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1 Introduction

In this paper, we study the following fuzzy system in which the constraints are formed
as fuzzy relational equalities defined by geometric mean operator:

min
n∑

j=1

cjxj

A⊙ x = b (1)

x ∈ [0, 1]n

Where I = {1, 2, . . . ,m}, J = 1, 2, . . . , n. A = (aij)m×n is a fuzzy matrix such that
0 ≤ aij ≤ 1 (∀i ∈ I and ∀j ∈ J), b = (bi)m×1 is an m–dimensional fuzzy vector in [0, 1]m

(i.e., 0 ≤ bi ≤ 1, ∀i ∈ I) and ”⊙” is the max−geometric composition, i.e., x⊙ y =
√
xy.

Furthermore, let S(A, b) denote the feasible solutions sets of problem (1), that is, S(A, b) =
{x ∈ [0, 1]n : A⊙x = b} . By these notations, problem (1) can be also expressed as follows:

max
j∈J

√
aijxj = bi , i ∈ I (2)

x ∈ [0, 1]n

The theory of fuzzy relational equations (FRE) was firstly proposed by Sanchez and ap-
plied in problems of the medical diagnosis [39]. Nowadays, it is well known that many
issues associated with a body knowledge can be treated as FRE problems [35]. In addi-
tion to the preceding applications, FRE theory has been applied in many fields, including
fuzzy control, discrete dynamic systems, prediction of fuzzy systems, fuzzy decision mak-
ing, fuzzy pattern recognition, fuzzy clustering, image compression and reconstruction,
fuzzy information retrieval, and so on. Generally, when inference rules and their conse-
quences are known, the problem of determining antecedents is reduced to solving an FRE
[25, 33].
The solvability determination and the finding of solutions set are the primary (and the
most fundamental) subject concerning with FRE problems. Actually, The solution set
of FRE is often a non-convex set that is completely determined by one maximum solu-
tion and a finite number of minimal solutions [5]. This non-convexity property is one
of two bottlenecks making major contribution to the increase of complexity in problems
that are related to FRE, especially in the optimization problems subjected to a system
of fuzzy relations. The other bottleneck is concerned with detecting the minimal solu-
tions for FREs [2]. Markovskii showed that solving max-product FRE is closely related
to the covering problem which is an NP-hard problem [32]. In fact, the same result
holds true for a more general t-norms instead of the minimum and product operators



13 A. Ghodousian / JAC 54 issue1, June 2022, PP. 11 - 22

[2, 3, 12, 13, 15, 16, 28, 29, 32].

Over the last decades, the solvability of FRE defined with different max-t compositions
have been investigated by many researchers [15,16,34,36,37,40,42,43,45,48,51]. Moreover,
some researchers introduced and improved theoretical aspects and applications of fuzzy
relational inequalities (FRI) [12–14, 17, 18, 26, 50]. Li and Yang [26] studied a FRI with
addition-min composition and presented an algorithm to search for minimal solutions.
Ghodousian et al. [13] focused on the algebraic structure of two fuzzy relational inequal-
ities Aφx ≤ b1 and Dφx ≤ b2 , and studied a mixed fuzzy system formed by the two
preceding FRIs, where φ is an operator with (closed) convex solutions.
The problem of optimization subject to FRE and FRI is one of the most interesting and on-
going research topic among the problems related to FRE and FRI theory [1, 8, 11–16, 23, 27, 30,
38, 41, 46, 50]. Fang and Li [9] converted a linear optimization problem subjected to FRE
constraints with max-min operation into an integer programming problem and solved it
by branch and bound method using jump-tracking technique. In [23] an application of
optimizing the linear objective with max-min composition was employed for the streaming
media provider. Wu et al. [44] improved the method used by Fang and Li, by decreasing
the search domain. The topic of the linear optimization problem was also investigated
with max-product operation [20, 31]. Loetamonphong and Fang defined two sub-problems
by separating negative and non-negative coefficients in the objective function and then
obtained the optimal solution by combining those of the two sub-problems [31]. Also, in
[20] some necessary conditions of the feasibility and simplification techniques were pre-
sented for solving FRE with max-product composition. Moreover, some generalizations
of the linear optimization with respect to FRE have been studied with the replacement of
max-min and max-product compositions with different fuzzy compositions such as max-
average composition [46] and max-t-norm composition [15, 16, 21, 27, 41].
Recently, many interesting generalizations of the linear programming subject to a system
of fuzzy relations have been introduced and developed based on composite operations
used in FRE, fuzzy relations used in the definition of the constraints, some developments
on the objective function of the problems and other ideas [6, 10, 15, 16, 18, 24, 30, 47]. For
example, Dempe and Ruziyeva [4] generalized the fuzzy linear optimization problem by
considering fuzzy coefficients.
The optimization problem subjected to various versions of FRI could be found in the
literature as well [12–14, 17, 18, 49, 50]. Xiao et al. [50] introduced the latticized linear
programming problem subject to max-product fuzzy relation inequalities. Ghodousian et
al. [12] introduced a system of fuzzy relational inequalities with fuzzy constraints (FRI-
FC) in which the constraints were defined with max-min composition.
The remainder of the paper is organized as follows. In section 2, basic properties of the
feasible solutions set of (1) has been attained. It is shown that this region is determined
as a union of the finite number of minimal solutions and a unique maximum solution.
In section 3, an algorithm is presented to find all the optimal solutions for Problem (1).
Finally, in section 4 an example is described to illustrate the algorithm. Moreover, a
comparison is made between the feasible regions of product and geometric mean FREs.
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2 Feasible region of Problem (1)

