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Abstract

Let S be a set of points in the plane that are in convex position. Let O be a set of simple
polygonal obstacles whose vertices are in S. The visibility graph V is(S,O) is the graph which is
obtained from the complete graph of S by removing all edges intersecting some obstacle of O. In
this paper, we show that there is a plane 5.19-spanner of the visibility graph V is(S,O) of degree
at most 6. Moreover, we show that there is a plane 1.88-spanner of the visibility graph V is(S,O).
These improve the stretch factor and the maximum degree of the previous results by A. van Renssen
and G. Wong (Theoretical Computer Science, 2021) in the context of points in convex position.
Keywords: Plane spanner, Stretch factor, Shortest path, Computational Geometry.

1 Introduction

A geometric graph is a weighted graph such that each edge (p, q) of the graph is the straight-line between
p and q, and the weight of the edge (p, q) is the Euclidean distance between p and q denoted by |pq|. Let
S be a set of points in the plane, and let G be a geometric graph with the vertex set S. Let t > 1 be a
real number. An induced subgraph H of G is called a t-spanner of G if for any two points p, q ∈ S, there
is a path Q between p and q in H such that |Q| ≤ tδG(p, q), where |Q| is the length of the path Q and
δG(p, q) is the length of the shortest path between p and q in G. The path Q is called a t-path between
p and q in H. The minimum value of the real number t such that H is a t-spanner of G is called the
stretch factor or dilation of H. If the geometric graph G is the complete graph of the point set S, then
the t-spanner H is called the t-spanner of S. To study some algorithms for constructing spanners and
their applications, we refer the reader to the book [7] due to by Narasimhan and Smid.

In the real world, there may be physical obstacles between the points that make it difficult to construct
a t-spanner. Therefore, it is important to know how to construct a t-spanner in the presence of obstacles
for the set of points. It is notable that the obstacles can take any shape. A number of research works
have been done for the obstacles in the form of line segments [3–6]. Let O be a set of simple polygons
whose vertices belong to the point set S. Assume that each vertex of S is the corner of at most one
polygon of O. Two points p, q ∈ S is called visible if the straight line pq between them does not intersect
any polygons of O. Note that it is allowed that the line pq to be in contact with a vertex or be tangent
to a side of a polygon. The graph with the vertex set S whose edge set consists of all visible edges with
respect to O is called the visibility graph of S with respect to O, and is denoted by V is(S,O). In [8], van
Renssen and Wong prove that there is a plane 2-spanner of V is(S,O). They states that the degree of the
proposed plane 2-spanner can be unbounded. To obtain a plane bounded-degree spanner of V is(S,O),
they show that there is a plane 6-spanner of V is(S,O) of degree at most 7.

Assume that the points of S are placed in convex position. In [1] and [2], the authors propose two
plane spanners for points in convex position. In [1], the authors show that there is a plane 1.88-spanner
H1.88 of S. In [2], the authors show that there is a plane 5.19-spanner H5.19 of S of degree at most 3.
Note that the degree of the proposed plane spanner in [1] can be unbounded. In this paper, using the
constructions of H1.88 and H5.19, we show that there is a plane 1.88-spanner of V is(S,O), and there is a
plane 5.19-spanner of degree at most 6. These improves the stretch factor and the degree of the previous
results by van Renssen and Wong [8] in the context of points in convex position.
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2 Preliminaries

In the following, we assume that S is a set of n points in the plane that are in convex position. Let
CH(S) be the boundary of the convex hull of S. In the following, the notations in [1] is used. For any
two points p, q ∈ S, let δcwCH(S)(p, q) and δccwCH(S)(p, q) be the clockwise and counter-clockwise paths from

p to q along CH(S), respectively. If

min
(∣∣∣δcwCH(S)(p, q)

∣∣∣ , ∣∣∣δcwCH(S)(p, q)
∣∣∣) ≤ t|pq|,

then the point p is called a t-good point for q. If the point p is a t-good point of all points of S, then the
point p is called a t-good point for S. A pair (p, q) with p, q ∈ S is called a diametral pair of S, if (p, q) is
the farthest pair of points of S, and the points p and q are called the diametral points, and the diameter
of S is equal to |pq|. In [1], Biniaz et al., show that any diametral point is a 1.88-good for S. Based on
this property, they proposed an algorithm that constructs a plane 1.88-spanner of S. The algorithm is
as follows. At first, the algorithm adds CH(S) to the edge set. Then, it finds a diametral point p of S.
Next, it adds the edge connecting two neighbors of p on CH(S) to the edge set. Then, the algorithm
recursively applies the above operations on the point set S\{p}. For more details, see Algorithm 2.1.
Biniaz et al., [1] show that the output of Algorithm 2.1 is a triangulation of S with the stretch factor at
most 1.88. Let H1.88 be the triangulation of S generated by Algorithm 2.1. Hence, the following theorem
due to by Biniaz et al., [1] holds.

Theorem 1. The triangulation H1.88 generated by PlaneSpanner(S) is a plane 1.88-spanner of S.

