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Abstract

In this paper, a linear programming problem is investigated in which
the feasible region is formed as a special type of fuzzy relational equalities
(FRE). In this type of FRE, fuzzy composition is considered as the convex
combination operator. It is proved that the feasible region of the problem
can be written by one maximum solution and a finite number of minimal
solutions. Some theoretical properties of the feasible region are derived
and some necessary and sufficient conditions are also presented to deter-
mine the feasibility of the problem. Based on some structural properties
of the problem, an algorithm is presented to find the optimal solutions
and finally, an example is described to illustrate the algorithm.

Keywords: Fuzzy relational equalities, mean operators, fuzzy compositions,
linear programming.

1 Introduction

In this paper, we study the following linear optimization model whose con-
straints are formed as a fuzzy system defined by the convex combination oper-
ator:

min c x
Aϕx = b
x ∈ [0, 1]n

(1)

where I = { 1, 2, ...,m } , J = { 1, 2, ..., n }, A = (aij)m×n, 0 ≤ aij ≤ 1
(∀i ∈ I and ∀j ∈ J), is a fuzzy matrix, b = (bi)m×1, 0 ≤ bi ≤ 1 (∀i ∈ I), is an m-
dimensional fuzzy vector, and ”ϕ” is the max-convex combination composition,
that is, λx+ (1− λ)y where λ ∈ [0, 1].
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Furthermore, let S(A, b) denote the feasible solutions sets of problem (1),
that is, S(A, b) = {x ∈ [0, 1]

n
: Aϕx = b}. Additionally, if ai denotes the ith

row of matrix A, then problem (1) can be also expressed as follows:

min cx
ϕ (ai , x) = bi , i ∈ I
x ∈ [0, 1]n

(2)

where the constraints mean ϕ (ai, x) = max
j∈J
{ϕ (aij , xj) } = bi (∀i ∈ I) and

ϕ (aij , xj) = λ aij + (1− λ)xj where λ ∈ [0, 1].
The theory of fuzzy relational equations (FRE) was firstly proposed by

Sanchez and applied in problems of the medical diagnosis [39]. Nowadays, it is
well known that many issues associated with a body knowledge can be treated
as FRE problems [35]. Generally, when inference rules and their consequences
are known, the problem of determining antecedents is reduced to solving an
FRE [25,33].

The solvability determination and the finding of solutions set are the primary
(and the most fundamental) subject concerning with FRE problems. Actually,
The solution set of FRE is often a non-convex set that is completely determined
by one maximum solution and a finite number of minimal solutions [5]. This
non-convexity property is one of two bottlenecks making major contribution
to the increase of complexity in problems that are related to FRE, especially
in the optimization problems subjected to a system of fuzzy relations. The
other bottleneck is concerned with detecting the minimal solutions for FREs
[2]. Markovskii showed that solving max-product FRE is closely related to the
covering problem which is an NP-hard problem [32]. In fact, the same result
holds true for a more general t-norms instead of the minimum and product
operators [2,3,12,13,15,16,28,29,32].

Over the last decades, the solvability of FRE defined with different max-t
compositions have been investigated by many researchers [15,16,34,36,37,40,42,
43,45,48,51]. Moreover, some researchers introduced and improved theoretical
aspects and applications of fuzzy relational inequalities (FRI) [12 14,17,18,26,50].
Li and Yang [26] studied a FRI with addition-min composition and presented an
algorithm to search for minimal solutions. Ghodousian et al. [13] focused on the
algebraic structure of two fuzzy relational inequalities Aϕx ≤ b1 and Dϕx ≥ b2,
and studied a mixed fuzzy system formed by the two preceding FRIs, where φ
is an operator with (closed) convex solutions.

