van Hoeij which allows computation over algebraic extension fields on specific user de-
mands. This means that the suspected algebraic numbers are specified directly as input.
Hypergeometric term ratios are computed by this command as first-order right factors.
This implementation is of course more efficient in most cases since the extension fields
allowed are bounded by the user. However, from the input and output points of view,
our implementation does not easily compare to this new command in terms of efficiency.
We have made some computations where we observed that the difference of CPU times
between both approaches could be interpreted by the fact that our approach further imple-
ments Algorithm 2 to find “simple” formulas.
We mention that our implementations, presented at the International Congress of Math-
ematical Software (ICMS) 2020 and the Maple Conference 2020, helped fix bugs in
LREtools[hypergeomsols] on its Maple 2020 version (check the limits presented
in [16], an old version of this paper). However, the extension of computations to symbolic
functions still raises issues with the current LREtools[hypergeomsols] as shown
below with Maple 2021.1.

> RE3:=FPS[sumhyperRE]([ln(x)ˆn,ln(x*y)ˆn],a(n))

(78)RE3 := a(n) ln(x) ln(xy) + (− ln(x)− ln(xy)) a(n+ 1) + a(n+ 2) = 0

> LREtools[hypergeomsols](RE3,a(n),{},output=basis)
Error, (in mod/Normal/Factored) not implemented

> FPS[rectohyperterm](RE3,a(n),complex)

(79){ln(x)n , ln(xy)n}

We believe that this bug can be fixed as well. Apart from giving a survey, the point here
is also to show how having our algorithm contributes to ensuring and presenting equiva-
lences of theoretical arguments in [12, 19, 5], and improve cutting edge implementations.
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Although van Hoeij’s algorithm is mentioned at this footnote link 10 to a Mathematica
webpage, the implementation in Rsolve remains quite slow: we computed the solutions
of (RE) and got a much more complicated result after about 7 minutes. It is difficult to
decide which algorithm is used as the code is hidden from users. Petkovšek’s algorithm is
the most popular implementation encountered in many CASes. Our result and its imple-
mentation bring Maxima to the top level in computing hypergeometric term solutions of
holonomic recurrence equations.
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