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ABSTRACT In this paper we study the edge tenac-
ity of graphs. We will be primarily interested in edge-
tenacious graphs, which can be considered very stable
and are somewhat analogous in edge tenacity to honest
graphs in edge-integrity. We show several results about
edge-tenacious graphs as well as find numerous classes
of edge-tenacious graphs.
The Cartesian Products of graphs like hypercube, grids,
and tori are widely used to design interconnection net-
works in multiprocessor computing systems. These con-
siderations motivated us to study tenacity of Cartesian
products of graphs. We find the tenacity of Cartesian
product of complete graphs (thus setting a conjecture
stated in Cozzens and al.) and grids.
The Middle Graph, M(G) of a graph G is the graph
obtained from G by inserting a new vertex into every
edge of G and by joining by edges those pairs of these
new vertices which lie on adjacent edges of G
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1 Abstract continued

We give the edge-tenacity of the middle graph of specific families of graphs and its rela-
tionships with other parameters. We discuss about tenacity and its properties in stability
calculation. We indicate relationships between tenacity and connectivity, tenacity and
binding number, tenacity and toughness. We also give good lower and upper bounds for
tenacity.
Also In this paper, the maximum graphical structure is obtained when the number of
vertices p of a connected graph G and tenacity T (G) = T are given. Finally the method
of constructing the sort of graphs are also presented.

I Edge-tenacious graphs

1.1 PRELIMINARIES:

The stability of a (communication or transportation) network composed of (processing)
nodes and (communication or transportation) links is of prime importance to network
designers. As the network begins losing links or nodes, eventually, there is a loss in its
effectiveness. Thus, it is desirable that networks be constructed to be as stable as possible,
not only with respect to the initial disruption, but also with respect to the possible
reconfiguration of the network after disruption. Many graph theoretical parameters have
been used in the past to describe the stability of communication networks. Most notably,
the vertex-connectivity and edge-connectivity have been frequently used. The difficulty
with these parameters is that they do not take into account what remains after the graph is
disconnected. Consequently, a number of other parameters have recently been introduced
that attempt to cope with this difficulty, including toughness and edge-toughness in [10],
integrity and edge-integrity in [3,4], and tenacity in [ 15 ]. Several of these deal with two
fundamental questions:
(1) How many vertices can still communicate after the loss of links or nodes?
(2) How difficult is it to reconnect the network?
Let S be a set of edges or vertices of G. Question (1) is sometimes analyzed by considering
τ(G− S), the order (number of vertices) of a largest component of G− S. Question (2)
is sometimes analyzed by considering ω(G − S), the number of components of G − S.
The integrity (edge-integrity) minimizes | S | +τ(G − S) over all vertex (edge) sets S;
the toughness (edge-toughness) minimizes | S | /[ω(G − S)] over all vertex (edge) sets
S. The tenacity (edge-tenacity) minimizes [| S | +τ(G − S)]/[ω(G − S)] over all vertex
(edge) sets S. In toughness, the “cost” to an “attacker” of destroying S is the size of
S and the “reward” is measured by the number of components left after destroying S
(since creating more components makes it harder to reconnect a network). In tenacity,
the “cost” also takes into account the size of the largest remaining component, since a
larger remaining component means the “attack” was not quite as successfull. Integrity
disregards “reward.” An “attacker” wishes to make the ratio of cost to reward as small



49 A. Khoshnood / JAC 54 issue 1,Juner 2022, PP. 47 - 72

as possible, whereas a “network designer wishes to make the smallest such ratio as large
as possible.
In this paper, we study the edge-tenacity of graphs. Barry L. Piazza, Fred S. Robert,
Sam K. Stueckl studied ” Edge-Tenacious Networks” [40].
Given a set S of edges of G, the score of S is defined as sc(S) = [|S|+τ(G−S)]/[ω(G−S)].
Formally, the edge-tenacity of a graph G is defined as T ′(G) = min{sc(S)}, where the
minimum is taken over all edge-sets S of G. A subset S of E(G) is said to be a T ′ − set
of G if T ′(G) = sc(S). Note that if G is disconnected, then the set S may be empty.
Throughout this paper, we use ω and τ to represent ω(G−S) and τ(G−S) , respectively,
when G and S are clear from the context. We also use p and q to represent the number
of vertices (order) and the number of edges (size), respectively, of a graph. The edge-
connectivity of G will be denoted λ = λ(G). Definitions and notation not otherwise
defined here can be found in [6].
A graph is called edge-tenacious if T ′(G) = sc(E(G)). Edge-tenacious graphs are some-
what analogous to honest graphs, as introduced in [2]. They can be considered very
stable, because to minimize the ratio of cost to reward, an attacker needs to destroy all
of the edges in the network. Thus, attacks tend to be “expensive” and so the networks
are relatively invulnerable. The main results of this paper will show that many network
topologies used to design highly reliable computer, communication, and transportation
networks are edge-tenacious.
In the remainder of this section, we give some elementary bounds on the edge-tenacity of
a graph. In Section II, we show that many graphs are edge-tenacious, and, in particular,
the r-regular, r-edge-connected graphs are. In Section III, we consider the consequences
of relaxing either of the conditions of r-regularity or r-edge-connectivity.
We now give several elementary bounds on the edge-tenacity of a graph.

Theorem 1.1. If G is connected and S ⊆ E, then sc(S) ≥ 1 with equality if and only if
G is a tree and S = E.

Proof. Let S ⊆ E. Since G is connected, |S| ≥ ω−1. Thus, if τ ≥ 2, sc(S) ≥ (ω+1)/ω >
1. If τ = 1, then |S| = q, ω = p, and sc(S) = (q + 1)/p ≥ 1 with equality if and only if
q = p− 1. □

Corollary 1.1. If G is connected, then T ′(G) ≥ 1 with equality if and only if G is a tree.

It follows from Corollary 1.1 that every tree is edge-tenacious, i.e., every connected graph
with q = p − 1 is edge-tenacious. We shall show below that every connected graph with
q ≤ p+ 1 is edge-tenacious, and this result is the best possible.

Theorem 1.2. [40], If G is a spanning subgraph of H, then T ′(G) ≤ T ′(H).

Proof. Let S be a subset of E(H) and let S ′ = S ∩ E(G).Then, |S ′| ≤ |S| , τ(G− S ′) ≤
τ(H − S) , and ω(G− S ′) ≥ ω(H − S). The result follows from the definition. □
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Theorem 1.3. For any graph G, T ′(G) ≥ (λ/2) + (1/p) .

Proof. Let S be a T ′ − set that leaves ω components. Since G has edge-connectivity λ,
each of these components must have at least λ edges of S with one end in the component.
Thus, |S| ≥ (λω)/2 and sc(S) ≥ (λ/2) + (τ/ω). Since τ ≥ 1 and ω ≤ p , it follows that
T ′(G) ≥ (λ/2) + (1/P ). □

(The reader might wish to compare the result of [11] that the edge-toughness is exactly
λ/2.)

Theorem 1.4. For all G, T ′(G) ≤ (q + 1)/p .

Proof. The removal of E will leave p isolated vertices. □

Recall that a graph is edge-tenacious if T ′(G) = sc(E(G)) = q+1
p
. We will call G strictly

edge-tenacious if E is the unique set whose score equals T ′(G). We now state one result
relating edge-tenacious and strictly edge-tenacious graphs and then prove several results
giving insight into the structure of G− S, where S is a T ′-set.

Theorem 1.5. If G is edge-tenacious and gcd(p, q + 1) = 1, then G is strictly edge-
tenacious.

