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1 Introduction

Fuzzy relational equations (FRE) are a generalization of Boolean relation equations. At
first, Sanchez [39] investigated and developed this theory and its applications. Gener-
ally, fuzzy set theory has a number of properties that make it suitable for formulizing
the uncertain information upon which many applied concepts such as medical diag-
nosis and treatment are usually based. Because of this fact the theory of FRE was
originally applied in problems of the medical diagnosis [39]. Later, The concept of
FRE is used in many problems such as system analysis[38], decision making[1], fuzzy
controller [10], fuzzy modeling[42], fuzzy analysis, especially fuzzy arithmetic[10].
In [21] it has been established that the majority of fuzzy inference systems can be
implemented using FRE. Pedrycz [30] categorized and extended two ways of the gen-
eralizations of FRE in terms of sets under discussion and various operations which
are taken into account. Since then , many theoretical improvements have been in-
vestigated and many applications have been presented. For instance, we can refer to
[3,5,7,11-14,16,17,22,25,31-33,35,37,41,43]. Klement et al. [18-20] presented the basic
analytical and algebraic properties of triangular norms and important classes of fuzzy
operators generalization such as Archimedean, strict and nilpotent t-norms. Pedrycz
and Vasilakos [34] converted a highly dimensional relational equation into a serious
of single input FRE. In [36] author demonstrate how problems of interpolation and
approximation of fuzzy functions are connected with solvability of systems of FRE. He
focused on the problem of approximate solvability of a system of FRE. In [40], FRE has
been extended to the setting of interval-valued FRE with a max-t-norm composition
and three types of solution sets have been proposed. Markovskii showed that solv-
ing max-product FRE is closely related to the covering problem which is an NP-hard
problem [24].
In [2] Chen and Wang designed an algorithm for obtaining the logical representation
of all minimal solutions. They showed that a polynomial time algorithm to find all
minimal solutions of FRE with max-min composition may not exist.

An interesting application of the fuzzy relations theory is in the field of image pro-
cessing [9] and [6]. Also, the various types of FRE with continuous triangular norms
were used for compression / decompression of images [4,15,28,23]. In [4] the image
was divided in blocks and then the FRE with a t-norm were utilized for compression
each block where results were obtained using the Lukasiewicz t-norm . In [26] any
monochromatic image is interpreted as a fuzzy relation in which the entries are the
normalized values of the pixels. This method is based essentially on the fact that the
reconstructed images is obtained as the greatest or the smallest solution of a system of
fuzzy equations. Also, authors showed processes for coding/decoding color images in
the RGB and YUV spaces by using FRE of max-t type where t is the Yager t-norm. In
[27] authors used particular FRE of compression / decompression of color images in
the RGB and YUV spaces .Nobuhara et al. [29] formulated and solved a problem of im-
age reconstruction using eigen fuzzy sets. They proposed two algorithms of generating
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eigen fuzzy sets used in the reconstruction process.Di Nola and Russo [8] focused on
the algebraic structures of such these problems by considering the Lukasiewicz trans-
form as a residuated map.

In this paper, we firstly focus on a direct problem defined by the most familiar form of
fuzzy relational equations which is formulated as follows:

xoA = b (1)

WhereI = {1 , 2 , ... , n }, andJ = {1 , 2 , ... , m }.A = (aij )n×m is a fuzzy matrix in which
0 ≤ aij ≤ 1,∀ i ∈ I and ∀j ∈ J . x is a given n-dimensional fuzzy vector, and b is an
unknown m-dimensional fuzzy vector in which 0 ≤ xi ≤ 1 ,∀i ∈ I , and 0 ≤ bj ≤ 1, ∀j ∈ J ,
respectively. Also, ”o” is an arbitrary t-norm, and aj is the jth column of matrixA.
Equivalently, Problem(1) can be written with more details as follows:

xoaj =
n

max
i=1
{ t(xi , aij) } = bi ,∀j ∈ J (2)