The problem of optimization subject to FRE and FRI is one of the most
interesting and on-going research topic among the problems related to FRE
and FRI theory [1,8,11-16,23,27,30,38,41,46,50]. Fang and Li [9] converted a
linear optimization problem subjected to FRE constraints with max-min oper-
ation into an integer programming problem and solved it by branch and bound
method using jump-tracking technique. In [23] an application of optimizing
the linear objective with max-min composition was employed for the streaming
media provider. Wu et al. [44] improved the method used by Fang and Li, by
decreasing the search domain. The topic of the linear optimization problem was
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also investigated with max-product operation [20,31]. Loetamonphong and Fang
defined two sub-problems by separating negative and non-negative coefficients
in the objective function and then obtained the optimal solution by combin-
ing those of the two sub-problems [31]. Also, in [20] some necessary conditions
of the feasibility and simplification techniques were presented for solving FRE
with max-product composition. Moreover, some generalizations of the linear
optimization with respect to FRE have been studied with the replacement of
max-min and max-product compositions with different fuzzy compositions such
as max-average composition [46] and max-t-norm composition [15,16,21,27,41].

Recently, many interesting generalizations of the linear programming sub-
ject to a system of fuzzy relations have been introduced and developed based on
composite operations used in FRE, fuzzy relations used in the definition of the
constraints, some developments on the objective function of the problems and
other ideas [6,10,15,16,18,24,30,47]. For example, Dempe and Ruziyeva [4] gen-
eralized the fuzzy linear optimization problem by considering fuzzy coefficients.

The optimization problem subjected to various versions of FRI could be
found in the literature as well [12-14,17,18,49,50]. Xiao et al. [50] introduced
the latticized linear programming problem subject to max-product fuzzy rela-
tion inequalities. Ghodousian et al. [12] introduced a system of fuzzy relational
inequalities with fuzzy constraints (FRI-FC) in which the constraints were de-
fined with max-min composition.

In this paper, an algorithm is proposed to find all the optimal solutions of
problem (1). Firstly, we describe some structural details of such FREs such as
the theoretical properties of the fuzzy equalities defined with convex combina-
tion operator and necessary and sufficient conditions for the feasibility of the
problem. Then, the feasible region is completely determined by a finite number
of convex cells. Finally, an algorithm is presented to solve the main problem.

The remainder of the paper is organized as follows. Section 2 gives some
basic results on the fuzzy equalities defined by convex combination operator.
Also, some feasibility conditions are derived. In section 3, the feasible region is
characterized in terms of a finite number of closed convex cells. The optimal
solution of the problem is described in Section 4 and, finally in section 5 an
example is presented to illustrate the algorithm.

2 Basic properties

In this section, the structural properties of each fuzzy equation ϕ (ai, x) = bi
is investigated and its solutions are found. Let S(ai, bi) denote the feasible
solutions set of ith equation, that is, S(ai, bi) = {x ∈ [0, 1]

n
: ϕ (ai, x) = bi}.

So, S(A, b) =
⋂
i∈I

S(ai, bi).

Lemma 1 Let i ∈ I, j0 ∈ J and aij0 > bi/λ. Then, S(ai, bi) = ∅.

Proof. Since ϕ is an increasing function on [0, 1]2 in both variables, we note
that ϕ (aij0 , xj) > ϕ ( bi/λ , xj) = bi + (1−λ)xj0 ≥ bi. Thus, for each x ∈ [0, 1]n
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we have ϕ (ai, x) = max
j∈J
{ϕ (aij , xj) } ≥ ϕ (aij0 , xj0) > bi. Hence, x /∈ S(ai, bi),

∀x ∈ [0, 1]n. �

Lemma 2 Let aij0 ≤ bi/λ for some i ∈ I and j0 ∈ J . If bi ≥ 1 − λ and
aij0 < (bi + λ− 1)/λ, then ϕ (aij0 , xj0) < bi, ∀xj0 ∈ [0, 1].

Proof. Since bi ≥ 1− λ, then (bi + λ− 1)/λ ≥ 0. Now, the result follows from
the relations ϕ (aij0 , xj0) < ϕ ( (bi + λ− 1)/λ, 1 ) = bi. �

Lemma 3 Let aij0 ≤ bi/λ for some i ∈ I and j0 ∈ J . Also, suppose that either
bi < 1 − λ or aij0 ≥ (bi + λ− 1)/λ. Then, xj0 = (bi − λ aij0)

/
(1− λ) is the

unique solution to the equality ϕ (aij0 , xj0) = bi.

Proof. It is easy to verify that ϕ (aij0 , xj0) = bi. Now, since ϕ is an increasing
function, we have ϕ (aij0 , xj) > bi if xj > (bi−λ aij0)/(1−λ) and ϕ (aij0 , xj) < bi
if xj < (bi − λ aij0)/(1− λ). �

From Lemmas 1, 2 and 3, the following theorem is resulted that gives a
necessary and sufficient condition for the feasibility of the set S(ai, bi).