Proof. If G is edge-tenacious, then for any T ′−set S of G, sc(S) = [|S|+τ(G−S)]/[ω(G−
S)] = (q + 1)/p. But since ω(G − S) ≤ p and gcd(p, q + 1) = 1, we have w(G − S) = p
and so S = E. □

The following theorem gives the possible relationships between scores for two arbitrary
subsets of E. This result gives us a very usefhl tool for deciding whether a set is a T ′−set.

Theorem 1.6. Let S and S ′ be subsets of E such that |S ′|−|S| = a, ω(G−S ′)−ω(G−S) =
b and τ(G− S ′)− τ(G− S) = −c. Then,
(i) sc(S ′) < sc(S) if and only if [(a− c)/b] < sc(S),
(ii) sc(S ′) = sc(S) if and only if [(a− c)/b] = sc(S),
and
(iii) sc(S ′) > sc(S) if and only if [(a− c)/b] > sc(S).

Proof. Since sc(S ′) = [(|S|+ a) + (τ(G− S)− c)]/[ω(G− S) + b] , the results follow from
basic algebraic manipulations. □

Note that if S is a subset of S ′ we are considering the case where the deletion of the a
additional edges in S ′ − S creates b additional components and reduces the order of a
largest remaining component by c. Throughout the remainder of this paper, a, b, andc
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will be as defined in the above theorem. This result yields several interesting and useful
corollaries about the components of G− S for a T ′ − set S.

Corollary 1.2. If S is a T ′ − set and C is a nontrivial component of G − S, then
λ(C) ≥ T ′(G).

Proof. Otherwise, choose S ′ = S ∪ T , where T is a minimum edge-cut-set of C. Then,
a = λ(C), b = 1, and c ≥ 0, so [(a − c)/b] ≤ λ(C) < T ′(G). Thus, sc(S ′) < sc(S), a
contradiction to the fact that S is a T ′ − set. □

Corollary 1.3. If S is a T ′− set of a connected graph G, then G−S contains no bridge.

Proof. Suppose e is a bridge of G−S. Then, by Theorem 1.1, sc(S) > 1. Let S ′ = S∪{e}.
Then, a = 1, b = 1, and c ≥ 0, so [(a− c)/b] ≤ 1, a contradiction. □

Corollary 1.4. If S is a T ′ − set of a connected, nontrivial graph G and G − S has a
unique component C of maximum order, then C is 3-edge-connected.

Proof. Since G − S has a unique component of maximum order, S ̸= E and sc(S) > 1.
Suppose λ(C) ≤ 2. Let S ′ = S ∪ T , where T is a minimum edge-cut-set of C. Then,
a = λ(C) ≤ 2, b = 1, and c ≥ 1, so [(a− c)/b] ≤ 1, a contradiction. □

Corollary 1.5. If there exists a T ′ − set S of a connected graph G with τ(G − S) = 3,
then G− S contains at least three components that are copies of K3.

Proof. Since, by Corollary 1.3, G − S contains no bridge, maximum order components
must be copies of K3. By Corollary 1.4, G− S contains at least two copies of K3. Thus,
suppose that G−S contains exactly two copies of K3. Let S

′ = S∪E(2K3). Then, a = 6,
b = 4, and c = 2, since S has no bridges, so [(a− c)/b] = 1 < T ′(G), a contradiction. □

Corollary 1.6. If there exists a T ′ − setS of a connected graph G with τ(G − S) = 4,
then G− S contains at least two nontrivial components.

Proof: Suppose G− S has a unique nontrivial component C. By Corollary 1.4, C ∼= K4.
Let S ′ = S ∪ E(K4). Then, a = 6, b = 3, and c = 3, so that [(a − c)/b] = 1 < T ′(G), a
contradiction. □

The next theorem gives an improved lower bound on the edge-tenacity of a graph. This
bound is especially useful for non-edge-tenacious graphs.

Theorem 1.7. If S is a T ′ − set of a connected graph G with p ≥ 9 and ω(G− S) ̸= p ,
then T ′(G) ≥ (λ/2) + [3/(p− 6)] .
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Proof. Let S be a T ′ − set leaving ω ̸= p components. As in the proof of Theo-
rem 1.3, sc(S) ≥ (λ/2) + (τ/ω). From Corollaries 1.3, 1.5,and1. 6, we have (τ/ω) ≥
min{3/(p− 6), 4/(p− 5), k/(p− k + 1)|5 ≤ k ≤ p}. It is easy to show that for p ≥ 9 this
minimum is 3/(p− 6) . □

We now define a class of graphs that will be useful as examples or counterexamples
throughout this paper. For any graph H, define the class of graphs G(H,m) as the
class of graphs G having V (G) = V (H) ∪ {v1, v2, ..., vm} and where E(G) is E(H) along
with any ω(H) + m − 1 additional edges that result in a connected graph. More gen-
erally, for t ≥ 2, define the class of graphs Gt(H,m) as the set of graphs G having
V (G) = V (H)∪{v1, v2, ..., vm} and where E(G) is E(H) along with any (t/2)[ω(H) +m]
additional edges that result in a t-edgeconnected graph.

Remark 1.1. For certain graphs G and certain values of m, the class Gt(H,m) may be
empty.

Remark 1.2. If there exists a t− regular, t− edge− connected graph of order ω(H) +m,
then for appropriate graphs H, Gt(H,m) will be nonempty. For example, if H is Kt+1,
then Gt(H,m) is nonempty for appropriate values of m. In particular, it is nonempty if
t is odd and m is odd and empty if t is odd and m is even.

Remark 1.3. None of the additional (t/2)[ω(H) +m] edges will be added to any compo-
nent of H.

We note that the bound from Theorem 7 is the best possible since equality is obtained
for all graphs in the class G2(3K3,m) for m ≥ 15. This is shown by observing that
if S consists of the edges added to E(H), then if m ≥ 15, sc(E(G)) ≥ sc(S) and
sc(S) = (λ/2) + [3/(p− 6)].

1.2 EDGE-TENACIOUS NETWORKS:

Unless otherwise stated, all graphs henceforth will be connected. The following two theo-
rems give lower bounds on the order and size of non-edge-tenacious graphs. These results
are shown to be the best possible.

Theorem 1.8. If the order of a connected graphG is at most 10, thenG is edge-tenacious.
Furthermore, if the order is at most 9, then G is strictly edge-tenacious.

Proof. If there exists a graph G that is not edge-tenacious, then there exists a non-edge-
tenacious graph G′ with T ′-set S [so sc(S) < sc(E)] having the following properties:
(i) The components of G′ − S are complete, and
(ii) |S| = ω(G′ − S)− 1.
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This is because adding edges to components of G−S does not increase sc(S) and arranging
these components in a connected graph using as few edges between components as possible
(i.e., arranging them in a tree structure) minimizes the score.
The set of orders of the components of G′ − S forms a partition P of p, with maximum
element max P , which satisfies the following:

(i) P has no 2’s, by Corollary 1.3;
(ii) if max P = 3, then there are at least three 3’s, by Corollary 1.5; and
(iii) if max P = 4, then there is at least one other element of P larger than 1, by Corollary
1.6.

