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Abstract

Cloud computing is a high-performance computing environment that can remotely
provide services to customers using a pay-per-use model. The principal challenge in
cloud computing is task scheduling, in which tasks must be effectively allocated to
resources. The mapping of cloud resources to customer requests (tasks) is a popu-
lar Nondeterministic Polynomial-time (NP)-Complete problem. Although the task
scheduling problem is a multi-objective optimization problem, most task scheduling
algorithms cannot provide an effective trade-off between makespan, resource utiliza-
tion, and energy consumption. Therefore, this study introduces a Priority-based
task scheduling algorithm using Harris Hawks Optimizer (HHO) which is entitled
as PHHO. The proposed algorithm first prioritizes tasks using a hierarchical process
based on length and memory. Then, the HHO algorithm is used for optimally as-
signing tasks to resources. The PHHO algorithm aims to decrease makespan and
energy consumption while increasing resource utilization and throughput. To evalu-
ate the effectiveness of the PHHO algorithm, it is compared with other well-known
meta-heuristic algorithms such as Genetic Algorithm (GA), Particle Swarm Opti-
mization (PSO), Ant Colony Optimization (ACO), Whale Optimization Algorithm
(WOA), Salp Swarm Algorithm (SSA), and Moth-Flame Optimization (MFO). The
experimental results show the effectiveness of the PHHO algorithm compared to
other algorithms in terms of makespan, resource utilization, throughput, and energy
consumption.

Keywords: Cloud, Task scheduling, Meta-heuristic, Task priority.

1. Introduction

Cloud computing is a distributed computing paradigm that provides services for
users around the world. Users can access the cloud computing environment through
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the cloud user ID remotely or locally [44]. Task scheduling is an NP-Complete
problem in the cloud environment. To solve this problem, meta-heuristic algorithms
can be used to decrease the polynomial complexity [24]. Task scheduling with priority
attention is one of the main challenging issues in the cloud environment that can
increase user and service provider satisfaction. It can also achieve efficient utilization
of resources with maximum profit [3]. To address this challenge, this paper presents a
novel task scheduling algorithm that first uses the Analytic Hierarchy Process (AHP)
to prioritize tasks before sending them to the scheduler. Then, the HHO algorithm
is applied to improve task scheduling behavior by taking into account parameters
such as makespan, throughput, resource utilization, and energy consumption.

1.1. Cloud Computing

Cloud computing has become a major part of modern Internet technologies due
to its unique feature [26],[28]. It consists of large and power-consuming data centers
to provide reconfigurable computing resources. Figure 1 shows various definitions of
cloud computing in various studies.

computing.png

Figure 1: Definitions of cloud computing [5].

It can be seen that cloud computing has various definitions. However, one of the
most famous definitions of cloud computing is the National Institute of Standards
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and Technology (NIST) definition [30].The NIST’s definition is summarized in Fig.
2. The cloud computing system provides on-demand computing and storage services
with excellent properties like reliability, scalability, pay-as-you-go pricing model, and
reliability. As the number of users and demands increased, various companies (e.g.,
Google Compute Engine, Amazon EC2) began to offer software and hardware to
users. Cloud Service Providers (CSPs) provide various kinds of services however, ser-
vices are generally categorized into three main categories (i.e., Software-as-a-Service
(SaaS), Platform-as-a-Service (PaaS), and Infrastructure-as-a-Service (IaaS) that are
provided based on the needs and demands of users [38].
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Figure 2: NISTs definitions of cloud computing.

Cloud computing manages different types of virtual resources that make schedul-
ing an important component. In the cloud, a user may use several thousand virtual
assets for each task. Optimal allocation of tasks to resources can improve system
performance and efficiency and so play a key role in the cloud environment [61].
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1.2. Task Scheduling

Cloud computing not only helps different types of applications but also creates
virtual conditions for applications to run efficiently. An appropriate task scheduler is
required to arrange the execution of tasks in a cloud system [19]. The task scheduler
must utilize the cloud resources to execute the tasks. In recent years, researchers
have paid close attention to the problem of task scheduling in the cloud system [56].
In a cloud environment, users send their requests to the task manager component.
The scheduler assigns the requests (which are received from the task manager) to
the appropriate Virtual Machines (VMs) by utilization of suitable task scheduling
algorithms to increase the efficiency of the cloud system (available resources are
analyzed using a resource information server). If the task scheduling algorithm is
efficient, it improves resource utilization and increases user and CSP satisfaction.
Figure 3 shows the problem of task scheduling in the cloud.

Sch.png

Figure 3: Task scheduling framework in the cloud [11].

Prioritizing tasks is a significant issue in task scheduling because some tasks that
cannot stay in the system for long periods need to be serviced earlier than others. In
other words, priority indicates the urgency of a task to be completed as soon as pos-
sible. An appropriate task scheduling algorithm should pay attention to the priority
of tasks [51]. Priority can be set based on various criteria (e.g., deadline of a task,
length of a task, arrival time of a task, or memory size of a task). Since in cloud,
there is a wide range of features that must be considered, so a proper task schedul-
ing algorithm in the cloud should pay attention to multi-attribute and multi-criteria
features of tasks [37]. There are various Multi-Criteria Decision-Making (MCDM)
models that are based on mathematical modeling. Based on a pairwise comparison
according to the MCDM model, a model called AHP was proposed in 1980 by Thomas
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Saaty [42]. AHP has been used in various fields over the past few decades. AHP is
an appropriate model for priority-based task scheduling problems. In addition, task
scheduling is a significant problem in cloud computing by taking into account various
factors such as makespan, energy consumption, completion time, cost, resource uti-
lization, and throughput. A good scheduler should execute tasks with fewer resources
and in a shorter time [43]. Using fewer resources means consuming less energy. One
of the most important matters in cloud environments is to minimize makespan and
energy consumption. The process of detecting the appropriate solution according to
conflicting criteria such as energy consumption and makespan by a parallel applica-
tion with priority limitation is a multi-objective problem. The solution to this type
of problem is a set of Pareto points (those that improvement in one goal can only
happen with the worsening of at least one other goal) [52]. Meta-heuristic algorithms
have been suggested as non-deterministic methods to solve scheduling problems in a
polynomial time [46].

