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Abstract

We introduce a new invariant vulnerability parameter named J-Tightness
or J(G) for graphs. As a stability measure, its properties along with com-
parisons to other parameters of a graph are proposed. We show how it
is calculated for complete graphs and cycles. We show that J-Tightness
better fits the properties of vulnerability measures and can be used with
more confidence to assess the vulnerability of any classes of graphs.
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1 Introduction

One way of measuring the stability of a communication network (connections,
communications, or paths) is through the ease (or the cost) with which one can
disrupt the network. A lot of work has been done regarding the proposition of
new vulnerability measurement parameters and the relationship between these
parameters as well as the original properties of graphs [55]. The very first ef-
forts on vulnerability parameters of graphs go back to the 1960s [22]. All of
these parameters act as functions whose inputs are graphs and outputs are real
numbers. In other words, these parameters map graph samples to real numbers.
With this operation, the graphs are comparable in terms of vulnerability with
the comparison of mapped numbers. All of these parameters seek to find the
Achilles heel or the weakest and most vulnerable point of the graph. Therefore,
the function that is defined for these vulnerability parameters is often a min-
imization/maximization function. The most important parameters that have
been proposed to measure vulnerability so far are Connectivity, Binding Num-
ber, Scattering Number, Rapture Degree, Integrity, Toughness, and Tenacity.
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Any of these parameters have approached the vulnerability problems from
a certain point of view considering different characteristics of graphs. Some
consider the integrity, toughness, tenacity, and binding number as members
of a class of vulnerability parameters of a graph that are often used to study
network reliability [59]. The term reliability intends to positively consider the
properties of graphs, while vulnerability tries to show weakness. However, in
some other studies, these parameters have fallen into three categories including
cutting, covering, and closeness perspectives [7]. These three categories mostly
highlight the approaches to which the graphs are analyzed. In the following
sections, some of these parameters are illustrated. Parameters should behave
in the case of different graphs so that if logically one graph is weaker than
another graph, the vulnerability calculated by that parameter for the first graph
is smaller than the second one. Despite all these parameters, can we introduce
another parameter that behave more logically? In this paper, a new parameter
for calculating graph and network vulnerabilities will be presented and we will
discuss the criteria required for a good vulnerability parameter.

Throughout the paper, we use Bondy and Murty [23] for terminology and
notation. For a graph G, by ω(G) we denote the number of components ofG, and
τ(G) the order of the largest component of G. We shall use bxc for the largest
integer not larger than x and dxe the smallest integer not smaller than x. The
organization of the rest of this paper is as follows. Section 2 provides an overview
of the popular vulnerability parameters, Section 3 covers the characteristics of
any desired vulnerability parameter. In Section 4 the J-Tightness of graphs is
introduced. The subsequent theorems and lemmas elaborated in Section 5, and
Section 6 concludes the paper.

2 Vulnerability Parameters

Many studies have proposed various vulnerability parameters have to assess the
vulnerability of graphs and networks so far. In this section, we will study these
parameters and some of their properties. As stated in the previous section,
depending on how we approach the vulnerability problem, these parameters fall
into three categories, including cutting, covering, and closeness [7].

2.1 Connectivity

Beineke and Harary [22] first proposed the connectivity parameter based on
Mengers theorem [1, 33, 48]. The connectivity of a non-complete graph G is
defined by:

κ(G) = min {|F | : F ⊂ V (G), ω(G− F ) > 1} (1)

and that of the complete graph Kn is defined as n− 1.
The connectivity gives the minimum cost to disrupt the network, but it does

not consider the remaining components after a disruption. One can say that
this disruption is further successful if the network contains more disconnected
components and much more successful if, in addition, these components are
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small. A review of the connectivity measure is covered in [47]. Since then,
many studies have tried to provide a more detailed view of this parameter and
its relationship with some other properties of graphs. In [56], Whitney has
shown that κ(G) ≤ λ(G) ≤ δ(G) for any graph G. The undirected graphs are
the most common ones that are being studied since they are less complex than
directed graphs. However, the directed graphs have not been totally neglected,
as an example, Geller and Harary have shown that if D is a digraph, then
κ(D) ≤ λ(D) ≤ δ(D) [32]. Other detailed properties identified so far can be
found in the relevant surveys in this regard including the studies in [38, 44].
In [51], algorithmic aspects of connectivity is discussed.

