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ABSTRACT
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Dealing with constraints is always very common in real-
world implementation issues. Search algorithms for real
problems are also no exception. Because of the con-
straints in search problems (named Constraint Satisfac-
tion Problems (CSPs)), their main solving algorithm is
presented in backtracking form. The constraint prop-
agation algorithm is an auxiliary tool to avoid facing
constraint conditions as well as reducing search options.
This algorithm has been presented in almost seven ver-
sions so far. In this paper, we have updated the third
version of this algorithm, which is presented under the
title of AC-3, from five aspects and have increased its
capabilities. The most important feature of our pro-
posed algorithm is its low time complexity. This feature
has been made possible by two auxiliary criteria intro-
duction for detecting more critical binary constraints.
Faster investigation of critical constraints leads to early
detection of dead-end in the search path and the search
continues in this direction stops.
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1 Introduction

Solving artificial intelligence problems in most cases involves informed or uninformed
searching in a state space and testing the searched states. In these types of problems,
information from the problem parameters is an auxiliary tool to guide the states search.
One of the most common ways to add auxiliary information to the search process is to
use heuristic functions. This is called informed search. Another type of informed search
problems are ones in which additional information are expressed as constraints on state
variables. We are going to discuss the background of the issue and express the existing
challenges. A simple backtracking algorithm is one of the first algorithms presented to
solve Constraint Satisfaction Problems (CSPs). This algorithm is based on the depth-first
search technique [6-19]. In this method, variables are not initially assigned altogether and
gradually, one variable is assigned in each step. By assigning each variable, the constraint
test is performed and if the desired variable violates one of the constraints, the backward
moving is done.

By default, this algorithm is uninformed, and assuming that the space has a finite variable
set with discrete allowed domains, it operates randomly in two steps: 1) selecting the
variable to be assigned and 2) selecting a value for the variable. In order to avoid the
time complexity caused by random selections, several heuristic functions such as Minimum
Remaining Values (MRV), Degree heuristic function and least-constraining-value heuristic
function were presented [16-12]. However, despite the proposed heuristic functions in the
backtracking algorithm, because the final check was made after the assignments, the
possibility of reaching a dead-end in one direction and performing a reversal was not far
from expectation [19]. Repeated reversals increased the time complexity and hence the
forward checking method was presented [2-5]. In this method, with each new assignment,
the violation of the constraints of the variables related to this assignment (variable) is
investigated and the unauthorized items are removed from the domain of these variables
so that the search algorithm is never involved in them. This feature makes the forward
checking method more efficient than the simple backtracking method, but it still has its
drawbacks.

The main problem is that any assignment may inevitably violate the constraint after a
few more assignments for other variables, and the continuation of this path is doomed to
failure. To solve this problem, a method was presented named constraints propagation
[9]. The first version of these algorithms, known as the Arc Consistency (AC) algorithm
was introduced to apply to binary CSPs. In this method, a constraint graph is drawn
in which each variable is identified by a node and each constraint by an arc that must
be consistent. In this definition, the arc that connects X; to X, is consistent if there
is a member (value) xo € Dy for each x; € D; that does not violate the constraints.
In this algorithm, for the next assignment all the arcs in the constraint graph must be
consistent. If an arc is not consistent, it can force to be consistent by removing values
from the source variable domain [9]. Since the introduction of the AC algorithm in 1977,
various versions until AC-7 have been introduced [7]. Among these versions, the AC-3,
also listed in the reference book of [15], was more popular for its simplicity, flexibility,
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and scalability. For these reasons, several studies have been conducted to modify AC-
3, including [3] where by the introduction of two new algorithms which are performed
better than the AC-6 in worst-case conditions, the AC-3 is fundamentally changed. A
similar procedure has been followed in [24], except that the general form of AC-3 has been
preserved. In the meantime, CSP issues with non-binary constraints were also considered,
so that in [4] three new modifications in AC-3 with the approaches of arc propagation,
variable propagation and constraint propagation were discussed. In both variable and
constraint propagations, the authors have stated that the main goal is to be able to set
up non-binary constraints. After this article, two approaches named variable-oriented and
constraint-oriented propagation, became formalized [14]. Non-binary CSPs consistency
algorithms are generally known as Generalized Arc Consistent (GAC) algorithms [17-10].
It is noteworthy that since the introduction of non-binary CSPs, researchers have tried to
turn them into binary ones. Two well-known references in this field called binary encoding
are [13] and [11]. These conversion efforts were due to the fact that practical researches
were done and were being done on binary CSP issues [22-18]. Shortcomings elimination
in this field has occupied the minds of researchers tile today [20-8-21]. Researches are
ongoing to update the (G)AC algorithm [23] and they are also being used to solve new
problems [1].