Theorem 1 For a fixed i ∈ I, S(ai, bi) 6= ∅ if and only if

(a) aij ≤ bi/λ, ∀j ∈ J .

(b) There exist some j0 ∈ J such that either bi < 1−λ or aij0 ≥ (bi+λ−1)/λ.

Definition 1 For an arbitrary fixed i ∈ I, let J −(i) = {j ∈ J : aij > bi/λ}.
Additionally, define J∞(i) = {j ∈ J : bi ≥ 1− λ, aij < (bi + λ− 1)/λ} and J(i) =
J − {J −(i) ∪ J∞(i)}.

According to Theorem 1, the following corollary is directly attained. This
corollary characterizes all the feasible solutions of S(ai, bi).

Corollary 1 x′ ∈ S(ai, bi) if and only if J −(i) = ∅ , J(i) 6= ∅ and

(a) x′j ∈ [0, 1], ∀j ∈ J∞(i).

(b) x′j ≤ (bi − λ aij)/(1− λ), ∀j ∈ J(i).

(c) There exist at least some j0 ∈ J(i) such that x′j0 = (bi − λ aij0)/(1− λ).

Definition 2 Suppose that S(ai, bi) 6= ∅(hence, J −(i) = ∅ from Corollary 1).
Define X(i) ∈ [0, 1]n such that

X(i)j =

{
(bi − λ aij)

/
(1− λ) , if j ∈ J(i)

1 , if j ∈ J∞(i)

Theorem 2 Suppose that S(ai, bi) 6= ∅. Then, X(i) is the maximum solution
of S(ai, bi).
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Proof. Since S(ai, bi) 6= ∅, then J −(i) = ∅. Based on Corollary 1, X(i) ∈
S(ai, bi). Suppose that x′ ∈ S(ai, bi). So, from Corollary 1, x′j ≤ (bi−λ aij)/(1−
λ), ∀j ∈ J(i), and x′j ≤ 1, ∀j ∈ J∞(i). Therefore, x′j ≤ X(i)j , ∀j ∈ J . �

Definition 3 Let i ∈ I and S(ai, bi) 6= ∅. For each j ∈ J(i), define X(i, j) ∈
[0, 1]n such that

X(i, j)k =

{
(bi − λ aij)

/
(1− λ) , k = j

0 , otherwise

Remark 1 Suppose that S(ai, bi) 6= ∅ and j ∈ J(i). Then, from Definitions 2
and 3, we have X(i)j = X(i, j)j.

Theorem 3 Suppose that S(ai, bi) 6= ∅ and j0 ∈ J(i). Then, X(i, j0) is a
minimal solution of S(ai, bi).

Proof. From Corollary 1, X(i, j0) ∈ S(ai, bi). Suppose that x′ ∈ S(ai, bi) , x′ ≤
X(i, j0) and x′ 6= X(i, j0). So, x′j ≤ X(i, j0)j , ∀j ∈ J and x′ 6= X(i, j0). There-
fore, x′j = 0, ∀j ∈ J−{j0}, and x′j0 < (bi−λ aij0)/(1−λ). Hence, from Lemmas

1, 2 and 3 we have ϕ (ai, x
′) = max

{
max

j∈J−{j0}
{ϕ (aij , x

′
j) } , ϕ (aij0 , x

′
j0)

}
=

ϕ (aij0 , x
′
j0

) < bi that contradicts x′ ∈ S(ai, bi). �

The following theorem shows that S(ai, bi) can be stated in terms of the
unique maximum solution and a finite number of minimal solutions.

Theorem 4 S(ai, bi) =
⋃

j∈J(i)
[X(i, j) , X(i) ].