We present an applied example that is formulated by (2) as a direct problem in which
x and A are given and b is unknown. We present a necessary condition and a suffi-
cient condition in which direct solution of Problem (2) defined by minimum t-norm
leads to a solution coinciding with consequence resulted from human mind. Also, we
show that direct Problem (2) defined by each t-norm cannot yield a rational vectorb
for our example. In latter case, provided with some assumptions hold, we present a
t-conorm (instead of maximum operator in (2)) by which we can solve direct Problem
(2) (in which t(a,b) = min(a,b)) with acceptable results and we find a vector b that is
exactly the same as rational consequences which are obtained by human mind. Also,
we investigate conditions in which direct Problem (2) defined by each t-norm and each
t-conorm cannot yield a reasonable solution.
In section 2, we give an example to prove that direct Problem (2) may result in a vector
b which is too farther from the expected rational conclusions. In section 3, we present
a t-conorm which is constructed by the convex combination of drastic sum and max-
imum operators. Then, we solve direct Problem (2) defined by minimum t-norm in
which foregoing t-conorm takes the place of maximum operator, and we show that
vector bobtained by the new problem has the highest similarity with the expected ra-
tional conclusions. Finally, conditions are presented in which any kind of Problem (2)
(defined by arbitrary t-conorm and t-norm) does not result in a rational solution.

2. An applied example: pea or melon?

Consider a basket including several peas, strawberries, bananas, and melons. Also,
consider a man who is aware of those four types of contents deciding to distinguish
those objects only by touching them with closed eyes. By this assumption that the
contents in the basket are just those four foregoing kinds, one will able to evaluate
them in his mind by considering some properties(for instance, their weights). When
one touches an object with sufficient large value of weight (for example he assigns
1 to the weight of that object from the interval [0,1]) he may argue that what is in
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his hands is melon. On the other hand, when one touches a melon, he can feel that
what is in his hands has large value of weight among other contents included in the
basket. Then, we can define a fuzzy relation in which, membership value of being
melon and simultaneously having large value of weight, is too high. By similar reasons,
we may make a table based on four objects; pea, strawberry, banana, melon, and three
properties; long, Heavy, and voluminous as follows:

Pea Strawberry Banana Melon
Long 0 0.3 0.98 0.7
Heavy 0.001 0.01 0.1 0.99
Voluminous 0.004 0.042 0.3 1

Table 1. Fuzzy relation between four objects; pea, strawberry, banana, melon, and three properties;
long, heavy, voluminous.

By our assumption, an object selected from basket is melon iff its length = 0.7 or its
weight = 0.99 or its volume = 1. Similar statements are true for being banana, being
strawberry, and being pea. Furthermore, table 1 can be shown by a fuzzy relational
matrix as follows:

Length
Weight
V olume

P S B M 0 0.3 0.98 0.7
0.001 0.01 0.1 0.99
0.004 0.042 0.3 1

 = A

whereP ,S,B,andMdenote pea, strawberry, banana, and melon, respectively.

Now, suppose we select an object x from the basket (with closed eyes) and we evaluate
its properties as; length(x) = x1, weight(x) = x2, and volume(x) = x3, where x1,x2,x3 ∈
[0,1]. We show these pieces of information by a 3-dimensional vector as shown below:

L W V

x =
[
x1 x2 x3

]
where L,W ,and V denote length, weight, and volume, respectively.

Then, by the composition of fuzzy relations, we can find the kind of this object by
observing vector b which is attained by solving direct Problem (2) as follows:

P S B M P S B M[
x1 x2 x3

]
o

 0 0.3 0.98 0.7
0.001 0.01 0.1 0.99
0.004 0.042 0.3 1

 =
[
b1 b2 b3 b4

]
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Vector bdetermines the membership value of each contents in the basket to which ob-
ject x belongs. Precisely,b1 is the degree of which x is pea, b2 is the degree of which x
is strawberry, b3is the degree of which x is banana, and b4 is the degree of which x is
melon.
In a certain experiment, we select an object ẋ from the basket and find that
ẋ =

[
0.004 0.002 0.003

]
. By comparing three properties of objectẋ with that of pea,

strawberry, banana, and melon, it is easy to see that ẋ should be a pea. Therefore, we
must have the same conclusion by finding vectorb through solving Direct problem (2),
too. At first, we solve problem ẋoA = b in which ”o” is minimum t-norm and