For each i ∈ I , define S(ai, bi) = {x ∈ [0, 1]n : max
j∈J

√
aijxj = bi} . In other words, S(ai, bi)

denotes all the solutions satisfying the i‘th equation of (1). Based on this definition, the
following lemma trivially holds true.

Lemma 1. Let x ∈ [0, 1]n. Then, x ∈ S(ai, bi) iff the following two statements hold:
(a) For each j ∈ J, xj ≤ min{b2i /aij, 1} (if aij = bi = 0, xj ∈ [0, 1]); (b) There exist some
j0 ∈ J such that aij0 ≥ b2i and xj0 = b2i /aij0 (if aij0 = bi = 0, xj0 ∈ [0, 1]).

Remark 1. Suppose that x ∈ S(ai, bi) and aij0 < b2i for some i ∈ I and j0 ∈ J .
According to Lemma 1, xj0 ≤ 1.

Corollary 1. Let aij0 ≥ b2i , for some i ∈ I and j0 ∈ J . Also, suppose that x′ ∈ [0, 1]n

such that x′
j0

= b2i /aij0 (if aij0 = bi = 0, x′
j0
∈ [0, 1]) and x′

j = 0, ∀j ∈ J − {j0} . Then,
x′ ∈ S(ai, bi).
Proof. Based on the assumptions, we have

max
j∈J

{
√

aijx′
j} = max{ max

j∈J−{j0}
{
√

aijx′
j},

√
aij0x

′
j0
} = max{0,

√
aij0x

′
j0
} =

√
aij0x

′
j0

= bi

that means x′ ∈ S(ai, bi). □

Corollary 2. For each fixed i ∈ I , let Ji = {j ∈ J : aij ≥ b2i } . Then, S(ai, bi) ̸= ∅ iff
Ji ̸= ∅.
Proof. Assume that Ji ̸= ∅ and j0 ∈ Ji. So, define x′ ∈ [0, 1]n such that x′

j0
= b2i /aij0

and x′
j = 0, ∀j ∈ J − {j0} . Now, from Corollary 1 we have x′ ∈ S(ai, bi) . Conversely,

let S(ai, bi) ̸= ∅ and x′ ∈ S(ai, bi) . Thus, according to Lemma 1 (b), there exist some
j0 ∈ J such that x′

j0
= b2i /aij0 . Since x′ ∈ [0, 1]n , therefore x′

j0
= b2i /aij0 ≤ 1 that

implies j0 ∈ Ji. □

Definition 1. Suppose that S(ai, bi) ̸= ∅ . We define X(i) ∈ [0, 1]n such that

X(i)j =

{
b2i /aij , aij ≥ b2i
1 , aij < b2i

, j ∈ J

where X(i)j = 1 , if aij = bi = 0.