1.3. Meta-heuristic Algorithm

One of the major challenges in the cloud system is optimal task scheduling. Vari-
ous optimization techniques like heuristic techniques are used to solve the scheduling
problem [27]. As the complexity of the problem increases, heuristic techniques have
achieved very restricted success between different applications. This restriction is
due to the delay in reaching the optimal solution. Therefore, heuristic techniques
do not have the necessary efficiency. On the other hand, there are meta-heuristic
algorithms that are expected to overcome these restrictions and provide the best
solution in a shorter time [20]. Meta-heuristic scheduling algorithms provide better
scheduling outcomes than traditional and heuristic algorithms. Figure 4 shows a
schematic diagram for executing task scheduling algorithms based on meta-heuristic
algorithms.

Meta-heuristic algorithms have become very popular in recent years because of
their efficiency in solving large and complex problems. Meta-heuristic strategies have
many beneficial properties, such as the following [8]:

• Meta-heuristic algorithms are not problem-dependent.

• These algorithms effectively explore the search space so that they can find a
near-optimal solution to solve NP-complete problems.

• Meta-heuristic algorithms are usually approximate and non-deterministic.

Meta-heuristic algorithms are executable to solve problems in various fields with
very acceptable performance because they are independent of the problem to be
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Figure 4: The schematic diagram for executing the scheduling algorithm [50].

solved. Generally, meta-heuristic algorithms have two types: i) single solution-based
(processing only one solution in the optimization phase) and ii) population-based
(processing a set of solutions in each iteration) [54]. The population-based strategies
usually discover an optimal or near-optimal. In the population-based strategies, the
optimization process begins with the creation of the initial population (each individ-
ual indicates a candidate solution), then the population is updated by using some
random operators and the optimization process continues until the stop condition is
reached [16]. As shown in Fig. 5, the population-based algorithms can be catego-
rized into four principal categories: evolution-based methods that are inspired by the
laws of natural evolution, physics-based methods that are inspired by the physical
laws in the world, human-based methods that are inspired by advancement in the
level of searching strategy, and swarm-based methods that are expanded based on
mathematical models inspired by the activities and cooperative behavior of various
species like birds, ants, and bacteria, which live in groups and cooperate for searching
and collecting food. Although there are differences between various meta-heuristic
algorithms, they divide the search process into two stages of exploration and exploita-
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tion. In the exploration stage, the algorithm must use random operators to search
the promising regions of the search space randomly and globally. In the exploitation
stage, the algorithm must perform a local search in the promising areas achieved in
the exploration stage. One of the main challenges of meta-heuristic algorithms is
finding the right balance between exploration and exploitation [49].

Figure 5: Categorization of the meta-heuristic algorithms [39].

One of the recent population-based optimization algorithms is the Harris Hawks
Optimizer (HHO) [17]. HHO is inspired by the cooperative behavior and chasing
style of Harris’s hawks in nature, which is named surprise pounce. In this clever
technique, several hawks work together to pounce a prey from various directions to
surprise it. Harris hawks can show various types of chasing patterns according to
the different scenarios and escaping approaches of the prey. Based on the results
obtained in [17], the HHO algorithm have better performance compared to the PSO
[23], GA [18], Biogeography-Based Optimizer (BBO) [48], Gray Wolf Optimization
(GWO) [34], Differential Evolution (DE) [53], Cuckoo Search (CS) [59], Teaching
Learning Based Optimization(TLBO) [40], BAT Algorithm (BA) [57], Flower Pol-
lination Algorithm (FPA) [60], Moth-Flame Optimization (MFO) [31], and Firefly
Algorithm (FA) [58]. The HHO algorithm can have a significant role in solving
various real-world optimization problems (e.g., pattern recognition, geotechnical en-
gineering, engineering design, optimization, feature selection, image segmentation,
manufacturing optimization, power quality, and drug design). Moreover, the HHO
can be used for problems with the unknown types of search space or problems con-
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taining discrete and continuous spaces, provide better quality solutions, provide high
accuracy in extracting optimal parameters, and enhance the prediction performance.
In addition, the results demonstrated that HHO is a powerful optimizer that aids
to solve complex nonlinear problems and can find the optimal solution quicker [2].
The results showed that the main hawk starts the search operation with sudden
movements and first increases the variety and explores the favorable regions of the
solution space. The range of these changes covers more than 50% of the solution
space. This indicates the exploration capability of HHO. Over time, the range of the
fluctuations gradually reduces. This ensures the transfer of HHO from exploratory
processes to exploitative stages. Finally, the first hawk movement pattern becomes
very stable, indicating that HHO is exploiting promising areas in the final stages.
Avoiding local optimization and a smooth transition from exploration to exploiting
are the main benefits of the HHO algorithm. The results show that the HHO can
reveal an accelerated convergence process. The main contributions of this paper are
listed below:

• A priority-based task scheduler is proposed, which sorts user tasks by priority.
The priority is computed using AHP based on tasks length and memory.

• A task scheduling problem is formulated and a mathematical model and ob-
jective functions are defined that optimally assign tasks to VMs.

• The multi-objective fitness function has been used concerning makespan, through-
put, resource utilization as well as energy consumption.

• To improve the efficiency of tasks execution in a cloud environment, the HHO
algorithm is used to solve the problem, which can find excellent solutions, easy
to executed, and flexible.

• To confirm the effectiveness of the presented algorithm, the efficiency of the
PHHO algorithm is compared with six popular meta-heuristic algorithms. Eval-
uation is performed using four objective criteria: makespan, average resource
utilization, average throughput, and total energy consumption.