2.2 Binding Number

The binding number of graphs was first introduced in 1973 by D. R. Woodall
[57]. According to Woodall, the binding number of a graph G is defined by:

bind(G) = min
A∈F (G)

{
N(A)

|A|

}
(2)

where F = {S ⊆ V (G) : S 6= ∅, N(S) 6= V (G)} [57]. Goddard showed in [34]
that the binding number bind(G) for claw-free graphs G is as follows: Let G
be a claw-free graph of order n. If the connectivity of G is at least δ − 1 and
n 6= δ + 2, then bind(G) = (n − 1)/(n − δ). Cunningham has shown that the
binding number of a graph is computable in polynomial time [30].

2.3 Scattering Number

The scattering number of a non-complete connected graph G was first proposed
by Jung [41] and is defined by:

s(G) = max {ω(G− F )− |F | : F ⊂ V (G), ω(G− F ) > 1} (3)

Jung proposed the scattering number as ”additive dual” for the concept of
toughness. Several findings regarding scattering number have been discussed
throughout several papers and it has been computed for several types of graphs
[3, 61]. It is proved that the computing complexity of scattering number is
NP-complete [60].

2.4 Rapture Degree

In 2005, Li et. al [45] introduced the rupture degree of a graph G which is
defines as:

r(G) = max {ω(G− F )− |F | − τ(G− F ) : F ⊂ V (G), ω(G− F ) > 1} (4)

And rupture degree of Kn is defined as 1 − n. The rupture degree of special
classes of graphs have been studied in [42,43,45]; for instance, he rupture degree
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of the star K1,n (n ≥ 3) is n − 3. If G1 and G2 are two connected graphs of
order n1 and n2 respectively, then r(G1 +G2) = max{r(G1)− n2, r(G2)− n1}.
If Gn is a gear graph, then r(Gn) = 0. The rupture degree of graphs has been
proved to be NP-Complete [43].

2.5 Integrity

The integrity of a graph was first introduced by Barefoot et. al. [8, 9] as:

I(G) = min
F⊂V (G)

{|F |+ τ(G− F )} (5)

In [6] the authors have covered several relationships regarding the integrity of a
graph that has been identified. For instance, the integrity of a complete graph
Kp is p; the integrity of any complete multipartite graph of order p and largest
partite set or order r is p−r+1. The boundaries of integrity and the conditions
under which the boundaries are reached for integrity are covered in [35]. As a
result, for a graph G of order p: I(G) = 1 if and only if G is null; I(G) = 2
if and only if all nontrivial components of G are edges or the only nontrivial
component is a star; I(G) = p − 1 if and only if G is not complete and G has
girth at least 5; I(G) = p if and only if G is complete [35]. The computation
complexity of integrity has been proved to be NP-complete in [28].

2.6 Toughness

Toughness is another popular vulnerability parameter of graphs which was first
proposed by Chavatal in 1973 [27]. The toughness of graph G is defined by:

t(G) = min

{
|F |

ω(G− F )
: F ⊂ V (G), ω(G− F ) > 1

}
(6)

Some properties of toughness are covered in [27]. Some instances are mentioned
here: let G and H be two graphs such that G ⊂ H, then t(G) ≤ t(H). The
toughness of some special types of graphs are calculated by Chvtal. For example,
Chvtal has proved that for any complete multipartite graphKm,n, ifm ≤ n, then
t(Km,n) = m/n. The toughness of Cartesian product of two complete graphs
is t(Km × Kn) = 1

2 (m + n) − 1 such that m,n ≥ 2. Many further researched
had been conducted to calculate the toughness of diversity classes of graphs
[2, 10, 14, 16–18, 36, 52, 54]. The toughness of directed graphs is covered in [21]

and it is denoted by
−→
t . As an example, for any graph of order p,

−→
t (G) ≤ −→κ (G);

−→
t (G) ≤ V (G)/(p − V (G)); if G is 2-edge connected, then

−→
t ≥ 1/(p − 1) [21].