Proof. Let x′ ∈ S(ai, bi). From Theorem 2, x′ ≤ X(i). Furthermore, there exist
at least some j0 ∈ J(i) such that x′j0 = (bi−λ aij0)/(1−λ) (Corollary 1). Thus,

from Definition 3 we have X(i, j0) ≤ x′. Hence, x′ ∈ [X(i, j0) , X(i) ]. Con-
versely, let x′ ∈

⋃
j∈J(i) [X(i, j) , X(i) ]. Therefore, ϕ (aij , x

′
j) ≤ ϕ (aij , X(i)j) ≤

bi, ∀j ∈ J . Moreover, there exists some j0 ∈ J(i) such that x′ ∈ [X(i, j0) , X(i) ].
So, Remark 1 implies x′j0 = X(i, j0)j0 = X(i)j0 and therefore, ϕ (aij0 , x

′
j0

) = bi.
Thus, we have

ϕ (ai, x
′) = max

j∈J
{ϕ (aij , x

′
j) } = max

{
max

j∈J−{j0}
{ϕ (aij , x

′
j) } , ϕ (aij0 , x

′
j0)

}
= ϕ (aij0 , x

′
j0) = bi

which implies that x′ ∈ S(ai, bi). �

3 Feasible region of Problem (1)

In this section, a necessary and sufficient condition is derived to determine the
feasibility of the main problem.
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Definition 4 Let X(i) be as in Definition 2, ∀i ∈ I. We define X = min
i∈I

{
X(i)

}
.

Definition 5 Let e : I →
⋃
i∈I

J(i) so that e(i) ∈ J(i), ∀i ∈ I, and let E be the

set of all vectors e. For the sake of convenience, we represent each e ∈ E as an
m-dimensional vector e = [j1, j2, ..., jm] in which jk = e(k), k = 1, 2, ...,m.

Definition 6 Let e = [j1, j2, ..., jm] ∈ E. We define X(e) ∈ [0, 1]n such that

X(e)j = max
i∈I

{
X(i, e(i))j

}
= max

i∈I

{
X(i, ji)j

}
, ∀j ∈ J .

The following theorem indicates that the feasible region of problem 1 is
completely found by a finite number of closed convex cells.

Theorem 5 S(A, b) =
⋃

e∈E
[X(e), X].

Proof. Since S(A, b) =
⋂
i∈I

S(ai, bi), from Theorem 4 we have S(A, b) =⋂
i∈I

⋃
j∈Ji

[X(i, j) , X(i) ]. So, S(A, b) =
⋃

e∈E

⋂
i∈I

[X(i, e(i)) , X(i) ] (see Definitions

5 and 6), i.e., S(A, b) =
⋃

e∈E

[
max
i∈I
{X(i, e(i))} ,min

i∈I

{
X(i)

}]
. Now, the result

follows from Definitions 4 and 6. �

The following Corollary gives a simple necessary and sufficient condition for
the feasibility of S(A, b).

Corollary 2 S(A, b) 6= ∅ iff X ∈ S(A, b).

4 Resolution of Problem (1)

It can be easily verified that X is the optimal solution for

min
{
Z1 =

∑n
j=1 c

−
j xj : Aϕx = b, x ∈ [0, 1]

n
}

, and the optimal solution for

min
{
Z2 =

∑n
j=1 c

+
j xj : Aϕx = b, x ∈ [0, 1]

n
}

is X(e∗) for some e∗ ∈ E, where

c+j = max{cj , 0} and c−j = min{cj , 0} for j = 1, 2, ..., n [9,13,19,28]. According
to the foregoing results, the following theorem shows that the optimal solution
of Problem (1) can be obtained by the combination of X and X(e∗).

Theorem 6 Suppose that S(A, b) 6= ∅, and X and X(e∗) are the optimal so-
lutions of sub-problems Z1 and Z2, respectively. Then cTx∗ is the lower bound
of the optimal objective function in (1), where x∗ = [x∗1, x

∗
2, ..., x

∗
n] is defined as

follows:

x∗j =

{
Xj cj < 0

X(e∗)j cj ≥ 0

for j = 1, 2, ..., n.

6



Proof. For a general case, see the proof of Theorem 4.1 in [13]. �

Corollary 3 Suppose that S(A, b) 6= ∅. Then, x∗ as defined in Theorem 5, is
the optimal solution of problem (1).