The rest of this paper is organized as follows: Section 2 explains some previous
works related to the scheduling in the cloud, Section 3 presents a background of
AHP and HHO, Section 4 describes the PHHO algorithm task scheduling algorithm,
Section 5 represents the experimental result, and finally Section 6 discusses conclusion
and future works.
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2. Related Works

In recent years, many researchers have paid attention to many issues facing cloud
computing. Task scheduling is one of the main problems in the cloud environment
because it can have a huge impact on system performance. However, there is no
exact optimal solution that optimizes all parameters in cloud scheduling. Some of
the scheduling strategies are discussed below.

Shojafar et al. [45] proposed a hybrid algorithm named FUGE, which used GA
[18] as the basis of their algorithm and modified it with the help of fuzzy theory for
allocating jobs. The purpose of the presented algorithm is to decrease the makespan,
cost, and degree imbalance in the cloud when scheduling tasks. In the FUGE al-
gorithm, two kinds of chromosomes are created based on various Quality of Service
(QoS) parameters. Then the fuzzy theory is used to calculate the fitness values of all
chromosomes and for crossover operation. The presented algorithm allocates tasks
to resources based on VM memory, job lengths, VM processing speed, and VM band-
width. The experimental results showed that FUGE performed better than other
algorithms in terms of execution time, execution cost, and average degree of imbal-
ance. The experimental results also showed that FUGE improved by about 45% in
terms of execution cost and about 50% in terms of total execution time compared to
GA. The main weakness of the FUGE algorithm is that it is not considered energy
consumption.

Chen et al. [6] offered a WOA [33]-based multi-objective task scheduling algo-
rithm that purposes to improve system performance based on given computational
resources. The focus of the algorithm was to decrease the execution time, load, and
price cost. To improve the efficiency of the WOA, the authors also suggested the
improved WOA algorithm for assigning tasks to resources in the cloud environment
and called it IWC. The experimental results showed that IWC has a better conver-
gence speed and accuracy and also can perform better in system resource utilization
for both small-scale and large-scale tasks compared to other meta-heuristic algo-
rithms. However, the IWC algorithm is not considered constraints such as priority
constraints.

Mansouri and Javidi [29] suggested a job scheduling algorithm based on the cost
and named it CJS. The CJS simultaneously considered both types of jobs, data-
intensive and computation-intensive. The presented algorithm uses data, processing
power, and network features to assign tasks to resources. The scheduler chooses
the best location according to the dynamic state of the network, the location of the
data, the size of the data, and the pool of processing cycles. The simulation results
showed that CJS performed better in terms of makespan and success rate than other
algorithms. But, energy consumption is not considered.
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Er-raji et al. [12] suggested a task scheduling algorithm to execute tasks ef-
ficiently. The authors improved tasks execution time using task length and VM
processing speed, and the number of tasks per VM. The purpose of the proposed
algorithm is to reduce the execution time of the tasks. The authors used CloudSim
to evaluate the performance of the presented algorithm. The experimental results
represented that the presented algorithm has better performance in terms of total
execution time compared to other algorithms. The main weakness of the presented
algorithm is that this algorithm focuses only on reducing execution time and is not
considered other key QoS parameters such as energy consumption and resource uti-
lization.

Jacob and Pradeep [21] offered a hybrid task scheduling algorithm called CPSO,
which is a combination of CS [59] and PSO [23]. The goal of the presented algorithm
is to decrease the makespan, cost, and deadline violation rate. The CPSO algorithm
decreases all cost factors such as performance cost and user costs. The simulation re-
sults showed that the CPSO algorithm has better performance than other algorithms
in terms of makespan, cost, deadline violation rate. In the proposed algorithm, the
probability of resources overloading is high.

Kumar and Venkatesan [25] introduced an effective task scheduling algorithm
called HGPSO. The proposed algorithm first stores the user’s tasks in the queue
manager, their priority is computed, and if it is a repeated task, it is assigned to
the appropriate resource. Novel tasks are analyzed and stored in the on-demand
queue. The HGPSO algorithm (a combination of the GA and PSO algorithms) gets
the results of the on-demand queue. Then, the HGPSO assigns tasks of the on-
demand queue to the appropriate resources. The experimental results showed that
the HGPSO performs better in terms of execution time, scalability, and availabil-
ity compared to other algorithms. However, the energy efficiency of the HGPSO
algorithm is very low.

Abd Elaziz et al. [1] suggested a new hybrid algorithm called MSDE, which is a
combination of the Moth Search Algorithm (MSA) [55] and DE [53]. The purpose of
the MSDE algorithm is to reduce the makespan. The MSA algorithm is inspired by
the behavior of moths insects and their relationships. However, MSA’s exploitation
capability is not as good as its exploratory capability, so the authors used the DE
algorithm as a local search strategy to enhance MSA exploitation capability. The
experimental results showed that MSDE performs better in terms of makespan than
other algorithms and can assign tasks to VMs effectively. The major weakness of the
MSDE algorithm is that it focuses only on makespan and doesnt consider other QoS
parameters like energy consumption and resource utilization.

Guo [15] introduced a multi-objective task scheduling algorithm based on the
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fuzzy self-defense algorithm. The author considered the shortest time that customers
need to wait, the degree of resource load balance, and the cost as the objective func-
tion. Then, the optimal solution is determined based on fuzzy self-defense algorithm.
The experimental results showed that the presented algorithm performed better in
terms of maximum completion time, deadline violation rate, and resource utilization
compared to other algorithms. But, the author didnt consider the energy consump-
tion during the scheduling process.

Table 1 summarizes the discussed scheduling algorithms in terms of various pa-
rameters. An analysis of the related works in Table 1 represents that most traditional
scheduling algorithms in the cloud environment focused on minimizing makespan
regardless of energy consumption and priority constraint. Therefore, this paper in-
troduces a novel algorithm to address these issues. The proposed algorithm first
sorts the tasks using a hierarchical process and then optimally assigns the tasks to
the resources using the HHO algorithm. The goal of the PHHO is to make a trade-
off between four objectives (i.e., makespan, energy consumption, throughput, and
resource utilization).

3. Background

This section describes the background of the AHP and the HHO algorithm.