Hence, sc(S) = (|P |−1+maxP )/|P |. It is easy to check that all such partitions of p ≤ 10
have sc(S) ≥ sc(E), a contradiction. Of these, the only partitions with max P > 1 that
have sc(S) = sc(E) are (6,1,1,1, 1 ) and (7,1,1,1) and have p = 10. □

Theorem 1.8 is the best possible result, since the graphs in the classes G(K6, 5) , G(K7, 4),
G(K7−e, 4), G(K8, 3), and G(K8−e, 3) are non-edge-tenacious graphs with order 11. (In
fact, these graphs are the only non-edgetenacious graphs of order 11.) Note that Theorem
1.8 also improves Theorem 1.7, since if p ≤ 9, then G is strictly edge-tenacious and the
premise is vacuously true.

Theorem 1.9. If the size of a connected graph G is at most 17, then G is edge-tenacious.

Proof. Suppose there exists a non-edge-tenacious graph G with q ≤ 17. Then, there exists
a non-edge-tenacious graph G′ with T ′-set S [so sc(S) < sc(E)] having the property that
|S| = ω(G′ − S)− 1.
The set of orders of the components of G′ − S forms a partition P of p, with maximum
element max P , which satisfies the following:

(i) P has no 2’s, by Corollary 1.3;
(ii) if max P = 3, then there are at least three 3’s, by Corollary 1.5; and
(iii) if max P = 4, then there is at least one other element of P larger than 1, by Corollary
1.6.

Now, by Theorem 1.8, p ≥ 11, and since G is connected, p ≤ 18. But if p = 18, then G is
a tree and every edge is a bridge, so, by Corollary 1.3, G must be edge-tenacious. Thus,
p ≤ 17. Clearly, since q ≤ 17, (18/p) > sc(S) = [(|P | − 1 +maxP )/|P |], which holds if
and only if |P | > [(max P −1)p/(18−p)].lt is easy to see that the only possible partitions
satisfying this are as follows:
(i) (3,3,3,1,1), p = 11, and q = 13.
(ii) (4,4,1,1,1), p = 11, and 12 ≤ q ≤ 16.
(iii) (4,3,1,1,1,1), p = 11, and q = 14; since the 4 corresponds to a unique largest com-
ponent, this component is necessarily a K4 since, by Corollary 1.4, it must be 3-edge-
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connected. The values for q in cases (iv), (vi), and (viii) are found using similar arguments.

(iv) (5,1,1,1,1,1,1), p = 11, and 14 ≤ q ≤ 16.
(v) (3,3,3,1,1,1), p = 12, and q = 14.
(vi) (4,3,1,1,1,1,1), p = 12, and q = 15.
(vii) (3,3,3,1,1,1,1), p = 13, and q = 15.
(viii) (4,3,1,1,1,1,1,1), p = 13, and q = 16.
(ix) (3,3,3,1,1,1,1,1), p = 14, and q = 16.

It is easy to check that the graphs corresponding to these partitions are edge-tenacious
and so we have a contradiction. □

This result is the best possible since the graphs in the classes G(2K4, 5) and G(K5, 8)
are non-edge-tenacious graphs with q = 18. (In fact, these graphs are the only non-edge-
tenacious graphs of size 18.)

The following two lemmas and theorem show that if a graph is sparse enough then it is
edge-tenacious. Again, the theorem will be shown to be best possible.

Lemma 1.1. If G is a connected graph with q = p+1 and S = {e|e is a bridge in G}, then
the subgraph induced by the nontrivial components ofG−S has one of the following forms:

(i) The union of two disjoint cycles.
(ii) Two cycles whose intersection is a vertex.
(iii) Two cycles whose intersection is a path.

Proof. Let T be a spanning tree of G and let u1v1 and u2v2 be the edges of G − E(T ).
There is a unique u1 − v1 path P1 in T and a unique u2 − v2 path P2 in T . Let S = {e|e
is a bridge in G}. Then, the subgraph H induced by the nontrivial components of G− S
will be the graph induced by the vertices on the paths P1 and P2. If P1 and P2 do not
intersect, H will be the union of two cycles. If P1 and P2 have a single vertex in common,
H will be two cycles whose intersection is this vertex. If P1 and P2 have more than one
vertex in common, their intersection must be a path; otherwise, T would contain a cycle.
Thus, in this case, H will be two cycles whose intersection is this path. □

Lemma 1.2. If G is connected and q ≤ p+1, then no subgraph of G is 3-edge-connected.

Proof. Suppose that H is a 3-edge-connected subgraph of G. Then, q(H) ≥ [3p(H)]/2 ≥
p(H) + 2, since p(H) ≥ 4. Since G is connected, there are at least p(G−H) edges in G
that are not in H. Hence, q(G) ≥ q(H) + p(G−H) ≥ p(H) + 2 + p(G−H) = p(G) + 2,
a contradiction. □
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Theorem 1.10. IfG is a connected graph with q ≤ p+1, thenG is strictly edge-tenacious.

Proof. Since G is connected, q ≥ p− 1. The proof is done in three cases:

First, if q = p− 1, then G is a tree and so every edge is a bridge and, hence, by Corollary
1.3, G is strictly edge-tenacious.
If q = p, then G is unicyclic and so every edge not on the cycle is a bridge. Thus, every
T ′-set for G will contain all noncycle edges. Also, if any cycle edge is deleted, then all of
the remaining cycle edges will then be bridges, and so will also be deleted. Hence, the
only possible T ′-sets for G are E and S = {uv|uv is not on the cycle in G}. Consider
the set S. The graph G− S has a unique largest component that by Corollary 1.4 must
be 3-edge-connected, a contradiction to Lemma 1.2. Hence, the only possible T ′- set is E
and so G is strictly edge-tenacious.
Finally, consider q = p+1. Suppose that S ̸= E is a T ′-set of G. As in the above cases, S
must contain all bridges in G. By Lemma 1.2, no subgraph of G is 3-edgeconnected and
so, by Corollary 1.4, G − S cannot have a unique largest component. Since none of the
components can contain any bridges, G− S must consist of 2 disjoint cycles of the same
order, say x, along with isolated vertices. Considering S ′ from Theorem 1.6 as E, we have
a = 2x, b = 2x− 2, and c = x− 1. Hence, (a− c)/b = (x+ 1)/(2x− 2) ≤ 1 < sc(S), by
Theorem 1.1. This implies that sc(E) < sc(S), by Theorem 1.6, a contradiction. Thus,
G is strictly edge-tenacious. □

The above result is the best possible, since the graphs in the classes G(3K3,m), for
m ≥ 10, have q = p+2 and are non-edge-tenacious. Note that G(3K3, 9) is edgetenacious
but not strictly edge-tenacious.
We now prove that all r-regular, r-edge-connected graphs are edge-tenacious.

Theorem 1.11. If G is r-regular and r-edge-connected, then G is strictly edge-tenacious.

Proof. If p < 9, the result follows by Theorem 1.8. Suppose that p ≥ 9. From Theorems
1.3 and 1.4, (r/2)+ (1/p) ≤ T ′(G) ≤ (q+1l)/p = (r/2)+ (1/p). Thus, T ′(G) = sc(E(G))
and G is edge-tenacious. Hence, by Theorem 1.7, G is strictly edge-tenacious. This is
because T ′(G) = (r/2) + (1/p) < (λ/2) + [3/(p− 6)]. □

It follows from Theorem 1.11 that many of the topologies widely used to design highly
reliable computer, communication, and transportation networks are edge-tenacious. We
close this section with a number of results illustrating this point. A further such result is
contained in Corollary 1.12 below.

Corollary 1.7. The complete graph Kp and the complete n-partite graph Km,m,...,m,

where p = nm, are strictly edge-tenacious.

In the next four results, we use concepts of power and product as defined in [6] and infla-
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tion as defined in [11].

Corollary 1.8. The nth power of the p-cycle, Cn
p , is strictly edge-tenacious for 1 ≤ n ≤

⌊p/2⌋ .