In addition, he has discussed some important findings of graphs regarding their
toughness; for instance, it is proved that every Hamiltonian graph is 1-tough.
The famous conjecture for toughness is that there exists t0 such that every
t0-tough graph is Hamiltonian [27]; he has also conjectured that t0 must be
2. The Hamiltonian properties of 2-tough graphs were discussed by Bauer et.
al [11] and finally, the conjecture was dismissed by Bauer et. al. in 2000 [12].
The computation complexity of toughness has been discussed in several types
of research [15,19,20] and it has been proved to be NP-hard.
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2.7 Tenacity

Cozzens et.al first proposed the Tenacity of a non-complete connected graph G
in [29] and is defined as:

T (G) = min

{
|F |+ τ(G− F )

ω(G− F )
: F ⊂ V (G), ω(G− F ) > 1

}
(7)

This parameter is also amongst the most popular ones and many studies have
been launched to explore the properties and values for certain types of graphs
[4, 5, 26, 39, 46, 49, 50, 53]. This parameter has also been proved to be NP-hard
[37]. This parameter has been presented in various formats so far. The mixed
Tenacity Tm is defined as:

Tm(G) = min

{
|F |+ τ(G− F )

ω(G− F )
: F ⊂ E(G), ω(G− F ) > 1

}
(8)

The edge-analogs of these concepts are defined similarly; see [8, 9, 27, 29]. The
values of the vulnerability parameters, based on the calculation logic, lay in a
variety of ranges. This makes it difficult to compare the values for different
graphs. In this regard, normalized toughness and normalized tenacity of graphs
were introduced by Javan et. al [40] as below, respectively:

tvN (G) =
2

n− 1
× min

F⊂V (G)

{
|F |

ω(G− F )
: ω(G− F ) > 1

}
(9)

teN (G) =
2

n− 1
× min

F⊂E(G)

{
|F |

ω(G− F )
: ω(G− F ) > 1

}
(10)

TvN (G) =
1

n
× min

F⊂V (G)

{
|F |+ τ(G− F )

ω(G− F )
: ω(G− F ) > 1

}
(11)

TeN (G) =
2

n− 1
× min

F⊂E(G)

{
|F |+ τ(G− F )

ω(G− F )
: ω(G− F ) > 1

}
(12)

3 Characteristics of an efficient vulnerability Pa-
rameter

Based on the content mentioned in Section 2, it is clear that the connectivity of a
graph reflects the difficulty in breaking down a network into several pieces. This
invariant is often too weak since it does not consider the remaining components
after the corresponding graph is disconnected. Unlike the connectivity, each of
the other vulnerability measures, i.e. toughness, scattering number, integrity,
tenacity, and rupture degree, reflect not only the difficulty in breaking down
the network but also the damage that has been caused. Further, we can see
that the tenacity and rupture degree are the two most advanced ones among
these parameters when measuring the stability of networks. To compare these
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parameters better and overcome the controversies of advantages of each over
the other, the authors in [25] have discussed some desirable characteristics of
vulnerability measures. Some of these characteristics are:

• Comparability: The values given by the parameters to any graph must
be comparable. It means that if the first graph seems to be less vulnerable
than the second graph, the value of the vulnerability parameter for the
first graph must be greater than the second graph. To prove the existence
of this property mathematically, we must show that if G ⊂ H then F (G) ≤
F (H).

• Monotonicity: The parameter values must be monotone (either increas-
ing or decreasing). It means that the value of the vulnerability parameter
must change from the minimum value to the maximum value with approx-
imately equal steps.