3.1. Analytic Hierarchy Process (AHP)

AHP is a multi-criteria decision-making tool for dealing with complex decision
problems [7], [36]. In the AHP method, it is not necessary to define a complex
expert system and AHP decides based on the set of evaluation criteria and a set of
alternative options. The hierarchical model includes three levels of goal, criteria, and
alternatives [10]. Figure 6 shows the hierarchical structure of AHP.

The relative values of alternatives or criteria are determined by the Saaty Rating
Scale [41]. Table 2 shows the AHP numerical scales, which vary from 1 to 9.

AHP provides a way to break down a problem into a hierarchy of sub-problems
for easy evaluation. AHP steps are as follows:

Step 1) Divide the problem into hierarchies of goal, criteria, and alternatives.
Step 2) Collect data of the hierarchical structure from experts.
Step 3) Paired comparisons of the different criteria created in step 2 are organized

into a square matrix called the paired comparison matrix. The basis of AHP is the
comparison matrix that can be represented as Eq. (1) [14]:

C =

{
cij = 1

cji
if i 6= j

1 if i = j
(1)
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Table 1: Summary of discussed scheduling strategies.
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Shojafar et
al. [45]

2015 + - - - - CloudSim Fuzzy theory and
GA

- Does not consider VM migra-
tion and energy consumption,
- The monitoring overhead is
high.

Chen et al.
[6]

2019 - + - - - Matlab Improved WOA - Does not consider sufficient
agents to search for the best re-
source,
- As the workload increases,
the scheduling overhead in-
creases,
- Does not perform well in con-
vergence speed and accuracy.

Mansouri
and Javidi
[29]

2019 + - - - - CloudSim Data, process-
ing power, and
network charac-
teristics in the job
assignment process

- Does not pay attention to
security aspect for business
clouds,
- Does not use optimization
methods.

Er-raji et al.
[12]

2018 + - - - + CloudSim Quicksort algo-
rithm

- Does not take into account
VM classification and task mi-
gration,
- The algorithm focuses only on
user satisfaction,
- Does not consider the depen-
dent tasks.

Jacob and
Pradeep [21]

2019 + - - - - CloudSim PSO and CS - Does not consider a priority,
- Does not discuss the reliabil-
ity or energy QoS parameters.

Kumar and
Venkatesan
[25]

2018 + - - - + — GA and PSO - Energy consumption is high,
-Does not take into account
SLA violation and deadline.

Elaziz et al.
[1]

2019 + - - - - CloudSim MSA and DE - Time complexity of the algo-
rithm is high,
- The presented algorithm
is single-objective and focuses
only on makespan reduction
and does not consider other
QoS parameters such as re-
source usage, energy, reliabil-
ity, etc.

Guo [15] 2021 - + - - - — Fuzzy self-defense Energy consumption is high,
- Does not consider priority
constraint.

Where C ∈ Rk×k.
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Figure 6: AHP hierarchical structure.

Table 2: The Saaty Rating Scale.
Intensity of Im-
portance

Definition Explanation

1 Equal preference Equal contribution of two activities to the goal
3 Moderate preference One activity is slightly more important than another
5 Strong preference One activity is strongly more important than another
7 Very strong preference One activity is very strongly more important than another
9 Extreme preference One activity is extremely more important than another and is at the

highest possible level of approval
2, 4, 6, 8 Intermediate values When compromise is required
Reciprocals of the
above

If there is one of the above non-zero numbers for activity i compared to activity j, j has a reciprocal
value compared to i

Step 4) For each comparison matrix, a priority vector (vector of weights) must
be calculated. Calculating the priority vector is one of the basic steps in AHP. There
are several methods for computed the priority vector [13].

Step 5) The consistency of the comparison matrices is computed. If this consis-
tency ratio fails to reach the required level, comparisons may be reconsidered. The
Consistency Ratio (CR) is computed as follows [14]:

CR =
CI

RI
(2)

Where RI represents the random index that can be computed randomly based
on the rank of the comparison matrix. Some RI values are shown in Table 3. Also,
CI represents the consistency index and is computed based on Eq. (3) [14]:
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CI =
λmax − k
k − 1

(3)

Where λmax indicates the maximum eigenvalue of the comparison matrix. Saaty
has proved that the comparison matrix is consistent if CR < 0.1.

Table 3: Random Index (RI) [56].
n 1 2 3 4 5 6 7 8 9

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.51

3.2. Harris hawks optimization (HHO)

HHO is a recent gradient-free, population-based, and nature-inspired optimizer
introduced by Heidari et al. [17] to solve global optimization problems. The HHO is
a rapid, powerful, and high-performance optimization algorithm. The main idea of
the HHO algorithm is to imitate the social behavior of Harris hawk in nature. The
HHO algorithm is largely inspired by the chasing strategy and cooperative behavior
of Harris hawks. In HHO, the prey is considered as the best solution (that is shown
with the rabbit in the HHO). The stages of exploration and exploitation of the
HHO optimizer are modeled by exploring a prey, performing a surprise pounce, and
then attacking the target prey. Depending on the dynamic nature of the conditions
and the escape behaviors of prey, the HHO algorithm can display various attack
strategies. The logical and mathematical model of HHO consists of three main phases
(i.e., exploration phase, the transition from exploration to exploitation, and the
exploitation phase) which are represented in Fig. 7. These phases will be described
in more detail below.

Exploration phase: This phase defines the hawks’ position in exploring the prey.
At this point, Harris Hawks searches for prey. In each iteration of HHO, the fitness
value for each hawk is calculated based on the target prey because all hawks are
candidate solutions. Although hawks can track and identify prey with their strong
eyes, it is sometimes hard to see prey. Hence, the hawks are waiting and monitoring
the site in the hope of seeing prey. Therefore, hawks identify prey based on two
strategies. In the first strategy, hawks find the prey based on the position of the
other members. In the second strategy, hawks detect the prey based on the perch
on a random tree (Xrand).