Theorem 1. Suppose that S(ai, bi) ̸= ∅. Then, X(i) is the maximum solution of
S(ai, bi).
Proof. Based on Lemma 1, X(i) ∈ S(ai, bi). Suppose that x′ ∈ S(ai, bi). So, from
Lemma 1, x′

j ≤ b2i /aij, ∀j ∈ J . Therefore, x′
j ≤ b2i /aij = X(i)j, ∀j ∈ Ji and

x′
j ≤ 1 = X(i)j, ∀j ∈ J − Ji (see Remark 1). Thus, x′

j ≤ X(i)j, ∀j ∈ J. □
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Definition 2. Let i ∈ I and S(ai, bi) ̸= ∅ . For each j ∈ Ji , define X(i, j) ∈ [0.1]n such
that

X(i, j)k =

{
b2i /aij , k = j

0 , otherwise

where X(i, j)j = 0 , if aij = bi = 0 .

Remark 2. Suppose that S(ai, bi) ̸= ∅, j ∈ Ji and bi ̸= 0.Then, from Definitions 1 and
2 we have X(i)j = X(i, j)j.

Theorem 2. Suppose that S(ai, bi) ̸= ∅, j0 ∈ Ji and bi ̸= 0 . Then, X(i, j0) is a
minimal solution of S(ai, bi).
Proof. From Corollary 1, X(i, j0) ∈ S(ai, bi) . Suppose that x′ ∈ S(ai, bi) , x′ ≤ X(i, j0)
and x′ ̸= X(i, j0) . So, x′

j ≤ X(i, j0)j , ∀j ∈ J and x′ ̸= X(i, j0) . Therefore, x′
j = 0,

∀j ∈ J − {j0} and x′
j0
< b2i /aij0 . However, in this case we will have

max
j∈J

{
√

aijx′
j} = max{ max

j∈J−{j0}
{
√
aijx′

j},
√

aij0x
′
j0
} =

√
aij0x

′
j0
< bi

that contradicts x′ ∈ S(ai, bi). □

Corollary 3. Suppose that S(ai, bi) ̸= ∅, j0 ∈ Ji and bi = 0 . Then, zero vector 0 is the
unique minimum solution of S(ai, bi).

Corollary 4. Let x′ ∈ S(ai, bi) . There exists some j0 ∈ Ji such that X(i, j0) ≤ x′.
Proof. Since x′ ∈ S(ai, bi), there exists at least some j0 ∈ Ji such that x′

j0
= b2i /aij0

(Lemma 1). So, according to Definition 2, we have X(i, j0) ≤ x′. □

Corollary 5. S(ai, bi) =
⋃
j∈Ji

[X(i, j), X(i)]

Proof. let x′ ∈ S(ai, bi). From Theorem 1, x′ ≤ X(i). On the other hand, from Corollary
4, there exists some j0 ∈ Ji such that X(i, j0) ≤ x′. Therefore, x′ ∈ [X(i, j0), X(i)] that
means x′ ∈

⋃
j∈Ji

[X(i, j), X(i)]. Conversely, let x′ ∈
⋃
j∈Ji

[X(i, j), X(i)]. So, there exists

some j0 ∈ Ji such that x′ ∈ [X(i, j0), X(i)]. Thus, for each j ∈ J , x′
j ≤ X(i)j and

therefore, from Definition 2 we conclude that xj ≤ min{b2i /aij, 1}, ∀j ∈ J (*). On the
other hand, since X(i, j0)j0 ≤ x′

j0
≤ X(i)j0 and X(i, j0)j0 = X(i)j0 (see Remark 2), then

x′
j0

= X(i, j0)j0 = X(i)j0 = b2i /aij0 (**). Hence, (*), (**) and Lemma 1 necessitate that
x′ ∈ S(ai, bi). □

Definition 3. Let X(i) be as in Definition 1, ∀i ∈ I . We define X = min
i∈I

{X(i)}.
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Definition 4. Let e : I →
⋃
i∈I

Ji so that e(i) ∈ Ji, ∀i ∈ I , and let E be the set of all

vectors e . For the sake of convenience, we represent each e ∈ E as an m–dimensional
vector e = [j1, j2, . . . , jm] in which jk = e(k), k = 1, 2, . . . ,m.