Corollary 1.9. If Gi is ri-regular and ri-edge-connected for i = 1, 2, ..., n, then G1 ×
G2 × ...×Gn, is strictly edge-tenacious.

Corollary 1.10. The n -cubes are strictly edge-tenacious.

Corollary 1.11. If G is an inflation of an r-regular r-edgeconnected graph, then G is
strictly edge-tenacious.

As an aside, we show that all of the complete bipartite graphs, Km,n are strictly edge-
tenacious. Note that if n = m, then this result follows from Corollary 1.7.

Theorem 1.12. For m ≤ n , Km,n is strictly edge-tenacious.

Proof. Suppose that S ̸= E is a T ′-set. Note that any nontrivial component of G−S must
be of the form Kx,y. By Theorem 1.3 and Corollary 1.2, each of these nontrivial compo-
nents must have edge-connectivity at least (m/2) + [1/(m + n)] . It follows that G − S
has at most one nontrivial component. So, sc(S) = (mn−xy+x+y)/(m+n−x−y+1).
Using derivatives, it is easy to see that the minimum value for this function occurs at one
of the four points (x, y) obtained when x ∈ {1,m} and y ∈ {1, n} . It is now easy to
check that sc(E) < sc(S), a contradiction. Hence, E is the only T ′-set of Km,n. □

We conjecture the following:

Conjecture 1. The graph Km1,m2,...mn is, strictly edge-tenacious.

1.3 RELAXATION OF THEOREM 1.11:

In this section, we explore what happens when we weaken either the r-edge-connected
hypothesis or the r-regular hypothesis in Theorem 1.11.
We first define another class of graphs that will be useful as examples or counterexamples.
For r ≥ 2, 1 ≤ n ≤ (r/2), m ≥ 2, define the graph F (r,m, n) as follows:
V (F (r,m, n)) =

⋃m
k=1 Vk and

E(F (r,m, n)) =
m⋃
k=1

(Bk −Mk) ∪
m⋃
k=1

Ck;

where Vk = {vi,k|0 ≤ i ≤ r} , Bk = {vi,kvj,k|0 ≤ i < j ≤ r} , Mk = {vi,kvr−i,k|0 ≤ i ≤
n− 1} , Ck = {vi,kvr−i,k+1|0 ≤ i ≤ n− 1} and all arithmetic on k is done modulo m. Let
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Gk =< Vk >. The graph F (r,m, n) is constructed from m copies of Kr+1 by deleting a
matching of size n from each complete graph, giving

⋃m
k=1Gk, and then adding n edges

connecting ”corresponding” reduced degree vertices in Gk and Gk+1. The resulting graph
is r-regular and has λ = 2n.
Note that if S is

⋃m
k=1Ck, then T ′(F (r,m, n)) ≤ sc(S) = n + (r + 1)/m. This bound is

sufficient to prove Theorem 1.14. However, for further results, it is helpful to get an exact
formula for T ′(F (r,m, n)) .

Theorem 1.13. [40], For r ≥ 2, 1 ≤ n ≤ (r/2) ,and m ≥ 2,

T ′(F (r,m, n)) = {
n+ r+1

m
, n< r

2
, m>

2r(r+2)
(r+1)(r−2n)

r
2
+ 1

m(r+1)
, otherwise

Theorem 1.14. If r is odd, there are r-regular graphs that are (r−1)-edge-connected and
not edge-tenacious. If r is even, there are r-regular graphs that are (r− 2)-edgeconnected
and not edge-tenacious.

As an aside, we may use the graphs F (r,m, n) to examine the possible values of the
ratio R(G) = [sc(E)]/[sc(S)] , when G is a non-edge-tenacious graph with T ′-set S. If
r ≥ 3, m > [2r(r + 2)]/[(r + 1l)(r − 2n)] ,and n < (r/2) , then G = F (r,m, n) is
non-edge-tenacious with T ′(G) = n + (r + 1)/m, by Theorem 1.13. Hence, R(G) =
[mr(r + 1) + 2]/[2(r + 1)(mn + r + 1)] and so R(G) tends to r/(2n) = r/λ as m goes to
∞. In the case where n = 1 , so λ = 2, this limit is r/2, while if n = ⌊(r − 1)/2⌋ (so λ is
either r − 1 or r − 2 ) this limit is either r/(r − 1) or r/(r − 2). Hence, in the first case,
the limit tends to ∞ as r goes to ∞ , and in the second case, the limit tends to 1 as r
approaches ∞ . Therefore, we can see that R(G) can get arbitrarily large or arbitrarily
close to 1 , the two possible extremes.
We may also use the graphs F (r,m, n) to prove the following theorem, suggested and
proved independently by Fetterman .

Theorem 1.15. For any positive rational number a/b , a ≥ b, there exists a graph G
such that T ′(G) = a/b.

Proof. If a = b, then the result follows from Corollary 1. So suppose a > b. Then, consider
the graph F (6a− 6b− 1, 6b, 1). Simple algebra shows that the first set of conditions from
Theorem 1.13 are satisfied. Hence, T ′(F (6a− 6b− 1, 6b, 1)) = (6a)/(6b) = a/b. □

Next, we consider relaxing the condition in Theorem 1.11 that G is r-regular, r ≥ 2, but
maintaining the condition that λ(G) = r . Note that under this condition each vertex
must have degree at least r. Our relaxation of the regularity condition is in the form of
allowing the sum of the degrees to increase above pr. Given a fixed graph with λ = r ≥ 2,
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consider
∑p

i=1 di = pr + ϵ, where di, is the degree of vertex vi. Then, define ϵi, to be
the largest ϵ such that all graphs with λ = r and

∑p
i=1 di ≤ pr + ϵ are edge-tenacious.

Note that we may define a similar concept for λ = 1. In this case, we will consider
,
∑p

i=1 di = 2(p − 1) + ϵ for a fixed graph with λ = 1. Define ϵi to be the largest ϵ such
that all graphs with λ = 1 and ,

∑p
i=1 di ≤ 2(p− 1) + ϵ are edge-tenacious. We now prove

several results giving bounds on ϵ and ϵr.

Theorem 1.16. ϵl = 4.
Proof. First note that ϵl must be even. By Theorem 1.10, ϵl ≥ 4. Also, for m ≥ 10, the
graphs in G(3K3,m) are non-edge-tenacious, implying that ϵl < 6 and, hence, the result.
□

Theorem 1.17. Let G be a connected graph with λ = r and
∑p

i=1 di = pr + ϵ. If
c < 4[(p+ 3)/(p− 6)] , then G is strictly edge-tenacious.

Proof. First, if p ≤ 9, then G is strictly edge-tenacious, by Theorem 1.8. Thus, assume
p > 9. Now,

sc(E) =
pr+ϵ
2

+ 1

p
<

r

2
+

3

p− 6

if and only if ϵ < 4[(p+ 3)/(p− 6)]. It follows then from Theorem 1.7 that for any T ′-set
S, ω(G− S) = p and so G is strictly edge-tenacious. □

The next result concerns the Harary graphs H(p, k) defined in [ 24] and gives another
example of a well-known network topology that is strictly edge-tenacious.

Corollary 1.12. The Harary graphs H(p, k) are strictly edge-tenacious.

Theorem 1.18. For r ≥ 2, ϵr ≥ max{r, 4} .