Xi(t+ 1) =

{
Xrand(t)− r1 |Xrand(t)− 2r2X(t)| if q ≥ 0.5

(Xprey(t)−Xm(t))− ω if q < 0.5
(4)
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Figure 7: Various phases of HHO [17].

Where Xi(t + 1) indicates the updated position of hawks in next iteration t,
Xrand(t) indicates the current position of hawks, r1, r2, r3, r4, and q indicates random
numbers in the interval (0, 1), Xprey(t) indicates the position of prey, and Xm(t)
indicates the average of the positions for all hawks, which is computed according to
Eq. (5):

Xm(t) =

N∑
i=1

Xi(t)

N
(5)

ω = r3(LB+ r4(UBLB)) indicates the difference among upper and lower bounds
of variables.

The transition from exploration to exploitation: At this phase, the hawks transfer
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from exploration to exploitation based on the escaping energy (E) of the prey. During
the escape, the prey’s energy decreases. The prey’s energy can be modeled as below:

E = 2E0

(
1− t

tmax

)
(6)

Where E represents escaping energy, E0 indicates the initial state of energy that
randomly changing in the interval (−1, 1), and tmax indicates the total number of
iterations. When the escaping energy of the prey |E| ≥ 1, HHO guides the hawk
to explore various areas in search of the prey (exploration phase). When escaping
energy of the prey is decreased |E| < 1, hawks are in the exploitation phase and they
are searching the neighborhood to find a solution.

Exploitation Phase: At this phase, the Harris hawks attack the prey according
to the situation discovered in the previous phase. The exploitation phase has two
main elements: hawks chase strategies and prey escape behaviors because the prey
always tries to escape and the hawks follow the chase strategy. To model the hawk’s
surprise pounce behavior on prey, the following chasing strategies are introduced:

i. Soft besiege,
ii. Hard besiege,
iii. Soft besiege with progressive rapid dives, and
iv. Hard besiege with progressive rapid dives.
In HHO, the two variables |E| and r determine which strategy to use. |E| rep-

resents the escaping energy of the prey and r represents the probability of escaping,
if r < 0.5 indicates the prey has a higher chance of successful escape and if r ≥ 0.5
indicates the failure to escape. The different types of exploitation and exploration
phases are presented in Fig. 8.

Figure 8: The exploration phase and the exploitation phases of the HHO [47].
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i) Soft besiege: It |E| ≥ 0.5 and r ≥ 0.5, then soft besiege occurs. Since in
this case the prey still has some energy to escape, the hawks softly surround the
prey to losing more energy before a surprise pounce. Thus, the prey cannot escape
successfully because the prey’s energy is discharged during the escape from the hawks.
The soft besiege is modeled by Eq. (7).

Xi(t+ 1) = ∆X(t)− E |JXprey(t)−X(t)| (7)

∆X(t) = Xprey(t)−X(t) (8)

Where ∆X(t) represents the difference between prey position and the current
position in iteration t, J = 2 (1− r5) refers to the random jump strength of the prey
throughout the escaping procedure which changed randomly in each iteration, and
r5 refers to a random number in the interval (0, 1).

ii) Hard besiege: When |E| < 0.5 and r ≥ 0.5 hard besiege takes place. In this
case, the prey cannot escape successfully because it is very tired and has a low chance
of escape. In this position, the hawk hardly encircles around the prey to make the
final surprise pounce. The updated positions of the hawks are obtained by Eq. (9).

X(t+ 1) = Xprey(t)− E |∆X(t)| (9)

iii) Soft besiege with progressive rapid dives: If |E| ≥ 0.5 and r < 0.5, then
soft besiege with progressive rapid dives occurs. In this case, the prey still has
enough energy to successfully escape from the attack. In such a situation, the hawks
must decide to make the best possible dive toward the prey. For this purpose, the
hawks can make several moves, evaluate the new moves using Eq. (10), and then
compare the result of the move with the last dive towards the prey. If the result of
the comparison does not lead to the specification of the best dive towards the prey,
then hawks start performing rapid and irregular dives based on Levy flight (LF), as
formulated in Eq. (11).

Y = Xprey(t)− E|JXprey(t)−X(t)| (10)

Z = Y + S × LF (D) (11)

Where D and S show the problem dimension and a random vector with size
1×D, respectively. The levy flight function (LF ) is calculated as below:
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LF = 0.01× u× σ
|v|

1
β

, σ =

(
Γ (1 + β)× sin

(
πβ
2

)
Γ
(

1+β
2

)
× β × 2

(β−1)
2

) 1
β

(12)

Where u and v indicate random values in the range (0, 1), and β indicates a
constant set to 1.5.

Thus, the final equation for updating the positions of hawks in soft besiege with
progressive rapid dives strategy can be computed as follows:

X(t+ 1) =

{
Y if F (Y ) < F (X(t))

Z if F (Z) < F (X(t))
(13)

Where F represents a fitness function for an optimization problem, and Y and Z
are computed using Eq. 10 and Eq. 11, respectively.

iv) Hard besiege with progressive rapid dives: If |E| < 0.5 and r < 0.5, then hard
besiege with progressive rapid dives takes place. In this case, the prey does not have
enough energy to escape, and the hawks create a hard besiege. In such a situation,
the Harris hawks try to approach the prey with rapid dives to reduce the distance
before making a surprise pounce to catch the prey. This strategy is modeled based
on Eq. 14.

X(t+ 1) =

{
Y ′ if F (Y ′) < F (X(t))

Z ′ if F (Z ′) < F (X(t))
(14)

Where Y ′ and Z ′ are calculated as follows:

Y ′ = Xprey(t)− E|JXprey(t)−Xm(t)| (15)

Z ′ = Y ′ + S × LF (D) (16)

Where Xm(t) is obtained using Eq. 5.
The flowchart of the HHO algorithm is represented in Fig. 9.