Despite the numerous methods proposed to improve the performance of the AC-3 algo-
rithm, or in other words, the constraint propagation algorithm, the issue at stake here is
a compromise between the performed calculations and the struck shortcuts. This com-
promise point can be shifted many times and potentially valuable results can be achieved.
In this paper, a new method is considered to improve the performance of AC-3 algorithm
so that the algorithm complies with the backtracking algorithm and operates faster than
all AC-i versions.

We have used the “Arc Consistency Factor” and source node “Crisis Factor” ideas, in
order to identify and address inconsistent arcs faster. The existence of these two factors
speeds up the CSP solving process with the help of the arc propagation method and makes
it more effective.

2 Principles

Definition: In the classical definition, a constraint satisfaction problem is represented
by a multiple in the form C'SP = (X, D, C), and is the assignment of values to a set of n
variables X = (X3, Xy, ..., X,,) from domains D = (Dy, D, ..., D,,) such that for each vari-
able X; € D, and must have satisfy constraints C' = (Cy, Cs, ..., C,,,) where each expresses
a constraint on one or more variables. An assignment in which no constraint is violated
is a consistent assignment and if all variables are set, this is a complete assignment.

Before the main discussion, let us take a look at the flowchart of the backtracking algo-
rithm in the CSPs solving in Figure 1. In this flowchart, we will go back to the block
specified by II for two reasons, first, when the kth variable assignment is not compatible
with its constraints, and second, if for the assignment of the kth variable, the other vari-
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ables cannot have a candidate that satisfies all the constraints. Also, in this flowchart,
the position of the constraint propagation algorithm, which has been specified with a gray
box, is better understood. The two blocks identified by I and II are the steps mentioned
earlier, for which a heuristic function is provided in references [16] and [12].
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Figure 1: Backtracking algorithm flowchart in solving CSPs

In the next section, the prioritization criteria of the constraint graph arcs are introduced
and the details of implementation and time complexity of the proposed constraint prop-

agation algorithm are investigated.
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3 New Proposed Algorithm

Relative criterion (first criterion): the Consistency Factor of each arc is defined as

follows: S _ o
Distination node domain cardinality

S actor — : - - 1
Fract Source node domain cardinality (1)

It is clear that the larger consistency factor means there is more relative choice at the arc
destination and the arc is more consistent. The arc with the lowest consistency factor
will be the critical arc and its source will be the critical node. The critical arc is in
priority in the consistency investigation. If this arc is inconsistent, it can be consistent
by removing some members of its source node domain. In this case, it should be noted
that the consistency factor of the constraint arc connected to that node changes. The
time complexity of the Arc Consistency algorithm primarily depends on the number of
arcs are investigated after each value assigned to each variable.

If the number of variables of CSP is n (Xj, Xs, ..., X},), the AC algorithm will run n-1
times. Let’s consider the initial state in which any assignment has not yet been made.
If the number of discrete values in the domain of each variable is assumed to be d, each
(X, X;) arc will be checked for the number of values in its source node (X;), which is d
and by removing each member of D; all (X}, X;) arcs that are connected to X;, enter to
the cycle for reconsideration. In general, it can be said that each (Xj, X;) arc at most
enters the algorithm d times and will be checked d times each time, so each arc is checked
d? times, which means that with the maximum number of arcs (n* — n), the AC algorithm
complexity order will be O (d?n?).

By applying the consistency factor for each arc, the sooner checking chances of the in-
consistent arc increases. In this situation, the d entry for one arc is canceled if the arcs
in the algorithm queue are prevented from reentering. In this case, the complexity of the
AC algorithm is reduced to O (dn?).

The second criterion will be used as a complement to the first criterion. This criterion
uses the information of two heuristic functions of MRV and degrees [16-12] at the same
time and can be used instead of one of them in the step specified by the symbol I in
Figure ??. In this criterion, a combination of the two approaches introduced in [14] has
been used.

Absolute Criterion (Second Criterion): For each of the nodes (variables) of the
constraint graph, the following crisis factor is defined:

Nodecpous, — Number of constraints af fecting the node @)

Node's domain cardinality

The magnitude of this factor for each node indicates its criticality in the search tree
and its high potential for failure or to reach to dead-end. Logically, this variable or its
corresponding node could be the source of the arc with a low consistency factor.