P S B M

A =

 0 0.3 0.98 0.7
0.001 0.01 0.1 0.99
0.004 0.042 0.3 1


Easy calculations show that the result is the vector below:

P S B M

b =
[

0.003 0.004 0.004 0.004
]

According to the vector b above, ẋ is a pea with membership value 0.003, and it is
a melon with membership value 0.004 (?!). If we solve problem above with product
t-norm, we will attain solutions as objectionable as previous one:

P S B M

b =
[

0.000012 0.0012 0.00392 0.003
]

The result will be too wonderful if we solve problem above with Lukasiewicz t-norm
or drastic product. In both cases, we have:

P S B M

b =
[

0 0 0 0.003
]

More wonderful result is attained when we try to distinguish an object
ẍ =

[
0 0.001 0.004

]
via direct solution of Problem (2). By considering the compo-

nents of table 1, it is readily attained that ẍ is exactly a pea. But, when Problem (2) is
defined by minimum, product, Lukasiewicz, and drastic product, yields vectorsb1, b2,
b3, and b4 below, respectively:

P S B M

b1 =
[

0.004 0.004 0.004 0.004
]

P S B M

b2 =
[

16× 10−6 168× 10−6 12× 10−4 4× 10−3
]
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P S B M

b3 = b4 =
[

0 0 0 0.004
]

Actually, we expect b1 ≥ b2 ≥ b3 ≥ b4 by a rational justification in all cases above while
results attained from Problem (2) have inverse ordering in all cases.

In a general case, suppose
...
x=

[ ...
x1

...
x2

...
x3

]
is a selected object from the basket. Since

ai1 < ai4 for eachi ∈ {1 , 2 , 3 }, then by the non-decreasing property of t-norms we

have t(
...
xi , ai1) ≤ t(

...
xi , ai4) for eachi ∈ {1 , 2 , 3 }and for each t-norm.Therefore,

3
max
i=1
{t(...xi

, ai1)} ≤ 3
max
i=1
{t(...xi , ai4)}which implies b1 ≤ b4. Since latter inequality is satisfied for each

...
x∈ [0,1]3 and for each t-norm, then problem (2) defined by each t-norm cannot truly
distinguish between a pea and a melon.
3. Modification of Problem (2)

In this section, we investigate how human mind can solve example above with true so-
lutions while Problem (2) does not. Also, we try to modify Problem (2) in a way which
leads us to the same consequences as made by human mind. The process which is used
in the mind for solving example above is based on the comparison, and comparison
process itself is done by a difference operation. Actually, if we want to formulate the
solution process of mind for our example with highest similarity with direct problem
(2), we have:

1−
n

min
i=1
{
∣∣∣xi − aij ∣∣∣ } = bj ,∀j ∈ J (3)

or equivalently;
n

max
i=1
{1−

∣∣∣xi − aij ∣∣∣ } = bj ,∀j ∈ J (4)

in which xi and aij are given∀i ∈ I and ∀j ∈ J , and bj is unknown ∀j ∈ J .

If we solve example above for ẋ =
[

0.004 0.002 0.003
]

and ẍ =
[

0 0.001 0.004
]

by direct problem (3) or (4), we will have reasonable vectors ḃ, and b̈, respectively as
follows:

P S B M

ḃ =
[

0.999 0.992 0.902 0.304
]

P S B M

b̈ =
[

1 0.991 0.974 0.3
]

Here the question is whether there exists a t-norm by which vector bresulted from
Problem (2) is the same as one attained from Problem (4), or else by which t-norm,
Problem (2) yields a vector b with the most accurate approximation to vector b in
(4). Lemma 1 and its corollary below show that not only vector b resulted from (2)
defined by an arbitrary t-norm is not generally equal to its corresponding vector in (4),
but also under some conditions, the amount of the accuracy for vector b in (2) as an
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approximation solution for vector b in (4) is bounded above. However, Problem (2) is
not generally equal to Problem (4), and also under some conditions, the accuracy of
Problem (2) (defined by each t-norm) to approximate Problem (4) can not be desirably
increased.