4. Proposed Task Scheduling Algorithm (PHHO)

Figure 10 describes the proposed algorithm architecture in the cloud environment.
The cloud environment receives a variety of tasks. The PHHO algorithm applies the
AHP to manage the priority of tasks based on length and memory. The main goal of
the proposed task algorithm is to decrease makespan and energy consumption while

18



Figure 9: Flowchart of HHO algorithm.

improving resource utilization and throughput. when tasks are prioritized, they are
managed in the task queue. The proposed algorithm uses HHO to optimally assign
tasks to resources. This section includes four sub-sections. In subsection 4.1, the
related concepts of task scheduling in the cloud system are given. Subsection 4.2
describes the hierarchical process for assigning priority to tasks, Subsection 4.3 de-
scribes the objective functions and mathematical models, and Subsection 4.4 presents
the proposed algorithm.
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Figure 10: Presented architecture for task allocation.

4.1. System Model

Task Scheduling is the utilization of available resources by organizing incoming
requests (tasks) in a specific style. In the cloud environment, tasks are scheduled to
improve the performance of different QoS parameters. To model the task scheduling
problem, it is assumed that all submitted tasks are independent, tasks cannot migrate
between VMs, and VMs are heterogeneous and have various processing and power
consumption capabilities. Consider the cloud consists of m number of VMs that are
represented as VM = {VM1, V M2, ..., V Mm}, where VMj indicates the j − th VM.
The task set is defined by T = {T1, T2, ..., Tn}, where Ti represents the i− th task.

4.2. Analytic Hierarchy Process for task priorities

The hierarchical process optimizes decisions based on various criteria. The AHP
as a multi-criteria decision-maker has different applications such as strategic schedul-
ing, business or public policy, resource allocation, resource selection, and many more.
One of AHP’s applications is that it can be used to prioritize tasks in the task schedul-
ing problem. The PHHO algorithm applies the AHP to prioritize input tasks. Before
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executing the optimization algorithm, a hierarchical process is applied to the tasks.
The proposed algorithm considers two parameters (i.e. task length and task mem-
ory). Tasks priorities are determined by task length and task memory. In the PHHO
algorithm, the arithmetic mean method is applied to calculate the weights. The AHP
procedure for prioritizing tasks is shown in Algorithm 1.

Algorithm 1. AHP

Input: Set of tasks T = {T1, T2, ..., Tn} includes their length L = {L1, L2, ..., Ln} and memory M =
{M1,M2, ...,Mn}
Output: Prioritized tasks TP
Begin

1. Submit input T to the cloud
2. Consider the parameters length and memory of each task Ti
3. Assign priority to each task to create comparison matrices
4. Add the values on each column X = (X1, X2, , Xn)
5. Divide each matrix element into Xi
6. Convert the value of each element to a decimal
7. Calculate the average of each row
8. Calculate the final weight by the sum of the product of the significance of the criteria in the weight of the

alternatives
9. Calculate Consistency Ratio using Eq. (2)
10. Rearrange tasks according to priorities

End

4.3. Objective Function

This section explains the different objectives (i.e., makespan, resource utilization,
throughput, and energy consumption) that are used during the scheduling process.
The objectives are makespan, resource utilization, throughput, and energy consump-
tion. The objective function is computed as follows:

Makespan: Makespan can be defined as the time it takes from the moment a
user sends a request to the completion of the last task. Minimizing the entire exe-
cution time, while mapping tasks to VMs, also decreases execution costs. Therefore,
makespan is considered as one of the principal objectives in task scheduling, which
decreases the length of the schedule while meeting the needs of the user. Makespan
can be defined by Eq. (17) [22]:

MS = max (ETj) , 1 ≤ j ≤ m (17)

Where ETj represents the execution time of the VMj and it is computed based
on the decision variable Aij.

Aij =

{
1 if Ti is assigned to VMj

0 if Ti is not assigned to VMj

(18)
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ETj =
n∑
i=1

Aij × CTij (19)

Where CTij represents the completion time of the task Ti in the VMj and it is
calculated by Eq. (20):

CTij =
Leni
PTj

(20)

Where Leni is the length of the task Ti and length of the task is described in terms
of the number of instructions (Millions of Instruction) and PTj is the processing time
of the VMj in the cloud.

Resource Utilization: Resource utilization is another important parameter in task
scheduling, which refers to the most use of leased cloud resources for effective task
allocation. This parameter is very significant for CSPs because service providers
want to get the maximum profit by renting a limited number of resources. Any
time when leased resources (VMs) are not used is a cost. We try to maximize the
utilization of resources because it decreases costs and increases the profits of service
providers. The resources utilization with an inverse linear relationship is related to
makespan as follows [35]:

RU(VMij) =
CTij
MS

(21)

The average resource utilization can be calculated by Eq. (22):

ARU(VMij) =

m∑
j=1

RU(VMij)

m
(22)

Throughput: Throughput is the rate of success at which a resource can execute
a certain number of tasks in a given time. In other words, it measures the number
of tasks completed per unit of time. The term throughput is commonly applied to
show the ability of a system to deliver (i.e., the speed rate in processing) customer
requests. It can be computed by Eq. (23) [35]:

Th =
RU(VMij)

MS
(23)

The average throughput can be applied by Eq. (24).
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ATh =
m∑
j=1

Th (24)

Energy Consumption: In recent years, reducing energy consumption has become
one of the critical challenges of organizations, and governments. There are worldwide
concerns about minimizing energy consumption, as increasing energy consumption
will increase carbon emissions and hurt the environment. In the cloud environment,
executing tasks consumes a lot of energy due to a large number of tasks. During
the execution of tasks, a VM can be in an active state or idle state. The idle state
of a VM consumes 60%-70% of the energy consumption of the active state of that
VM. Accordingly, consider αj joules/ Millions of instruction consumed by VMj in
the active state and βj joules/Millions of instruction consumed by VMj in the idle
state. A VMj remains (ETj) second in active state and (MS − ETj) second in the
idle state. The mathematical representation of total energy consumption can be
calculated by Eq. (25) [4]:

TEC =
m∑
j=1

[[ETj × αj + (MS − ETj)× βj]× PSj] (25)

To measure the efficiency of each algorithm and user satisfaction, the makespan
must be minimized. Resource utilization must be considerably improved on the
server to maximize overall system throughput. Energy must also be minimized to
increase system efficiency. Although these parameters are conflicting, the PHHO
algorithm has considered all four parameters in the fitness function (e.g., although
using a powerful CPU speeds up the processing of a task, energy consumption also
increases). The effectiveness of each meta-algorithm is evaluated based on a fitness
function that is problem-dependent. Therefore, the fitness function is formulated by
considering the weight value for each objective as follows:

Fopt = min

{
λ1 ×

MS

MaxMS
+ λ2 ×

1

ARU
+ λ3 ×

1

ATh
+ λ4 ×

TEC

MaxEC

}
(26)

Where λ1, λ2, λ3, λ4 are weight values in the range [0, 1], MaxMS indicates max-
imum makespan, and MaxEC indicates maximum energy consumption.