Proof. Let G be a non-edge-tenacious graph with λ = r,
∑p

i=1 di = pr + ϵ, and T ′-set S.
We know from the proof of Theorem 1.3 that sc(S) ≥ (r/2) + (τ/ω) and so [(q + 1)/p] =
(r/2) + [(ϵ+ 2)/(2p)] > sc(S) ≥ (r/2) + (τ/ω). Thus ϵ > (2pτ − 2ω)/ω.
First, since S is a T ′-set we have τ ≥ 3, by Corollary 1.3. Hence, ϵ > [(6p)/ω] − 2 > 4.
Hence, ϵr ≥ 4. Finally, suppose C is a nontrivial component of G − S. Then, from
Corollary 1.2 and Theorem 1.3, λ(C) ≥ T ′(G) > (r/2) and so τ ≥ p(C) > (r/2) + 1 .
This implies that ω ≤ p− τ + 1 < p− (r/2) . Thus,

ϵ >
2p(r + 2)

2p− r
− 2 =

r(2p+ 2)

2p− r
> r

Hence, ϵr ≥ r. □
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Theorem 1.19. For r ≥ 2, ϵr ≤ 2r.

Proof. For r ≥ 2, consider any graph G in the class Gr(3Kr+1 − M,k) , where M
is a matching of size m. Thus, p = 3(r + 1) + k, pr = 3r(r + 1) + kr,

∑p
i=1 di =

3r(r + 1) + r(k + 3) − 2m and hence ϵ = 3r − 2m. Let S be the set of (r/2)(k + 3)
additional edges that were added to attain edge-connectivity r in the construction of G.
Now, it is easy to show that

sc(S) =
r(k+3)

2
+ r + 1

k + 3
<

3r(r+1)+r(k+3)−2m
2

+ 1

3(r + 1) + k
= sc(E)

if and only if k(r − 2m) > 6r2 + 3r + 6m. Assuming this inequality holds, since 6r2 +
3r + 6m > 0, we have r − 2m > 0 and so m ≤ ⌊(r − 1)/2⌋. Since we are interested in
minimizing ϵ, we choose m = ⌊(r − 1)/2⌋ and so

(ϵ =
{
2r+1
2r+2

if r is odd
if r is even

If r is odd, we must have k odd and k > 6r2 + 6r − 3, whereas if r is even, we must
have k > 3r2 + 3r − 3. If k and m are chosen to satisfy these conditions, G is nonedge-
tenacious with

ϵ =
{
2r+1
2r+2

if r is odd
if r is even

thus;

ϵr
{
2r
2r+1

if r is odd
if r is even

Finally, if r is even, then pr is even and so ϵr is even and, hence ϵr ≤ 2r. □

Corollary 1.13. ϵ2 = 4.
From the last two theorems, for r ≥ 3 we have r ≤ ϵr ≤ 2r. We conjecture the following:

Conjecture 1.2. For r ≥ 3, ϵr = 2r.

Besides the two conjectures given above, there are a number of open problems. These in-
clude problems involving finding, characterizing, or recognizing non-edge-tenacious graphs
that are maximal or minimal with respect to this property. For example, it can be shown
that G(K5, 8) is both a maximal and a minimal non-edge-tenacious graph since either
deleting or adding an edge will make this graph edge-tenacious. Other problems are in
finding the edge-tenacity of non-edge-tenacious graphs and in relating edge-tenacity to
other parameters, such as the diameter and edge-integrity.

II Tenacity of Complete Graph Products
and Grids
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One way of measuring the stability of a network (computer, communication, or trans-
portation) is through the ease (or the cost) with which one can disrupt the network. The
connectivity gives the minimum cost to disrupt the network, but it does not take into
account what remains after disruption. One can say that the disruption is more suc-
cessful if the disconnected network contains more components and much more successful
if, in addition, the components are small. As nicely explained in [15] and [40], one can
associate the cost with the number of vertices destroyed to get small components and
associate the reward with the number of components remaining after destruction. The
tenacity measure is a compromise between the cost and the reward by minimizing the
cost:reward ratio. Thus, a network with a large tenacity performs better under external
attack. In this sense, the following parameters are successively better for the measure-
ment of stability; see [15] for a comparison. Before we formally define these parameters,
we recall some standard notation and terminology from [5] and [15].
Edge-analogs of these concepts are defined similarly; see [3, 4, 5, 40].
Let G1,G2, . . . ,Gr be graphs. The Cartesian product G1 ×G2 × ...×Gr has vertex set
V (G1)× V (G2)× ...× V (Gr) with two vertices u = (g1, g2, ..., gr) and v = (h1, h2, ..., hr)
adjacent iff for exactly one i, gi ̸= hi and (gi, hi) is an edge in Gi.
As usual, let Pn, Cn, and Kn, respectively, denote the path, cycle, and complete graph
on n vertices. It is well known that Cartesian products like hypercubes (K2 × ... ×K2),
grids (Pn1 × ...× Pnk

), and tori (Cn1 × ...× Cnk
) are highly recommended for the design

of interconnection networks in multiprocessor computing systems. Hence, there is a large
literature containing the study of the stability of these graphs. In [15], among other
results, the following theorem and conjecture are stated:
Theorem A [15]. If m ≤ n, then
m2+mn−2m+2

2m
≤ T (Km ×Kn) ≤

mn−n+⌈ n
m
⌉

m
.

Conjecture [15]. If 2 ≤ m ≤ n, then T (Km ×Kn) = (mn− n+ ⌈ n
m
⌉)/m.

S. A. Choudum, N. Priya proved this conjecture, [9]. In this paper, we show the proof of
this conjecture and find the tenacity of grid graphs pn1 × pn2 × · · · × pnk

.

2 Tenacity of Km ×Kn:

Theorem 2.1. If 1 ≤ m ≤ n, then T (Km ×Kn) =
mn−n+⌈ n

m
⌉

m
.

Proof. Let G = Km×Kn. For any S ⊆ V (G), the components of G−S have the following
property:
(1) By the definition of Km ×Kn, the neighborhood of the vertex (i, j) is

{(i, 1), (i, 2), ..., (i, n)} ∪ {(1, j), (2, j), ..., (m, j)} − {(i, j)}.

So, if S ⊆ V (G) and (i, j) is a vertex of a component C in G − S, then for ev-
ery other component D of G − S, V (D) ∩ {(i, 1), (i, 2), ..., (i, n)} = ϕ and V (D) ∩
{(1, j), (2, j), ..., (m, j)} = ϕ. Hence, S contains every vertex of {(i, 1), (i, 2), ..., (i, n)}
not in V (C) and every vertex of {(1, j), (2, j), ..., (m, j)} not in V (C).
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Let F be the family of all T-sets A in G with the maximum number of components in
G−A. Let S be an element of F with minimum order. We shall show that the components
of G− S satisfy the following properties (2)–(6) and complete the proof.
2) Every component C ofG−S is of the formKs×Kt. Let C1, C2, ..., Cω be the components
of G− S, with |V (Ci)| = mi × ni, i = 1, 2, ..., ω, where ω = ω(G− S).
(3) Given any i ∈ {1, 2, ...,m} (or j ∈ {1, 2, ..., n}), there exists a component containing
some(i, p) [respectively, (p, j)], where p ∈ {1, 2, ..., n} (respectively, p ∈ {1, 2, ...,m}).
(4) Clearly, by (1), (2), and (3),

∑ω
i=1mi = m and

∑ω
i=1 ni = n.