Lemma 1. Given Problem (2). Then,
n

max
i=1
{ t(xi , aij)} ≤

n
max
i=1
{min(xi , aij) } ≤

n
max
i=1
{1 −

∣∣∣xi − aij ∣∣∣ },∀j ∈ J , where t is an arbitrary t-
norm.

Proof. The first inequality is well known. For the second, fix a j0 ∈ J and supposexi ≤
aij0for somei ∈ I(otherwise, ifxi > aij0 , result is similarly attained). In this case, ifxi ≤
2aij0−1, thenxi ≤ 1−(aij0−xi) ≤ aij0 . Otherwise, ifxi > 2aij0−1, thenxi ≤ aij0 < 1−(aij0−xi).
Therefore, in both cases, we have:

min(xi , aij0) ≤ 1−
∣∣∣xi − aij0 ∣∣∣ (5)

Now, since last inequality holds for eachi ∈ I , we have
n

max
i=1
{min(xi , aij0) } ≤ n

max
i=1
{1 −∣∣∣xi − aij0 ∣∣∣ }. Since j0 ∈ J was arbitrary, then latter inequality is satisfied for eachj ∈ J .

Corollary 1. Given Problem (2)defined by minimum t-norm. Consider a fixed j0 ∈ J
and suppose min(xi , aij0) > 2max(xi , aij0)− 1, ∀i ∈ I . Then,
n

max
i=1
{ t(xi , aij0)} ≤ n

max
i=1
{min(xi , aij0) } < n

max
i=1
{1−

∣∣∣xi − aij0 ∣∣∣ }.
Corollary 1 shows that under some conditions, Problem (2) defined by each t-norm
may not even a good approximation of real solution resulted from Problem (4). Lemma
2 part (a) below gives a sufficient condition by which Problem (2) defined by minimum
t-norm finds rational vector b, exactly. Also, a necessary condition has been given in
part (b) when Problem (2) defined by minimum t-norm provides a reasonable vector b
the same as we expect. Moreover,

Lemma 2. Given Problem (2).
a) If max(xi , aij) = 1,∀i ∈ I and ∀j ∈ J , then

n
max
i=1
{min(xi , aij) } =

n
max
i=1
{1−

∣∣∣xi − aij ∣∣∣ },∀j ∈ J .

b) Suppose
n

max
i=1
{min(xi , aij) } =

n
max
i=1
{1−

∣∣∣xi − aij ∣∣∣ },∀j ∈ J . Then, for each j ∈ J there exist

at least oneij ∈ I such that max(xij , aij j) = 1.

Proof. a) If max(xi , aij) = 1, then min(xi , aij) =1−
∣∣∣xi − aij ∣∣∣ . Therefore, if max(xi , aij) = 1,

∀i ∈ I , we have min(xi , aij) =1 −
∣∣∣xi − aij ∣∣∣ , ∀i ∈ I which implies part (a). (b) Consider a

fixed j0 ∈ J and suppose
n

max
i=1
{min(xi , aij0) } = n

max
i=1
{1−

∣∣∣xi − aij0 ∣∣∣ }.Let

min(xi1 , ai1j0) =
n

max
i=1
{min(xi , aij0) }and1−

∣∣∣xi2 − ai2j0 ∣∣∣= n
max
i=1
{1−

∣∣∣xi − aij0 ∣∣∣ }
Then, by assumption of part (b), we have:

min(xi1 , ai1j0) = 1−
∣∣∣xi2 − ai2j0 ∣∣∣ (∗)
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Now, by (5), we have:

min(xi1 , ai1j0) ≤ 1−
∣∣∣xi1 − ai1j0 ∣∣∣ ≤ n

max
i=1
{1−

∣∣∣xi − aij0 ∣∣∣ } = 1−
∣∣∣xi2 − ai2j0 ∣∣∣

Which together with (*) imply min(xi1 , ai1j0) =1−
∣∣∣xi1 − ai1j0 ∣∣∣. Since j0 ∈ J was arbitrary,

last equality completes the proof.