4.4. Proposed Algorithm

The flowchart of the PHHO algorithm is demonstrated in Fig. 11. The major
steps of the presented algorithm can be summarized as below:
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1) Initialize parameters such as number of tasks, number of VMs, upper bound
and lower bound, number of search agents, positions of Harris hawks, and maximum
number of iterations.

2) Prioritize tasks according to the AHP model.
3) Rearrange tasks based on their priority.
4) Start searching for the optimal solution using the HHO algorithm. In this step,

according to the position of each hawk, the fitness value of each hawk is calculated
using Eq. (26). The hawk with the smallest fitness value is recorded as the current
optimal solution (considered as the position of the prey).

5) Update the position of the Harris hawks.
6) When the position of all the hawks is updated, one iteration is performed. If

the maximum number of iterations is reached, the search process ends. Otherwise,
go to step 4 for a new search. Once the specified iterations are reached, the prey
position is considered the best solution and transferred to the decision variables aij
as the best task scheduling solution.

5. Experimental results and performance analysis

The scheduling algorithms are simulated on Intel(R) Core(TM) i5-7200U CPU
with 2.50 GHz, Windows 10 Pro platform, and using MATLAB R2018a. The meta-
heuristic algorithms proposed for comparison are GA [18], PSO [23], ACO [9], MFO
[31], WOA [33], and SSA [32]. To evaluate the efficiency of the PHHO algorithm, the
comparison is based on four parameters: makespan, resource utilization, throughput,
and energy consumption. In the following, four different scenarios are presented to
validate the proposed algorithm.

5.1. Simulation with different numbers of tasks

In this scenario, the number of input tasks varies from 200 to 800 at intervals of
200, and the total number of VMs is considered constant. Table 4 lists the charac-
teristics of the cloud system and the HHO algorithm.

Makespan represents the necessary time to complete all tasks of the system.
Measuring the makespan is one of the most significant parameters in the scheduling
problem because reducing the makespan helps to minimize execution cost and meet
the deadline of the task. Figure 12 represents the performance result of the PHHO
algorithm for makespan. The y-axis shows the effect on a makespan when the number
of tasks is increasing. As illustrated in Fig. 12, with the increasing number of
tasks, makespan increases. In addition, the HHO algorithm performs better in terms
of makespan minimization compared to other methods. Makespan minimization
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Figure 11: Flowchart of the PHHO algorithm.

by HHO is 27%38% lower than that of GA for 200 through 800 number of tasks,
respectively. Also, makespan minimization by HHO is 74%49% lower than that of
ACO for 200 through 800 number of tasks, respectively. This is because GA and
ACO have poor exploitation capability.

The resource utilization criterion represents how resources are used. It can be
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Table 4: Simulation environment (different number of tasks).
Parameters Values
Number of tasks 200-800
Tasks size (MI) 100-5000
Task Memory 256-512 MB
Number of VMs 50
VMs execution speed (MIPS) 500-9000
Maximum iteration 100
Population size 50
E0 (-1, 1)

Figure 12: Makespan for the different number of tasks.

observed from Fig. 13 that the HHO algorithm is the best in terms of resource
utilization for a higher number of tasks. The comparison results for 400 tasks show
that calculated resource utilization by HHO is approximately 29%, 20%, 58%, 16%,
12%, 14%, more than GA, PSO, ACO, WOA, SSA, and MFO, respectively.

Higher throughput values indicate that the scheduling algorithm is more efficient.
High throughput means that more tasks are executed per unit time. Figure 14
represents the experimental results for different algorithms. It can be observed that
HHO for 800 tasks achieves 59%, 27%, 71%, 19%, 13%, and 24% higher throughput
than GA, PSO, ACO, WOA, SSA, and MFO, respectively. This indicates that HHO
has increased scheduling efficiency in terms of the number of tasks processed by VMs.

In the cloud data center, task scheduling is the heart of successful energy man-
agement. CPU utilization and resource utilization will directly affect a task’s energy
consumption. If the CPU is not used properly, the energy consumption will be high
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Figure 13: Resource utilization for the different number of tasks.

Figure 14: Throughput for the different number of tasks.

because idle power has not been used effectively. Sometimes due to high demand
for resources, energy consumption is high and this may reduce the efficiency of the
system. Scheduling decisions are significant to finding the right assignment of tasks
to resources to reduce energy consumption by resources. Figure 15 shows the amount
of energy consumption using different algorithms. As the results show, HHO reduces
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energy consumption compared to other algorithms and thus improves performance.
Also, it can be seen that ACO has the worst performance among all algorithms due
to its low exploitation capability. The results indicate that HHO can be used ef-
fectively for task scheduling for the different number of tasks with a fixed number
of VMs. This is because HHO does not get involved in local optimal and has good
exploration and exploitation capabilities.

Figure 15: Energy consumption for the different number of tasks.

5.2. Simulation with different numbers of VMs

In the second scenario, the number of input tasks is 500 which is fixed, and the
number of VMs varies from 10 to 40 at intervals of 10. The parameters setting are
shown in Table 5.