• Distinguishability: The measure must be global enough so that its val-
ues could distinguish between the two graphs. It means that the vulnera-
bility parameter values must be different for different graphs.

• Unambiguity: The value of the vulnerability parameter for a particular
graph should not have different values by two calculation methods. For
example, the K3 may be considered as C3, and if we calculate the value of
vulnerability in two cases, we may have different values of the vulnerability
parameter for one graph.

• Normalized: The values should be in a finite and bounded range of real
numbers (i.e. [0,1]).

• Computational Complexity: The vulnerability parameter should be
computed in polynomial time for any graph.

Connectivity, tenacity, and toughness are amongst the most popular parameters.
However, their disadvantage is that they do not meet some of the characteristics
mentioned above. For example, these parameters provide diverse ranges of
values that make it difficult to distinguish between two graphs regarding their
vulnerability (i.e. connectivity, tenacity, or toughness). Connectivity works
only on the number of vertices that the graph gets disconnected by removing
them, so its comparability is poor since this parameter does not consider the
structure. The binding number works better than connectivity, so it should
be better in evaluations, but since its relation is the number of neighbors of
set A divided by the cardinality of set A, it still seems not to have very good
comparability, but it is better than connectivity. Rapture degree is better than
binding number and connectivity because the number of components created as
well as the largest component are both considered in the formula. The same is
for integrity because it considers the largest component in the formula and thus
it is better. Scattering number works better than connectivity because it takes
into account the number of components, but because it does not relate to the
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largest component, it is weaker than rapture degree. Toughness works better
than the rest because it uses the number of components created and this number
of components is used in the denominator. The same is for tenacity. Normalized
toughness and normalized tenacity are also like toughness and tenacity.

For connectivity, the harder the graph is, the better the value of Mono-
tonicity, and therefore it performs linear concerning the hardness or size of the
graph. Binding number also has a good monotonicity because it uses divi-
sion in its formula and that is why we consider it as strong. Other rapture
degree, Integrity, and scattering number are weaker than connectivity and do
not have good monotonicity. Tenacity and toughness also perform better than
other parameters because they use division in their relationship and consider
the remaining components.

Connectivity performs very poorly regarding distinguishability because it is
difficult to compare. Binding number, like connectivity, have poor distinguisha-
bility because they are not highly dependent on the graph structure. Distin-
guishability of Integrity and rapture degree are the same because they consider
the largest component in their formula, better show the distinction between
graphs. Scattering number, because it does not have the largest component,
it performs weaker than rapture degree and integrity. Toughness and tenac-
ity, both because use the division operator and consider the largest component,
perform better distinguishability.

In connectivity we have ambiguity because its value is not defined for all
graphs such as C3 = K3 and P2 = K2 i.e.. The binding number for a complete
graph also has a problem, which must be defined for a complete graph in the
above special cases. Rapture degree and the remaining parameters are speci-
fied for the complete graphs and their value is not infinite and they give the
same values for certain cases. None of the parameters are normalized except
normalized tenacity and normalized toughness. It is proved that the binding
number has polynomial computational complexity and the others are all NP-
hard [10,13,18,20,24,37,58]. All these comparisons are given in Table 1. However
we are going to present a novel parameter i.e. J-Tightness which meets these
characteristics to the most.

Table 1: Comparison of vulnerability parameter characteristics. The letters S,
M, and W are used for Strong, Medium, and Weak, respectively.