Lemma 3. Consider Problem (2) and Suppose i1, i2 ∈ I and j ∈ J .

a) If we have min(xi1 , ai1j) = min(xi2 , ai2j) = 0 or, if min(xi1 , ai1j) = 0 andmin(xi2 , ai2j) ,
0,then:

SD{min(xi1 , ai1j) , min(xi2 , ai2j)} ≤max{1−
∣∣∣xi1 − ai1j ∣∣∣ , 1−

∣∣∣xi2 − ai2j ∣∣∣ }
b) If min(xi1 , ai1j) , 0 and min(xi2 , ai2j) , 0, then:

max{1−
∣∣∣xi1 − ai1j ∣∣∣ , 1−

∣∣∣xi2 − ai2j ∣∣∣ } ≤ SD{min(xi1 , ai1j) , min(xi2 , ai2j)}

Proof. a) Suppose min(xi1 , ai1j) = min(xi2 , ai2j) = 0. In this case, we have
SD{min(xi1 , ai1j) , min(xi2 , ai2j)} = 0. Now, by noting that 0 ≤ 1 −

∣∣∣xi − aij ∣∣∣ ≤ 1, ∀i ∈
Iand∀j ∈ J , the result is attained. In another case, suppose min(xi1 , ai1j) = 0 and
min(xi2 , ai2j) , 0. Then, by the definition of drastic sum and Lemma 1, we have:

SD{min(xi1 , ai1j) , min(xi2 , ai2j)} = min(xi2 , ai2j) ≤ 1−
∣∣∣xi2 − ai2j ∣∣∣ ≤max{1−

∣∣∣xi1 − ai1j ∣∣∣ , 1−
∣∣∣xi2 − ai2j ∣∣∣ }

that implies statement. (b) Suppose min(xi1 , ai1j) , 0 and min(xi2 , ai2j) , 0. Then, by
the definition of drastic sum, we have SD{min(xi1 , ai1j) , min(xi2 , ai2j)} = 1. This fact
together with 0 ≤max{1−

∣∣∣xi1 − ai1j ∣∣∣ , 1−
∣∣∣xi2 − ai2j ∣∣∣ } ≤ 1 prove part b.

Lemmas 1 and 3 lead us to a theorem below by which we will able to introduce and use
a new t-conorm instead of maximum operator in (2), for compensating the difference
between solution attained from (2) and real solution resulted from (4).

Theorem 1. Consider Problem (2) and suppose for each j ∈ J there exist at least two
i1, i2 ∈ I such that min(xi1 , ai1j) , 0andmin(xi2 , ai2j) , 0. Then,

n
max
i=1
{min(xi , aij) } ≤

n
max
i=1
{1−∣∣∣xi − aij ∣∣∣ } ≤ n

SD
i=1
{min(xi , aij) }.

Proof. First inequality is the same which was proved in Lemma 1. Also, second in-
equality is obtained by repeating Lemma 3.
Now, let i1, i2 ∈ I such that min(xi1 , ai1j) , 0andmin(xi2 , ai2j) , 0. By Theorem 1,
i2max

i=i1
{min(xi , aij) } ≤

i2max
i=i1
{1−

∣∣∣xi − aij ∣∣∣ } ≤ i2
SD
i=i1
{min(xi , aij) }.

Then, for some λ ∈ [0,1], we have: λ
i2max

i=i1
{min(xi , aij) }+(1−λ)

i2
SD
i=i1
{min(xi , aij) }=

i2max
i=i1
{1−∣∣∣xi − aij ∣∣∣ }in which :
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λ =

i2max
i=i1
{1−

∣∣∣xi − aij ∣∣∣ } − i2max
i=i1
{min(xi , aij)}

i2
SD
i=i1
{min(xi , aij)} −

i2max
i=i1
{min(xi , aij)}

(∗)