Table 5: Simulation environment (different number of VMs).
Parameters Values
Number of tasks 500
Tasks size (MI) 100-5000
Task Memory 256-512 MB
Number of VMs 10-40
VMs execution speed (MIPS) 500-9000
Maximum iteration 100
Population size 60
E0 (-1, 1)

To have efficient scheduling, makespan must be decreased. Makespan is described
as the maximum completion time of the tasks between VMs. Figure 16 represents the
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performance of different algorithms in terms of makespan for various numbers of VMs.
It is expected that the makespan reduces as the number of VMs increases. These
results show that HHO improves the performance compared to other algorithms and
the use of a variable number of VMs does not negatively affect HHO performance.
The improvement rates for 40 VMs are 42%, 21%, 67%, 15%, 38%, and 31% over
GA, PSO, ACO, WOA, SSA, and MFO, respectively.

Figure 16: Makespan for the different number of VMs.

One of the main parameters in scheduling is maximizing resource utilization,
which means keeping resources as busy as possible. An efficient scheduling algorithm
is needed to make better utilization of resources. Resource utilization is significantly
affected by the makespan reduction for different numbers of VMs. This is due to
the consideration of fitness function which is inversely proportional to the makespan.
Figure 17 represents the improvement of the HHO algorithm in resource utilization
compared to the other algorithms with different numbers of VMs. Also, it can be
found that ACO has the worst performance compared to other algorithms. The
X-axis represents the number of VMs, and the Y-axis indicates resource utilization.

Throughput is a significant criterion in specifying the success of an efficient
scheduling algorithm. Throughput is the number of tasks being processed by VMs
per unit time. Higher values of throughput indicate better results. The results are
illustrated in Figure 18. It can be observed that the throughput maximization by
HHO is 40%52% higher than that of SSA for 10 through 40 VMs, respectively. Also,
the throughput maximization by HHO is 8%40% higher than that of MFO for 10
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Figure 17: Resource utilization for the different number of VMs.

through 40 VMs, respectively.

Figure 18: Throughput for the different number of VMs.

Energy consumption is one of the key parameters in maximizing the overall per-
formance of the cloud system. There is a direct relationship between energy con-
sumption and resource utilization because the optimal use of resources reduces energy
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consumption in a server. Figure 19 shows the energy consumption of varying VMs for
different algorithms. As shown in Fig. 19, the energy consumption is proportional
to the number of VMs in the cloud. As the number of VMs increases, the energy
consumption increases. The proposed algorithm decreases energy consumption by
up to 29%, 11%, 57%, 6%, 27%, and 18%, compared to GA, PSO, ACO, WOA,
SSA, and MFO, respectively. It can be seen that the HHO can perform better for a
various number of VMs with a certain number of tasks than other algorithms. This
is due to the balance between the exploration and exploitation capability of the HHO
algorithm.

Figure 19: Energy consumption for the different number of VMs.

5.3. Simulation with different number of iterations

In this scenario, the number of input tasks and the number of VMs are fixed (see
Table 6).

Figure 20 shows a comparison of seven algorithms with an increasing number
of iterations. As can be seen, PSO and WOA work better than GA and ACO,
respectively. Because GA and ACO have poor exploitation capability. Also, it can
be found that SSA and MFO are more efficient than PSO and WOA because they
have better search capability. In addition, it can be found that HHO has the best
performance. This is because HHO can find its optimal solution faster than other
algorithms. In other words, HHO has much better convergence speed and accuracy
than other algorithms. Therefore, it can be found that HHO can have a strong
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Table 6: Simulation environment (different number of iterations).
Parameters Values
Number of tasks 500
Tasks size (MI) 100-5000
Task Memory 256-512 MB
Number of VMs 25
VMs execution speed (MIPS) 500-9000
Maximum iteration 100
Population size 60
E0 (-1, 1)

ability to solve complex optimization problems due to its suitable transition from
exploration to exploitation.

Figure 20: Convergence plot according to the number of iterations.

5.4. Comparison between priority and non-priority scheduling algorithm

In the last scenario, the proposed algorithm is compared with the case that does
not take into account the priority. Table 7 shows the setting of parameters.

Figures 21 to 24 show the performance of the task scheduling algorithm with and
without priority phase. It can be observed that when tasks are prioritized, the task
scheduling algorithm performs better in terms of makespan, resource utilization,
throughput, and energy consumption compared to the case where priority is not
considered. This is because tasks with less length and memory have higher priority
and are performed faster, which improves system efficiency.

32



Table 7: Simulation environment (different number of iterations).
Parameters Values
Number of tasks 800
Tasks size (MI) 100-5000
Task Memory 256-512 MB
Number of VMs 15
VMs execution speed (MIPS) 500-9000
Maximum iteration 100
Population size 40
E0 (-1, 1)

Figure 21: Makespan for PHHO vs. HHO.

6. Conclusion and Future works

Assigning tasks to VMs properly is a challenging issue in the cloud environment.
Many algorithms have been presented to optimize the scheduling process in the cloud
but existing algorithms usually do not take into account conflicting parameters such
as makespan and energy consumption. Therefore, this paper presents an efficient
task scheduling algorithm that uses a hierarchical process to prioritize tasks before
sending them to the scheduler. Then, it optimally assigns tasks to resources using
the new meta-heuristic HHO algorithm. The goal of the proposed algorithm is to
make a trade-off between makespan, energy consumption, throughput, and resource
utilization. The experimental results showed that the proposed algorithm performed
better in terms of makespan, energy consumption, resource utilization, and through-
put compared to GA, PSO, WOA, SSA, ACO, and MFO. In addition, the HHO
has a better convergence speed compared to other algorithms due to the balance
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Figure 22: Resource utilization for PHHO vs. HHO.

Figure 23: Throughput for PHHO vs. HHO.

between exploration and exploitation capability. In future studies, the other QoS
parameters like security, and availability need to be applied. We will also use a
combination of the HHO algorithm with other meta-heuristic algorithms to improve
scheduling efficiency. Finally, to reduce the scheduling overhead of the algorithm for
a large workload, the parallel implementation of the algorithm in cloud environments
is suggested.
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