Proof. According to the definition of vector x∗, we have X(e∗)j ≤ x∗j ≤ Xj ,

∀j ∈ J , which implies x∗ ∈
⋃

e∈E
[X(e), X] = S(A, b). �

5 Numerical example

Consider the following linear programming problem constrained with a fuzzy
system defined by the convex combination operator:

min Z = −2.6151x1 − 7.7759x2 + 5.6050x3 − 2.2052x4 − 5.1662x5 − 1.9217x6 − 8.0709x7
0.8212 0.4727 0.1980 0.9340 0.5140 0.5688 0.2783
0.4497 0.0561 0.1013 0.7943 0.5106 0.5285 0.7896
0.0644 0.6826 0.4485 0.6068 0.2264 0.3967 0.2136
0.5390 0.9435 0.1169 0.8258 0.7719 0.9961 0.2425
0.0870 0.4266 0.0345 0.0027 0.3657 0.4706 0.0085

ϕx =


0.8381
0.8358
0.587
0.7119
0.3839


x ∈ [0, 1]7

where | I | = 5, | J | = 7 and ϕ (x, y) = λx + (1 − λ)y in which λ = 2/3.
Moreover, Z1 = −2.6151x1 − 7.7759x2 − 2.2052x4 − 5.1662x5 − 1.9217x6 −
8.0709x7 and Z2 = 5.6050x3. For each i ∈ I, we have J −(i) = ∅. Also,
J(1) = {1, 4}, J(2) = {4, 7}, J(3) = {2, 3, 4, 6}, J(4) = {2, 4, 5, 6} and J(5) =
{1, 2, 5, 6}. Therefore, by Theorem 1, S(ai, bi) 6= ∅, ∀i ∈ I. According to
Definition 2, the maximum solutions of S(ai, bi) 6= ∅, ∀i ∈ I, are attained as
follows:

X(1) = [0.8719, 1, 1, 0.6463, 1, 1, 1]
X(2) = [1, 1, 1, 0.9188, 1, 1, 0.9282]
X(3) = [1, 0.3958, 0.864, 0.5474, 1, 0.9676, 1]
X(4) = [1, 0.2487, 1, 0.4841, 0.5919, 0.1435, 1]
X(5) = [0.9777, 0.2985, 1, 1, 0.4203, 0.2105, 1]

Hence, by Definition 4, we have

X = [0.8719, 0.2487, 0.864, 0.4841, 0.4203, 0.1435, 0.9282].

Also, by Definition 3 and Theorem 3, for example, the minimal solutions of
S(a1, b1) are obtained as follows:

X(2, 4) = [0, 0, 0, 0.9188, 0, 0, 0], X(2, 7) = [0, 0, 0, 0, 0, 0, 0.9282]

Therefore, by Theorem 4, S(a2, b2) = [X(2, 4), X(2) ] ∪ [X(2, 7), X(2) ].
According to Corollary 2, since X ∈ S(A, b), then the problem is feasible. On

the other hand, from Definition 6, we have |E | = 256. Therefore, the number
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of all vectors e ∈ E is equal to 256. However, each solution X(e) generated
by vectors e ∈ E is not necessary a feasible minimal solution. By pairwise
comparison between vectors X(e), it turns out that the feasible region has 3
minimal solutions as follows:

e1 = [1, 7, 3, 2, 5]
X(e1) = [0.8719, 0.2487, 0.864, 0, 0.4203, 0, 0.9282]

e2 = [1, 7, 3, 4, 5]
X(e2) = [0.8719, 0, 0.864, 0.4841, 0.4203, 0, 0.9282]

e3 = [1, 7, 3, 6, 5]
X(e3) = [0.8719, 0, 0.864, 0, 0.4203, 0.1435, 0.9282]

By comparison of the values of the objective function for the minimal solu-
tions, X(e1) is optimal for Z2 (i.e., e∗ = e1). Thus, from Theorem 6,

x∗ = [0.8719, 0.2487, 0.864, 0.4841, 0.4203, 0.1435, 0.9282]

and then Z∗ = cTx∗ = − 10.3773.

Conclusion

In this paper, we proposed an algorithm to solve the linear optimization model
constrained with convex combination fuzzy relational equalities. The feasible
solutions set of each FRE was obtained and their feasibility conditions were
described. Based on the foregoing results, the feasible region of the problem is
completely resolved. It was shown that the feasible solutions set can be write in
terms of a finite number of closed convex cells. Finally, a method was introduced
for finding the optimal solutions of the problem.
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