κ bind r I s t T tN TN

Comparability W M S S M S S S S

Monotonicity S S M M M S S S S

Distinguishibility W W M M W M S M S

Unambiguity No No Yes Yes Yes No No Yes Yes

Normalized No No No No No No No Yes Yes

Complexity NP-Hard P NP-Hard NP-Hard NP-Hard NP-Hard NP-Hard NP-Hard NP-Hard
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4 The J-Tightness of Graphs

The purpose of the network is to establish communication between the nodes.
Therefore, we can investigate the network vulnerability based on the amount
of communication lost in the network after manipulation. In this section, we
introduce J-Tightness and Edge-J-Tightness, and explain how their values can
be calculated for several types of graphs. As the J-Tightness of a graph, one must
assess the vulnerability of a graph to disruption by losing nodes or edges while
taking into account all possible connections (edges) as well as the remaining
components. To distinguish this parameter from the Tightness in set theory,
the name J-Tightness has been used for this graph parameter. The J-Tightness
and Edge-J-Tightness of graph G are defined respectivley by:

J(G) = min
F⊆V (G)


2× ε× |F |

ν ×
((

ν

2

)
−
∑ω(G−F )

i=1

(
ci
2

))
 (13)

Je(G) = min
F⊆E(G)


2× ε× |F |

ν × (ν − 1)×
((

ν

2

)
−
∑ω(G−F )

i=1

(
ci
2

))
 (14)

where:

• ν = |V (G)| and ε = |E(G)|

• ci is the number of vertices in ith component of G− F

• F is the cutset (edges/vertices)

•
(
ν

2

)
−
∑ω(G−F )

i=1

(
ci
2

)
is the number of removed paths in G− F

5 Theorems and Lemmas

We prove some basic theorems and lemmas about J-Tightness and Edge-J-
Tightness. These proofs will help to examine the properties of the parameters
mentioned in Section 3.

Lemma 1. If G is a spanning subgraph of H, then J(H) ≥ J(G), Je(H) ≥
Je(G).

Proof. Let G be a spanning subgraph of H, and F is a subset of V (H)/E(H)
which achieves J(H)/Je(H) respectively, then we have

ω(G−F )∑
i=1

(
ci
2

)
≤

ω(H−F )∑
i=1

(
ci
2

)
(15)
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thus (
ν

2

)
−

ω(G−F )∑
i=1

(
ci
2

)
≥
(
ν

2

)
−

ω(H−F )∑
i=1

(
ci
2

)
(16)

therefore
J(H) ≥ J(G), Je(H) ≥ Je(G). (17)

The comparability of the J-Tightness and Edge-J-Tightness parameters can
be deduced from lemma 1.

Proposition 1. If G is an empty graph with |V (G)| = ν > 1, then J(G) = 0
and Je(G) = 0.

Proposition 2. If G is a complete graph, then J(G) = 1 and Je(G) = 1.

Proposition 1 and 2 together with lemma 1 indicate that J-Tightness and
Edge-J-Tightness are normalized.

Lemma 2. Suppose ci is the number of vertices of the ith component of graph
Cn by deleting k edge. With constant |f | = k, the maximum value for the
denominator of definition 14 is obtained when the difference in the number of
vertices of the two components is not more than one, or in other words ∀i, j :
|ci − cj | ≤ 1.

Proof. For each pair p and q from created components of the graph Cn by
removing k, we have:

k−1∑
i=1

k∑
j=i+1

cicj =


k−1∑
i=1
i 6=p
i6=q

k∑
j=i+1
j 6=p
j 6=q

cicj

+

cp
k∑

i=1
i 6=p
i6=q

ci

+

cq
k∑

j=1
j 6=p
j 6=q

cj

+ cpcq (18)

Suppose

S =

k∑
i=1
i 6=p
i6=q

ci, A =

k−1∑
i=1
i 6=p
i 6=q

k∑
j=1
j 6=p
j 6=q

cicj (19)

Then the relationship will be simplified as follows:

k−1∑
i=1

k∑
j=i+1

cicj = A+ Scp + Scq + cpcq = A+ S(cp + cq) + cpcq (20)

The values of A, S, and cp + cq are constant. Thus the maximum value for the
above relationship occurs when the cpcq is maximal. Therefore, the quantities
of cp and cq in discrete scale had to be as close as possible, in other words, the
difference in the number of vertices in each component pair is at most equal to
one. So, the maximum value for the above relationship happens when we divide
the vertices equal between components as far as possible.