Definition 5. Let e = [j1, j2, . . . , jm] ∈ E . We define X(e) ∈ [0, 1]n such that
X(e)j = max

i∈I
{X(i, e(i))j} = max

i∈I
{X(i, ji)j}, ∀j ∈ J .

The following theorem indicates that the feasible region of problem 1 is completely
found by the finite number of closed convex cells.

Theorem 3. Let S(A, b) = {x ∈ [0, 1]n : A⊙ x = b} . Then, S(A, b) =
⋃
e∈E

[X(e), X].

Proof. Since S(A, b) =
⋂
i∈I

S(ai, bi), from Corollary 5 and Definition 4 we have

S(A, b) =
⋂
i∈I

⋃
j∈Ji

[X(i, j), X(i)] =
⋃
e∈E

⋂
i∈I

[X(i, e(i)), X(i)]

=
⋃
e∈E

[max
i∈I

{X(i, e(i))},min
i∈I

{X(i)}]

=
⋃
e∈E

[X(e), X]

where the last equality is obtained from Definitions 3 and 5. □

Corollary 6. S(A, b) ̸= ∅ iff X ∈ S(a, b).

3 Resolution of Problem (1)

It is easy to prove that X is the optimal solution for min {Z1 =
∑n

j=1 c
−
j xj : A⊙ x = b,

x ∈ [0, 1]n}, and the optimal solution for min{Z2 =
∑n

j=1 c
+
j xj : A⊙ x = b, x ∈ [0, 1]n}

is X(e∗) for some e∗ ∈ E , where c+j = max{cj, 0} and c−j = min{cj, 0} for j = 1, 2, . . . , n
[9, 13, 19, 28]. According to the foregoing results, the following theorem shows that the
optimal solution of Problem (1) can be obtained by the combination of X and X(e∗).

Theorem 4. Suppose that S(A, b) ̸= ∅ , and X and X(e∗) are the optimal solutions of
sub-problems Z1 and Z2 , respectively. Then, cTx∗ is the lower bound of the optimal
objective function in (1), where x∗ ∈ [0, 1]n is defined as follows:

x∗
j =

{
Xj cj < 0

X(e∗)j cj ≥ 0
(3)

for j = 1, 2, . . . , n.
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Proof. Let x ∈ S(A, b). Then, from Theorem 3 we have x ∈
⋃

e∈E[X(e), X]. Therefore,
for each j ∈ J such that cj ≥ 0, inequality x∗

j ≤ xj implies c+j x
∗
j ≤ c+j xj. In addi-

tion, for each j ∈ J such that cj < 0, inequality x∗
j ≥ xj implies c−j x

∗
j ≤ c−j xj. Hence,∑n

j=1 cjx
∗
j ≤

∑n
j=1 cjxj. □

Corollary 7. Suppose that S(A, b) ̸= ∅. Then, x∗ as defined in (3), is the optimal
solution of problem (1).
Proof. According to the definition of vector x∗, we have X(e∗)j ≤ x∗

j ≤ Xj, ∀j ∈ J ,

which implies x∗ ∈
⋃

e∈E[X(e), X] = S(A, b). □

The following theorem shows the difference between the feasible solution sets of
{x ∈ [0, 1]n : A ◦ x = b} and {x ∈ [0, 1]n : A⊙ x = b}, where “◦” and “⊙” denote
product t-norm and geometric operator, respectively.