It is not hard to see that the degree of H1.88 can be unbounded.

Algorithm 2.1: PlaneSpanner(S) ([1])

input: A finite set S of points in the plane in convex position.
output: A plane 1.88-spanner H1.88.

1 E :=the edge set of CH(S);
2 B := S;
3 while |B| ≥ 4 do
4 p := a diametral point in B;
5 q, r :=the two neighbors of p on CH(S);
6 E := E ∪ {q, r};
7 B := B\{p};
8 end
9 return H1.88 = (S,E)

In 2017, Biniaz et al., presented an algorithm that constructs a plane 5.19-spanner of degree at most
3 for points in convex position [2]. Their algorithm works as follows (see [2]). The algorithm adds CH(S)
to the spanner. Then, a farthest pair (p, q) of points of S is selected. Next, the algorithm computes two
convex chains by removing p and q from CH(S). Now, the algorithm adds a matching between these
two chains to the edge set. The matching is recursively computed as follows. At first, the closest pair
of points between the two convex chains is added to the matching. Now, this closest pair splits the two
convex chains into four convex chains. Now, the algorithm recurse on both sides and adds the closest
pairs to the matching (see Algorithm 2.3). Let H5.19 be the generated graph by Algorithm 2.3. Now,
the following theorem due to by Biniaz et al., [2] holds.

Theorem 2. The geometric graph H5.19 generated by Deg3PlaneSpanner(S) is a plane 3+4π
3 -spanner

(or 5.19-spanner) of S of degree at most 3.

3 Main result

In this section, we present a plane 1.88-spanner of the visibility graph V is(S,O). Moreover, we present
a plane 5.19-spanner of the visibility graph V is(S,O) of degree at most 6.

Since the points of S are in convex position and O consists of simple polygons, each member of O
is a convex polygon, and therefore, the point set S can be divided to some subsets of points that are in
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Algorithm 2.3: Deg3PlaneSpanner(S) ([2])

input: A non-empty finite set S of points in the plane that is in convex position
output: A plane degree-3 spanner of S.

1 (p, q) := a farthest pair of points of S;
2 C1, C2 := the two chains obtained by removing p and q from CH(S);
3 E′ := CH(S)∪Matching(C1, C2);
4 return H5.19 = (S,E′);

Figure 1: A point set with two obstacles in yellow color and four subsets in gray color.

convex position. Let S1, . . . , Sk be such subsets (see Figure 1). Now, we have the following observation.
The observation follows from this fact that the line segment between any two points on the convex hull
of S cannot be outside the convex polygon.

Observation 3. For any two subsets Si and Sj, any two points p and q with p 6= q and p ∈ Si and
q ∈ Sj, are not visible unless there is point u ∈ S such that u is a vertex of an obstacle and p, q and u
are collinear.

In Figure 2 two points x and y are not visible, and two points p and q are visible and collinear with
the point u. Now, let G1.88 be a geometric graph such that it is the union of the geometric graphs

p

q

u

x

y

Figure 2: The yellow region is an obstacle. Two points x and y are not visible, and two points p and q are
visible, and they are collinear with u.

PlaneSpanner(S1), PlaneSpanner(S2), . . . ,PlaneSpanner(Sk). Let G5.19 be a geometric graph
such that it is the union of the geometric graphs Deg3PlaneSpanner(S1), Deg3PlaneSpanner(S2),
. . . , Deg3PlaneSpanner(Sk). Now, we show that G1.88 is a plane 1.88-spanner of V is(S,O), and we
show that G5.19 is a plane 5.19-spanner of V is(S,O) of degree at most 6.

Theorem 4. The geometric graphs G1.88 and G5.19 are plane 1.88-spanner and plane 5.19-spanner of
V is(S,O), respectively.

Proof. First we prove the theorem for G1.88. To prove the theorem for G1.88, it is sufficient to prove
that for any two visible points p, q ∈ S, there is a path between p and q in G1.88 of length at most 1.88
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times the length of the shortest path between p and q in V is(S,O). By Observation 3, it is sufficient to
prove that for any i with 1 ≤ i ≤ k, the graph generated by PlaneSpanner(Si) is a 1.88-spanner of
Si. By Theorem 1, PlaneSpanner(Si) is a 1.88-spanner of Si. The proof of the theorem for G5.19 is
similar to the proof of the theorem for G1.88 just we should apply Theorem 2. This completes the proof.
�

Now, by Theorem 2, the degree of the plane spanner Deg3PlaneSpanner(Si) is at most 3. Since
every vertex of S is the corner of at most one polygon of O, then clearly the degree of any vertex of S
is at most 6. Hence, we have the following theorem.

Theorem 5. The degree of the graph G5.19 is at most 6.

4 Conclusion

In this paper, we focused on the constructing of the plane spanners in the presence of obstacles for the
points in convex position. We proposed two plane spanners of the visibility graph with the stretch factor
at most 1.88 and 5.19. Moreover, we show that the proposed plane 5.19-spanner of the visibility graph
has the degree at most 6.
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