9



Theorem 1. For any Cycle graph with n vertices,

Je(Cn) =
4

(n− 1)×
((

n

2

)
−
(
bn2 c

2

)
−
(
dn2 e

2

)) . (21)

Proof. It can be easily verified that by deleting k edges from the graph Cn with
k > 1, the graph is divided into k components. In other words, ω(G− F ) = k,
we consider the definition 14 for the k constant value. Using lemma 2, we will
examine Edge-J-Tightness for cycle graphs. Considering the k component of
the graph G after deleting the k edges, assume that r be the divide remaining
n vertices to the k components. In this case we will have:

r = mod(n, k), x = bn
k
c ⇒ r = n− kx (22)

To minimize the amount of Edge-J-Tightness, the relation 14 will be converted
as follows:

Je(G) =
2

n− 1
× min

2≤k≤n


k(

n

2

)
−
∑r

i=1

(
x+ 1

2

)
−
∑k

i=r+1

(
x

2

)


=
2

n− 1
× min

2≤k≤n


k(

n

2

)
− r
(
x+ 1

2

)
− (k − r)

(
x

2

)


=
2

n− 1
× min

2≤k≤n


k(

n

2

)
− (n− kx)

(
x+ 1

2

)
− (k − n+ kx)

(
x

2

)


=
2

n− 1
× min

2≤k≤n

{
2k

(n2 − n)− (n− kx)(x2 + x)− (k − n+ kx)(x2 − x)

}
=

2

n− 1
× min

2≤k≤n

{
2k

n2 − n− 2nx+ kx2 + kx

}
=

2

n− 1
× min

2≤k≤n

{
2k

n2 − n− 2nbnk c+ kbnk c2 + kbnk c

}
By deriving above relation, in continuous form, we have

f(x) =
2k

n2 − n− 2n2

k + n2

k + n
=

2k2

kn2 − n2

df(k)

dk
=

4k(kn2 − n2)− 2n2k2

(kn2 − n2)2
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df(k)

dk
= 0

⇒ 4k(kn2 − n2)− 2n2k2 = 0

⇒ 2n2k2 − 4kn2 = 0

⇒ k2 − 2k = 0

⇒ k(k − 2) = 0

To minimize the relationship, k can take two values of 0 and 2. There is no 0
value in the range, therefore k = 2.
Thus, in order to obtain the Edge-J-Tightness for cycles, it is enough to divide
the graph into two equal components, by removing only two edges. Therefore,
the value of the Edge-J-Tightness for cycle graphs with n vertices (n ≥ 3) will
be as follows:

Je(Cn) =
4

(n− 1)×
((

n

2

)
−
(
bn2 c

2

)
−
(
dn2 e

2

)) .

With the same calculation, we can have the following Corollaries.

Corollary 1. If Pn is a path with n vertices then:

Je(Pn) =
2

n×
((

n

2

)
−
(
bn2 c

2

)
−
(
dn2 e

2

)) .
It is shown that by removing k edges, the graph become k components maximum.
In the Path, by removing k edges the graph will be converted to at most k + 1
components. The rest of the relationships are provable as in Theorem 1.

Corollary 2. If Cn is a cycle with n vertices (n > 3) then:

J(Cn) =
4(

n

2

)
−
(
bn−22 c

2

)
−
(
dn−22 e

2

) .
Vertex-tightness, same as edge-tightness is minimized when we remove 2 almost
opposite vertices.

Corollary 3. If Pn is a path with n vertices then:

J(Pn) =
2(n− 1)

n×
((

n

2

)
−
(
bn−12 c

2

)
−
(
dn−12 e

2

)) .
By removing one vertex, the graph splits into two almost same components.

Corollary 4. Je(P2) = Je(K2) = 1.
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Figure 1: Five different graphs with n+ 1 vertices

Corollary 5. Je(C3) = Je(K3) = 1.