(5) For every component Ci, either mi = 1 or ni = 1.
(6) There is no component with mi > 1 and ni = 1.
Thus, all the components are of the form K1 × Kni

, |V (Ci)| = ni , ω(G − S) = m,
|S| = mn−

∑m
i=1 ni = mn− n, and τ(G− S) ≥ ⌈n/m⌉. We thus get the required lower

bound:

T (G) = |S|+τ(G−S)
ω(G−S)

≥ mn−n+⌈ n
m
⌉

m
.

Proof of (2). It is enough if we show that whenever (i, r), (i, s), (j, r) ∈ V (C) then (j, s) ∈
V (C). On the contrary, suppose that (j, s) /∈ V (C). Define S ′ = S−(j, s). By (1), (j, s) ∈
S, (j, s) is adjacent with (i, s), (j, r) in G−S ′ and [C ∪{(j, s)}] is a component of G−S ′,
so |S ′| = |S| − 1, ω(G− S ′) = ω(G− S), τ(G− S ′) ≤ τ(G− S) + 1. Hence,

sc(S ′) = |S′|+τ(G−S′)
ω(G−S′)

≤ |S|−1+τ(G−S)+1
ω(G−S)

= sc(S)

and so S ′ is a T-set. But this contradicts the fact that |S| is of minimum order.
Proof of (3). Assume the contrary; so, S ⊇ {(i, j) : 1 ≤ j ≤ n} for some i, 1 ≤ i ≤ m.
Let C be a component of G − S and (k, r) be an element of C. Define S ′ = S − (i, r).
Then, [C ∪ {(i, r)}] is a component in G− S ′, |S ′| = |S| − 1, τ(G− S ′) ≤ τ(G− S) + 1,
and ω(G− S ′) = ω(G− S). Hence, S ′ is a T-set as above, contradicting the fact that S
is of minimum order.
Proof of (5). Assume that there is a component Ci = Kmi

× Kni
with mi > 1 and

ni > 1. For notational convenience, let mi = s, ni = t. Without loss of generality,
assume that C1 = Ks × Kt, where V (Ks) = {1, 2, ..., s} and V (Kt) = {1, 2, ..., t}. Let
S ′ = S∪{(s, 1), (s, 2), ..., (s, t−1)}∪{(1, t), (2, t), ..., (s−1, t)}. Then, |S ′| = |S|+s+t−2,
and the components of G−S ′ are C2, ..., Cω [where ω = ω(G−S)], a singleton component
containing the vertex (s, t) and a component [(V (Ks)− {s})× (V (Kt)− {t})] ⊂ C1. So,
τ(G − S ′) ≤ τ(G − S) and ω(G − S ′) = ω(G − S) + 1. We now estimate the size of S.
Let [x, y] denote the set of all integers z, such that x ≤ z ≤ y. Since C1 is a component
in G − S, S ⊇ [1, s] × [t + 1, n] ∪ [s + 1,m] × [1, t]. So, |S| ≥ s(n − t) + (m − s)t =
s(n2 + n+ 3 + ...+ nω) + (m2 +m3 + ...+mω)t
since

∑ω
i=1 ni = t+

∑ω
i=2 ni = n and

∑ω
i=1mi = s+

∑ω
i=2 mi = m,

≥ s(ω − 1) + (ω − 1)t = (ω − 1)(s+ t)
Next, τ(G− S) ≥ |C1| = st ≥ s+ t− 2 ≥ s+ t− 2ω.
Adding the two inequalities, we get |S|+ τ(G− S) ≥ ω(G− S)(s+ t− 2). So,
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sc(S ′) = |S′|+τ(G−S′)
ω(G−S′)

≤ |S|+τ(G−S)+(s+t−2)
ω(G−S)+1

≤ |S|+τ(G−S)
ω(G−S)

(since(s+ t− 2)ω(G− S) ≤ |S|+ τ(G− S)) = sc(S).

Hence, S ′ is a T-set with ω(G−S ′) > ω(G−S), which is a contradiction to the choice of
S.
Proof of (6). We first observe that if there is a component Ci = Kmi

×K1 with mi > 1
then there is a component Cj = K1 ×Knj

with nj > 1; otherwise, nj = 1 for every j, and
we have the contradiction: ω + 1 ≤

∑ω
i=1 mi = m ≤ n =

∑ω
j=1 nj = ω.

To prove (6), assume on the contrary that there is a component C = Ks × K1 with
s > 1. By the above observation, there is a component D = K1 × Kt with t > 1.
Without loss of generality, assume that V (C) = {(1, a), (2, a), ..., (s, a)} and V (D) =
{(b, 1), (b, 2), ..., (b, t)}, where b /∈ {1, 2, ..., s} and a /∈ {1, 2, ..., t}. Define S ′ = S ∪
{(s, a)} ∪ {(b, t)} − {(s, t)}.
Then, |S ′| + 1, ω(G − S ′) = ω(G − S) + 1 with the new extra component being the
singleton {(s, t)}, and τ(G − S ′) ≤ τ(G − S). We next estimate the size of S. Since
C = Ks ×K1(= Ck(say)) is a component of G− S, S ⊃ {(s+ 1, a), (s+ 2, a), ..., (m, a)}.
So, |S| ≥ m−s =

∑ω
j=1,j ̸=k mj ≥ ω(G−S)−1. Since τ(G−S) > 1 , we get |S|+τ(G−S) >

ω(G− S). But, then,

sc(S ′) = |S′|+τ(G−S′)
ω(G−S′)

≤ |S|+1+τ(G−S)
ω(G−S)+1

≤ |S|+τ(G−S)
ω(G−S)

(since|S|+ τ(G− S) > ω(G− S)) = sc(S).
We thus have a contradiction to the minimality of sc(S).

2.1 Tenacity of grids pn1
× pn2

× · · · × pnk

To find the tenacity of grids, we require the tenacity of complete bipartite graph Km,n

and paths.
Theorem B [15]. If 1 ≤ m ≤ n, then T (Km,n) = (m+ 1)/n.
Theorem 2.1. For every integer n ≥ 2,

T (pn) =
{

1
n+2
n

if n is odd
if n is even

Proof. At the outset, we observe that ω(Pn − S) ≤ |S| + 1, for everyS ⊆ V (Pn). Let
1, 2, ..., n be the vertices and (i, i + 1) be the edges of Pn. Clearly, if H is a spanning
subgraph of G, then T (H) ≤ T (G). Since,

pn ⊆
{

Kn−1
2 , n+1

2
Kn

2 , n2

if n is odd
if n is even
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it follows by Theorem B, that

T (pn) ≤
{

1
n+2
n

if n is odd
if n is even

To establish the lower bound, we first claim that if S is a T − set of Pn, then (i) every
component of Pn − S is K1 or K2, and (ii) there is at most one K2 component. We
assume the contrary and arrive at a contradiction. If Pn − S contains a component
Pk = {i + 1, i + 2, ..., i + k}, where k ≥ 3, then defining S ′ = S ∪ {i + 2}, we have
|S ′| = |S|+ 1 , τ(Pn − S ′) ≤ τ(Pn − S), ω(Pn − S ′) = ω(Pn − S) + 1, and

sc(S ′) = |S′|+τ(Pn−S′)
ω(Pn−S′)

≤ |S|+1+τ(Pn−S)
ω(Pn−S)+1

< |S|+τ(Pn−S)
ω(Pn−S)

(since|S|+ τ(Pn − S) ≥ ω(Pn − S) + 2) = sc(S), a contradiction to the minimality of
sc(S).