Theorem 5. Let XP and XG be the maximum solutions of {x ∈ [0, 1]n : A ◦ x = b}
and {x ∈ [0, 1]n : A⊙ x = b}, respectively. Then, XG ≤ XP .
Proof. From Definitions 1 and 3, for each j ∈ J we have (XG)j = min

i∈I
{X(i)j} where

X(i)j = b2i /aij if aij ≥ b2i and X(i)j = 1 if aij < b2i . In a similar way,
(XP )j = min

i∈I
{XP (i)j} where XP (i)j = bi/aij if aij ≥ bi and XP (i)j = 1 if aij < bi. Now,

let j ∈ J . If aij ≥ bi (and hence, aij ≥ b2i ), then X(i)j = b2i /aij ≤ bi/aij = XP (i)j. In
other case, if aij < bi and aij < b2i , then XP (i)j = X(i)j = 1. Finally, if aij < bi and
aij ≥ b2i , then X(i)j = b2i /aij ≤ 1 = XP (i)j. Thus, X(i)j ≤ XP (i)j, ∀i ∈ I, which means
XG ≤ XP . □

We now summarize the preceding discussion as an algorithm.
Algorithm 1 (optimization of problem (1))
Given problem (1):
1. Compute Ji = {j ∈ J : aij ≥ bi} for each i ∈ I.
2. If Ji = ∅ for some i ∈ I, then stop; S(ai, bi) (and therefore S(A, b)) is empty
(Corollary 2).
3. Compute X(i) for each i ∈ I (Definition 1).
4. Compute X (Definition 3).
5. If X /∈ S(A, b), then stop; S(A, b) is empty (Corollary 6).
6. Find solutions X(e), ∀e ∈ E (Definition 5).
7. By pairwise comparison, find the minimal solutions between all X(e), ∀e ∈ E.
8. Find the optimal solution X(e∗) for the sub-problem Z2.
9. Find the optimal solution x∗ for the problem (1) by (3) (Theorem 4).

4 Numerical example

Example 1. Consider the following linear optimization problem (1):
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min Z = 2.2137x1 + 4.0759x2 − 2.3332x3 + 4.5737x4 + 7.7457x5
0.0867 0.1033 0.4944 0.8909 0.7440
0.1361 0.1200 0.1345 0.9777 0.5085
0.7667 0.4271 0.7446 0.9593 0.2505
0.7075 0.3601 0.8795 0.5472 0.5059
0.2276 0.8096 0.3275 0.1386 0.6991

⊙ x =


0.7000
0.6675
0.8039
0.8422
0.8687


x ∈ [0, 1]5

Step 1: In this example, we have J1 = {3, 4, 5}, J2 = {4, 5}, J3 = {1, 3, 4}, J4 = {3}
and J5 = {2}.

Step 2: Since Ji ̸= ∅ for each i ∈ I, we continue the algorithm.

Step 3: By Definition 1, we have X(1) = [1, 1, 0.9907, 0.5498, 0.6583],
X(2) = [1, 1, 1, 0.4558, 0.8763], X(3) = [0.8430, 1, 0.8680, 0.6737, 1],
X(4) = [1, 1, 0.8066, 1, 1] and X(5) = [1, 0.9322, 1, 1, 1].

Step 4: From Definition 3, X = [0.8430, 0.9322, 0.8066, 0.4558, 0.6583].

Step 5: Since X ∈ S(A, b), set S(A, b) is feasible.

Step 6 and 7: Note that |E| = 18, that is, there are 18 solutions X(e) that may be
minimal solutions of the feasible region. By pairwise comparison, it turns out that the
feasible region has only one minimal solution. This unique minimal solution is generated
by e = [5, 4, 1, 3, 2] as follows:

X(e) = [0.8430, 0.9322, 0.8066, 0.4558, 0.6583]

Step 8: Vector X(e∗) = X(e) is the optimal solution of the sub-problem Z2 that is
obtained by e∗ = e.

Step 9: The optimal solution of Problem (1) is resulted as
x∗ = [0.8430, 0.9322, 0.8066, 0.4558, 0.6583] with optimal objective value Z∗ = 10.9675.

Conclusion
In this paper, we proposed an algorithm to solve the linear programming subjected to the
fuzzy relational equalities defined by geometric operator. Based on the structural prop-
erties of geometric operator, the feasible solutions set was completely determined. It was
shown that the feasible can be write by the unique maximum solution and a finite number
of minimal solutions. Based on the foregoing results, an algorithm was presented to find
the optimal solution of the problem. As future works, we aim at testing our algorithm
in other type of fuzzy systems and linear optimization problems whose constraints are
defined as FRE with other averaging operators.
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