Now, by statements above, we define Sa,b(a,b) : [0,1]2→ [0,1] such that
Sa,b(a,b) =λmax{min(a,b)}+ (1−λ)SD(a,b)in whichλ is found by (*). It is easy to verify
that Sa,b(a,b) is really a t-conorm. Also, by extension of Sa,b(a,b)for n arguments and
usage of it instead of maximum operator in Problem (2), we have:

n
SM
i=1
{min(xi , aij)} = λ

n
max
i=1
{min(xi , aij) }+ (1−λ)

n
SD
i=1
{min(xi , aij) }

in whichM = {min(xi , aij) , ∀i ∈ I }and λ is found by equality below:

λ =

n
max
i=1
{1−

∣∣∣xi − aij ∣∣∣ } − n
max
i=1
{min(xi , aij)}

n
SD
i=1
{min(xi , aij)} −

n
max
i=1
{min(xi , aij)}

(∗∗)

However, if assumption in Theorem 1 hold, statements above show that there exists

t-conorm Sa,b(a,b) such that
n
SM
i=1
{min(xi , aij)} =

n
max
i=1
{1−

∣∣∣xi − aij ∣∣∣ }, ∀j ∈ J . Now, we have

proved theorem below.

Theorem 2. Consider Problem (2) and suppose for each j ∈ J there exist at least two
i1, i2 ∈ I such that min(xi1 , ai1j) , 0andmin(xi2 , ai2j) , 0. Define Sa,b(a,b) : [0,1]2→ [0,1]
such that
Sa,b(a,b) =λmax{min(a,b)}+ (1−λ)SD(a,b) and

λ =

i2max
i=i1
{1−

∣∣∣xi − aij ∣∣∣ } − i2max
i=i1
{min(xi , aij)}

i2
SD
i=i1
{min(xi , aij)} −

i2max
i=i1
{min(xi , aij)}

Then, Sa,b(a,b) is a t-conorm and
n
SM
i=1
{min(xi , aij)} =

n
max
i=1
{1−

∣∣∣xi − aij ∣∣∣ }, ∀j ∈ J , in which

M = {min(xi , aij) , ∀i ∈ I }and λ is found by

λ =

n
max
i=1
{1−

∣∣∣xi − aij ∣∣∣ } − n
max
i=1
{min(xi , aij)}

n
SD
i=1
{min(xi , aij)} −

n
max
i=1
{min(xi , aij)}

.
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Theorem 3. Consider Problem (2) and Suppose for each j ∈ J there exists at most one
ij ∈ I such that min(xij , aij j) , 0. Then, for each t-conorm S and each t-norm T, we have
n
S
i=1
{t(xi , aij)} ≤

n
max
i=1
{1−

∣∣∣xi − aij ∣∣∣ }, ∀j ∈ J .
Proof. Since for each a,b ∈ [0,1] , we have T (a,b) ≤ min(a,b) and S(a,b) ≤ SD(a,b)for

each t-norm T and each t-conorm S, it is sufficient to prove
n
SD
i=1
{min(xi , aij)} <

n
max
i=1
{1 −∣∣∣xi − aij ∣∣∣ }. At first, suppose that for a fixed j ∈ J , we have min(xi , aij)} = 0, ∀i ∈ I . Then,

n
SD
i=1
{min(xi , aij)} = 0 which implies inequality. In another case, suppose for a fixed j ∈ J

there exists exactly one ij ∈ I such that min(xij , aij j) , 0. In this case,
n
SD
i=1
{min(xi , aij)} =

min(xij , aij j). Now, by (5) we have:

n
SD
i=1
{min(xi , aij)} = min(xij , aij j) ≤ 1−

∣∣∣∣xij − aij j ∣∣∣∣ ≤ n
max
i=1
{1−

∣∣∣xi − aij ∣∣∣ }
that requires the inequality.

Corollary 2. Consider Problem (2) and consider a fixed j ∈ J . If two following condi-

tions hold, then
n
S
i=1
{T (xi , aij)} <

n
max
i=1
{1−

∣∣∣xi − aij ∣∣∣ }.
(a) For each j ∈ J there exists i ∈ I such that max(xi , aij) < 1.
(b) min(xi , aij) = 0, ∀i ∈ I .