Next, if Pn −S contains two K2 components, say (i, i+1) and (j, j +1), where j ≥ i+3,
assume, without loss of generality, that Pn−S has no edges (r, r+1), where i+3 ≤ r ≤ j−3.
Clearly, i+2, j− 1 ∈ S. Let S ′ = S ∪{i+1, i+3, ..., j− 2}∪{j}−{i+2, i+4, ..., j− 1}.
Then, |S ′| ≤ |S|+ 1, τ(Pn − S ′) ≤ τ(Pn − S), ω(Pn − S ′) ≥ ω(Pn − S) + 1,and

sc(S ′) = |S′|+τ(Pn−S′)
ω(Pn−S′)

≤ |S|+1+τ(Pn−S)
ω(Pn−S)+1

< |S|+τ(Pn−S)
ω(Pn−S)

(since|S| + τ(Pn − S) > ω(Pn − S) + 2) = sc(S), a contradiction to the minimality of
sc(S).
We next complete the proof by taking a T − set S of Pn and distinguishing two cases:
CASE 1.τ(Pn − S) = 1.

Clearly, |S| ≥ ⌊n
2
⌋, and ω(Pn − S) ≤ ⌈n

2
⌉. Hence, T (Pn) = sc(S) = |S|+τ(Pn−S)

ω(Pn−S)
≥ ⌊n

2
⌋+1

⌈n
2
⌉ ={

1
n+2
n

if n is odd
if n is even

CASE 2.τ(Pn − S) = 2.

Clearly, |S| ≥ ⌊ (n−2)
2

⌋, and ω(Pn − S) ≤ ⌈n
2
⌉. Hence, T (Pn) =

|S|+τ(Pn−S)
ω(Pn−S)

≥ ⌊n−2
2

⌋+2

⌈n
2
⌉ ={

1
n+2
n

if n is odd
if n is even

□

Theorem 2.1 was also proved by D.E. Mann, ”The tenacity of trees”, Ph.D. Thesis, North-
eastern University, 1993.

Before proving our next theorem, we make a simple observation: If a graph G contains a
Hamilton path, then so does G× Pn.
Theorem 2.2. For all positive integers n1, n2, ..., nk,

T (Pn1 × Pn2 × · · · × Pnk
) =

{
1
n1n2···nk+2

n1n2···nk

if all ni are odd
if some ni is even
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Proof. By the above observation, it follows thatPn1 ×Pn2 × ...×Pnk
contains a Hamilton

path Pn1n2...nk
. So, by Theorem A2,

T (Pn1 × Pn2 × · · · × Pnk
) ≥ Pn1n2...nk

=

{
1
n1n2···nk+2

n1n2···nk

if all ni are odd
if some ni is even

If G is a bipartite graph with bipartition [A,B] and H is a bipartite graph with bipartition
[C,D], then it is well known that G×H is a bipartite graph with bipartition [(A×C) ∪
(B ×D), (A×D) ∪ (B × C)]. Hence, it follows that

Pn1 × Pn2 × · · · × Pnk
⊆

{
Kn1n2...nk−1

2 ,
n1n2...nk+1

2
Kn1n2...nk

2 ,
n1n2...nk

2

if all ni are odd
if some ni is even

So, by Theorem B, we get

T (Pn1 × Pn2 × · · · × Pnk
) =

{
1
n1n2···nk+2

n1n2···nk

if all ni are odd
if some ni is even

□

Since a hypercube Qn is the Cartesian product P2 × P2 × · · · × P2 (n times), we have the
following corollary,a result also proved by Stuart (see [15]).

Corollary 2.1 For every positive integer n. T (Qn) =
(2n+2)

2n
. □

III On the edge-tenacity of the middle
graph of a Networks

A communication network is modelled as an undirected and unweighted graph in which
vertices represent the processing elements and edges represent the communication links.
The stability of a network is of prime importance to network designers.As the network
begins losing links or nodes, eventually it loses effectiveness. Communication networks
are designed such that they are not easily disrupted under external attack and, more-
over, such that they can easily be reconstructed if they are disrupted. These desirable
properties of networks can be measured by various parameters such as connectivity and
edge-connectivity. However, these parameters do not take into account what remains
after the graph is disconnected. Consequently, a number of other parameters have re-
cently been introduced in an attempt to cope with this. These include toughness and
edge-toughness , integrity and edge-integrity, and tenacity.
We can say that the disruption is more successful if the disconnected network contains
more components, and is much more successful if, in addition, the components are small.
We can associate the cost with the number of edges destroyed to obtain small components
and associate the benefit with the number of components remaining after destruction. The
edge-tenacity is a compromise between the cost and the benefit obtained by minimizing
the cost–benefit ratio. Thus a network with a large edge-tenacity performs better under
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external attacks. In this sense, the following parameters are successively better for the
measurement of stability.
• edge-connectivity λ(G) = min{|S| : S ⊆ E(G) is an edge set of G}
• edge-integrity I ′(G) = min{|S|+ τ(G− S) : S ⊆ E(G)}
• edge-toughness t′(G) = {min |S|

ω(G−S)
: S ⊆ E(G) is an edge set of G}

• edge-tenacity sc(S) = |S|+τ(G−S)
ω(G−S)

.

The edge-tenacity of a graph G is defined as T ′(G) = min{sc(S)}, where the minimum
is taken over all edge-sets S of G. A subset S of E(G) is said to be a T ′ − set of G if
T ′(G) = sc(S). Aysun Aytaç, [1 ], in his paper gave the edge-tenacity of the middle graph
of specific families of graphs and its relationships with other parameters.
DEFINITION 3.1. The middle graph M(G) of a graph G is the graph obtained from G
by inserting a new vertex into every edge of G and by joining by edges those pairs of these
new vertices which lie on adjacent edges of G.
The definition of the endline graph of a graph is as follows. Let G be a graph and
V (G) = {v1, v2, ..., vn}. We add to Gn new vertices and n edges {ui, vi}(i = 1, 2, ..., n),
where ui are different from any vertex of G and from each other. Then we obtain a new
graph G′ with 2n vertices, called the endline graph of G. Let us denote the line graph of
a graph G by L(G). Then, from the definition of the endline graph and the middle graph
of a graph, we have L(G′) ∼= M(G). We saw the following results in section I.
THEOREM 3.1. If G is connected and S ⊆ E, then sc(S) ≥ 1 with equality if and only
if G is a tree and S = E.
COROLLARY 3.1. If G is connected, then T ′(G) ≥ 1 with equality if and only if G is a
tree.
THEOREM 3.2. If G spans the subgraph of H, then T ′(G) ≤ T ′(H).
THEOREM 3.3. For any graph G, T ′(G) ≥ λ/2 + 1/n.
THEOREM 3.4. For all G, T ′(G) ≤ (q + 1)/n.
THEOREM 3.5. If G is r-regular and r-edge-connected, then T ′(G) = r/2 + 1/n.