Corollary 6. J(P2) = J(K2) = 1.

Corollaries 4, 5, and 6 are resulted from corollaries 1, 2, and 3 by substituting
n = 2 and n = 3. Corollaries 1 to 6 show that the definitions introduced for
Edge-J-Tightness, unlike the Toughness and Tenacity, are not ambiguous for P2,
K2 and C3, K3. J-Tightness is also unambiguous for P2, K2, and J-Tightness
for Cn, n ≤ 3 is not defined.

Table 2 shows the vulnerability of the graphs in Figure 1 based on the
Connectivity, Integrity, Toughness, Tenacity, and J-Tightness parameters. All
of these graphs have n+ 1 vertices. We expect a suitable parameter to compute
different values for these graphs, or in other words, to distinguish between these
graphs. In Table 2, Connectivity or κ does not distinguish any of the example
graphs. In other words, speaking of κ = 1 does not identify which type of
graph is meant. The edge-analog of this parameter has the same problem (i.e.,
it does not distinguish among G1, G3, and G4). The Integrity parameter does
not distinguish the vulnerabilities of G2, G3, G4, and G5, either. The same
happens for its edge-analog that does not determine unique values for G1, G2,
G4, and G5. The Tenacity does not distinguish G4 and G5. However, the
Mixed-Tenacity identifies all graphs and shows better performance. According
to this table, the parameter J-Tightness and edge-J-Tightness both distinguish
all the graphs and meet the desired properties of vulnerability parameters.

To investigate the monotonicity property of the new parameters, we need
graphs whose order of vulnerability is logically known. The authors in [40] stud-
ied this property on Harary graphs. In this article, we will use Harary graphs to
examine this property in new parameters. Table 3 shows the vulnerability for
several Harary graphs based on definitions 13 and 14. Figure 2 shows the growth
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Table 2: The value of vulnerability parameters for the graphs shown in Figure
1

Graph κ κe I Ie t te T Tm J Je

G1 1 1 n n+ 1 1
2

1
2

n
2

n+1
2

n2−n+2
2n2+n−1

n22+2
n3+n2

G2 1 n
2

n
2 + 1 n+ 1 1

2
n
4

n+2
4

n2+2n+4
4n+4

2n+4
n2+5n+4

1
n+1

G3 1 1 n
2 + 1 n 2

n+2
1
2 1 n2+6n+8

8n+8
2n+12

3n2+9n+6
n+6

4n2+4n

G4 1 1 n
2 + 1 n+ 1 1

3
1
2

n+2
6

n2+8
4n+4

2n2+8
n3+7n2+2n−4

n2+4
2n3+2n2

G5 1 n
4

n
2 + 1 n+ 1 1

3
n
8

n+2
6

3n2+8n+16
16n+16

6n+16
5n2+21n+16

3n+8
6n2+14n+8

trend of this rate. In this figure, it is clear that the growth of the J-Tightness
is smoother than the growth of the Edge-J-Tightness. In other words, on the
linear scale, the J-Tightness shows better behavior, but the Edge-J-Tightness
performs better on an exponential scale. Although, both show good behavior
in the term of monotonicity.

Table 3: J-Tightness and Edge-J-Tightness of some Harary graphs

Parameter H2,6 = C6 H3,6 H4,6 H5,6 = K6

J 4
13

3
5

4
5 1

Je
4
45

3
10

2
5 1

6 Conclusion

In this paper, we tried to introduce a new parameter to assess the vulnerability
of the graphs. According to the Theorem, lemmas, and corollaries discussed
above, it is clear that the J-Tightness meets the desired characteristics of the
vulnerability parameters. The computational complexity of the parameter is
estimated to be NP-Complete because it seems that to calculate these parame-
ters, we need to examine all vertex or edge combinations. However, this property
should be studied further as an open problem. The comparison of J-Tightness
to the connectivity, integrity, tenacity, and toughness parameters indicates that
J-Tightness can be a utilizable measure for evaluating graph stability.
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