Proof. Since
n
S
i=1
{T (xi , aij)} ≤

n
SD
i=1

(min(xi , aij)}for each t-norm T and each t-conorm S, it is

sufficient to prove
n
SD
i=1
{min(xi , aij)} <

n
max
i=1
{1−

∣∣∣xi − aij ∣∣∣ }. By assumption (b),
n
SD
i=1
{min(xi , aij)} =

0. Also, from Theorem 3, we have
n
S
i=1
{t(xi , aij)} ≤

n
max
i=1
{1−

∣∣∣xi − aij ∣∣∣ }. Then, to prove the

corollary, it is sufficient to show
n
S
i=1
{t(xi , aij)} ,

n
max
i=1
{1−

∣∣∣xi − aij ∣∣∣ }. By contrary, suppose

n
max
i=1
{1 −

∣∣∣xi − aij ∣∣∣ }= n
S
i=1
{t(xi , aij)} = 0. Therefore, 1 −

∣∣∣xi − aij ∣∣∣ = 0, ∀i ∈ I , which implies

min(xi , aij) =1 −
∣∣∣xi − aij ∣∣∣, ∀i ∈ I . Thus, max(xi , aij) = 1, ∀i ∈ I , which contradicts as-

sumption (a). Then, the proof is complete.

Briefly, the amount of the accuracy of vector bresulted from the direct solution of FRI
problem xoA = b modeling an applied topic can be categorized as follows:

• If max{xi , aij} = 1, ∀i ∈ Iand ∀j ∈ J , Problem (2) defined by minimum t-norm
yields exact solution(see Lemma 2 part (b)). In this case, Problem (2) is formu-
lated as xoaj =

n
max
i=1
{min(xi , aij) } = bi ,∀j ∈ J .
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• If for each j ∈ J there exist at least two i1, i2 ∈ I such that

min(xi1 , ai1j) , 0andmin(xi2 , ai2j) , 0, then Problem (2) defined by minimum t-
norm and Sa,b t-conorm given in Theorem 2, yields exact solution(See Theorems

1 and 2). Here, Problem (2) is formulated as: xoaj =
n
SM
i=1
{min(xi , aij) } = bi ,∀j ∈ J .

• However, there are conditions in which we cannot obtain reasonable solutions;

– If necessary condition stated in Lemma 2 part (b) does not hold, then Prob-
lem (2) defined by minimum t-norm fails to provide a rational solution for
vector b.

– If conditions expressed in Corollary 1 hold, we have:

n
max
i=1
{T (xi , aij)} <

n
max
i=1
{1−

∣∣∣xi − aij ∣∣∣ },∀j ∈ J
which implies that Problem (2) defined by any t-norm does not yield a jus-
tifiable solution b.

– If conditions in Corollary 2 hold, we have:

n
S
i=1
{T (xi , aij)} <

n
max
i=1
{1−

∣∣∣xi − aij ∣∣∣ },∀j ∈ J
which requires Problem (2) defined by each t-norm and each t-conorm will attain a
solution farther than one we expect. Also, in this case, the best solution of modified
Problem (2) is attained by problem below:

n
SD
i=1
{min(xi , aij)} = bi ,∀j ∈ J

Then, the accuracy of each modification of Problem (2) is bounded above.
Therefore, Problem (2) may not guarantee that vector b is the same as we expect. More-
over, in a worse case, it may exists an example for which the results of Problem (2) in
direct solution is not even a good approximation for expected rational consequences.
Conclusion

In this paper, we investigated direct solution of FRE and compared their results with
expected real consequences. It was shown that FRE defined by maximum t-conorm
and an arbitrary t-norm yields different interpretations. A necessary condition and a
sufficient condition were presented that guarantee FRE defined by maximum t-conorm
and minimum t-norm attain the same solutions as human mind does. Also, we pre-
sented a t-conorm and use it instead of maximum t-conorm in FRE to obtain solutions
with highest similarity with real ones. Moreover, we showed that under some condi-
tions, FRE defined by any t-conorm and any t-norm may find a solution which is not
reasonable.
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