3.1 Relationships between the edge-tenacity and
the edge-toughness and edge-integrity:
In this section, we consider relationships between the edge-tenacity and some other sta-
bility parameters, namely the edge-toughness and the edge-integrity.
Theorem 3.6. Let G be a connected graph such that t′(G) = t′, I ′(G) = I ′ and
T ′(G) = T ′. Then T ′ ≥ t′I ′/q.
Proof. From the definition of t′(G) and I ′(G)

t′I ′ = min{ |S|
ω(G−S)

[|S|+ τ(G− S)]} = min{ |S|+τ(G−S)
ω(G−S)

}min{|S|} = T ′min{|S|}.
We know that |S| < q. It is easy to see that T ′ ≥ t′I ′/q. □
Theorem 3.7. Let G be a graph with n vertices and q edges such that t′(G) = t′,
I ′(G) = I ′ and T ′(G) = T ′. Then T ′ ≤ t′ − (1− n)/2.
Proof. From the definition of t′(G) and I ′(G)

t′+I ′ = min{ |S|+ω(G−S)+ω(G−S)τ(G−S)
ω(G−S)

= min{ |S|+τ(G−S)
ω(G−S)

}+min{ω(G−S)|S|+[ω(G−S)−1]τ(G−S)
ω(G−S)

} =

T ′ +min{|S|+ τ(G− S)}+min{− τ(G−S)
ω(G−S)

.
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We know that 2 ≤ ω(G− S) ≤ n and 1 ≤ τ(G− S) ≤ n− 1, and it is easy to see that

min{− τ(G− S)

ω(G− S)
≥ 1− n

2

Therefore t′ ≥ T ′ + (1− n)/2. This impliesT ′ ≤ t′ − (1− n)/2 □
Theorem 3.8. G is a connected graph with n vertices I ′(G) = I ′ and T ′(G) = T ′. Then
T ′ ≥ I ′/n.
Proof. From the definition of I ′, we have

I ′ ≤ |S|+ τ(G− S) ⇒ I ′

ω(G− S)
≤ |S|+ τ(G− S)

ω(G− S)
⇒ T ′ ≥ I ′

ω(G− S)

We know that ω(G− S) ≤ n. Therefore T ′ ≥ I ′/n □

3.2 The edge-tenacity of the middle graph of a graph:
In this section, we present some results for the edge-tenacity of the middle graph of specific
graphs, i.e. part, cycle, complete, and star graphs with n vertices and q edges.
Theorem 3.9. Let M(Pn) be the middle graph of Pn. Then

T ′[M(Pn)] = 1 +
(n− 2)

(2n− 1)

Proof. The number of vertices and the number of edges of graph M(Pn) are V [M(Pn)] =
2n− 1 and E[M(Pn)] = 3n− 4, respectively. Initially, we observe that

ω[M(Pn)− S] ≤ |S| − [⌊|S|
3
⌋ − 1]

for every S ⊆ E[M(Pn)]. We claim that if S is a T ′−set of M(Pn), then every component
of M(Pn)−S is K1. We assume the contrary and arrive at a contradiction. If M(Pn)−S
contains a component K2 then, defining S ′ = S ∪ {(i, i + 1) = ei}, we have S ′ = |S| +
1,τ [M(Pn)− S ′] ≤ τ [M(Pn)− S], ω[M(Pn)− S ′] = ω[M(Pn)− S] + 1. Then

sc(S ′) = |S′|+τ [M(Pn)−S′]
ω[M(Pn)−S′]

≤ |S|+1+τ [M(Pn)−S]
ω[M(Pn)−S]+1

< |S|+τ [M(Pn)−S]
ω[M(Pn)−S]

= sc(S) ⇒ sc(S ′) < sc(S).

This contradicts the minimality of sc(S).
Therefore τ [M(Pn) − S] = 1. If τ [M(Pn) − S] = 1, |S| = E[M(Pn)] = 3n − 4 and
ω[M(Pn)− S] = V [M(Pn)] = 2n− 1. Hence

T ′[M(Pn)] = 1 +
(n− 2)

(2n− 1)

□
Corollary 3.2. The relationship between the edge-tenacity of M(Pn) and the edge-
tenacity of Pn is T ′[M(Pn)] ≤ T ′(Pn) + T ′(Pn−1), i.e. T

′[M(Pn)] ≤ 2.
Proof We observe that the middle graph M(Pn) consists of two parts, Pn and Pn−1. This
is easy to see by using theorem 3.4.
Theorem 3.10. Let M(Cn) be the middle graph of Cn. Then
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T ′[M(Cn)] =
3n+ 1

2n

Proof. The M(Cn) have V [M(Cn)] = 2n vertices and E[M(Cn)] = 3n edges. The proof
of theorem 3.10 is similar to the proof of theorem 3.9. □
Corollary 3.3. The relationship between the edge-tenacity of M(Cn) and the edge-
tenacity of Cn is T ′[M(Cn)] < 2T ′(Cn).
Theorem 3.11. Let M(K1,n) be the middle graph of Cn. Then

T ′[M(K1,n)] =
2n+ 1

n+ 1
, (n ≥ 5)

Proof. The M(K1, n) graph has V [M(K1, n)] = 2n + 1 vertices and E[M(K1, n)] =

2n+

(
n
2

)
edges. For n ≥ 5, τ [M(K1, n)−S] = |Kn|+1. The +1 comes from star graph

because the graphKn consists of n vertices and one vertex which is of highest degree in the
star graph. All vertices of Kn are adjacent to this vertex. If τ [M(K1, n)−S] = n+1, then
we remove e1, e2, ..., en edges from M(K1, n). Therefore |S| = n and ω[M(K1, n) − S] =
n+ 1, and it is easy to see that

T ′[M(K1,n)] =
2n+ 1

n+ 1

We assume the contrary and arrive at a contradiction as in the proof of theorem 3.9. If
τ [M(K1, n)− S ′] = 1, then

|S ′| = 2n+

(
n
2

)
and we have V [M(K1, n)] = 2n+ 1 components. Therefore

T ′[M(K1,n)] =

2n+

(
n
2

)
+ 1

2n+ 1

We now consider the inequality

2n+

(
n
2

)
+ 1

2n+ 1
>

2n+ 1

n+ 1

If we can demonstrate this inequality, we will arrive at a contradiction to the minimality
of sc(S). Suppose that above inequality is not true:

2n+

(
n
2

)
+ 1

2n+ 1
≤ 2n+ 1

n+ 1
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(n+ 2)(n+ 1)

2(2n+ 1)
≤ 2n+ 1

n+ 1

(n+ 1)2 + (n+ 2) ≤ 2(2n+ 1)2

n3 − 4n2 − n− 2 ≤ 0

(n+ 2)(n− 1)2 ≤ 0

Since n ≥ 5, the above inequality implies a contradiction. Therefore

2n+

(
n
2

)
+ 1

2n+ 1
>

2n+ 1

n+ 1

This also contradicts the minimality of sc(S). □
Theorem 3.12. If G is an (n− 1)-regular graph with n vertices,

T ′[M(G)] =
n2− 2n+ 2

n

Corollary 3.4. If G is an (n− 1)− regular graph with n vertices, then

T ′[M(G)] < T ′(Kn) + T ′(G′)

where G′ is a 2(n− 2)− regular graph G′ with [n(n− 1)/2] vertices.
By using theorems 3.5 and 3.11 we obtain the result.

Discussion: Many graph-theoretical parameters have been used in the past to describe
the stability of communication networks. Most of these parameters do not take into
account what remains after the graph is disconnected. In edge-tenacity (tenacity), the
cost takes into account the size of the largest remaining component, since the larger the
remaining component, the less successful is the attack. An attacker wishes to make the
cost–benefit ratio as small as possible, whereas a network designer wishes to make this
ratio as large as possible. We want to design a communication network such that when it
begins to lose links (edges) or nodes (vertices), it maintains high stability. The number of
the vertices of graphs M(G) and graph G is the same. We can see that the middle graphs
M(G) have a higher stability than graphs G. Thus we must select the middle graph
of a graph, especially M(K7), according to the edge-tenacity. In the above graphs, the
edge-connectivities of the graph and its middle graph are the same, i.e. λ(G) = λ[M(G)].
However, the orders of their largest components are not equal. Therefore these two graphs
must have different stabilities. How can we measure that property? Thus edge-tenacity
is a better parameter for measuring the stability of a graph G.
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