By the introducing of these two criteria as well as some other considerations, which
probably some of them are also mentioned in different versions of the AC algorithm, the
proposed flowchart for the AC algorithm is described in Figure 2. This flowchart with one
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input and two outputs will be placed in the location of the gray block shown in Figure 1
to complete the entire backtracking algorithm. The two introduced criteria in (1) and (2)
are used in the flowchart of Figure 2 in Block I. Some other considerations have been taken
into account in the initial block and stage specified by II to avoid additional calculations.
In Figure 2, in order to make arcs consistent, by removing each member from D;;, all
the arcs that are destined to Xj; are reentered in the queue in block II, and the sorting
operation is also performed in the queue again.
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Figure 2: Proposed Arc Consistency algorithm flowchart
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3.1 Constraint graph arc consistency proposed algorithm

The proposed algorithm for implementing the flowchart shown in Figure 2 is given below
under the title of AC_New function. This algorithm can be executed many times in the
structure of Figure 1.

function AC_New (CSP) returns C'SP possibly with reduced domains or
failure
inputs : CSP, A binary CSP with assigned variables
{X X1, XXy, ..., XXi} C{X1, Xy, .., X} }
local variables : queue, a queue of the Arcs, initially all the Arcs in
CSP except (X Xi, Xj)ip .1 & (X, XX
queue = SORT (queue, C'SP)
while queue is not empty do
(Xjj, Xjj;) < Remove_First (queue)
if Remove_ Inconsistent_ Values (X;;, X;;;) then
if Dj; is empty then return failure
for each Xl im NEGHBORS [ij] - {ijja XXk, XXk_l, 7XX1}
do
if (Xi, Xj;) ¢ queue then
add (X, X;;) to queue
queue = SORT (queue, CSP)
return C'SP

function SORT (queue, C'SP) returns queue
for i = 1 to length (queue) do
Insert _end (squeue) < Spactor (queue (7))
if 2 > 1 then
for j =1ito1do
if squeue (j) < squeue (j — 1) then
x < queue (j)
queue(j) « queue (j — 1)
queue (j — 1) < x
else if squeue (j) = squeue (7 — 1) then
if Nodecractor (SORCE (queue (5))) >
Nodecractor (SORCE (queue (j — 1))) then
x < queue (j)
queue(j) « queue (j — 1)
queue (j — 1) < x
return queue

function REMOVE _INCONSISTENT_VALUES (X;, X;) returns true

or false
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removed < false
for each z in D;; do
if no value y in D,j; allows (x,y) to satisfy the constraint between
Xj; and X;j; then
delete x from Dj;
removed < true
return removed

The main body of this algorithm is the same as AC-3, which has been presented in
[15]. AC-New by introducing a new SORT function, receives a CSP and checks its arc
consistency. This function first must be able to receive a CSP problem at any stage
(meaning assigned to any number of variables) which was not possible in AC-3. In AC-
New if an arc is not consistent, its source node domain is corrected and inconsistent
members are removed. At this stage, if all the arcs are consistent, the problem is returned,
but if the domain of any unassigned variable becomes empty, it means that the assignment
has not been correct up to this stage and a backward step must be made. This situation
is notified to the main algorithm when the failure value is returned. The SORT function
first tries to sort the arcs of the constraint graph based on Sgueor, and if this criterion is
equal for two arcs, it uses the Nodecpactor criterion that compares the criticality of the
source nodes of the arcs with each other.

In this paper, in the new proposed algorithm for arc consistency or constraint propagation
we have improved the third version of this algorithm in several stages. The first is to
prevent duplicate arcs from reentering to check queue, but since this is not very innovative
in the example implementation section, it is assumed that AC-3 itself has this capability.
The second case is to adjust the algorithm to coordinate with the backtracking algorithm
so that it can be executed after assigning values to some variables. The third case is to
remove the assigned arcs from the check queue because these arcs are once checked in the
backtracking algorithm. The fourth case is the removal of the checked arcs in the previous
cycle, in the other words, the arcs related to the variables assigned in the previous step
are not re-investigated in the current cycle. The fifth case, which is the main innovation,
is to sort the arcs according to two criteria and increase the chance of early inspection of
the arc that is inconsistent. This not only prevents the arcs from re-entering the queue,
but also reduces the number of times an arc is checked.

It should be noted that in the AC-New algorithm, a sorting operation has been added that
will increase the computational complexity. Regarding the fact that a sort operation with
the n? members has a computational complexity of the order O (n?logn?) = O (n*logn),
as long as d? > log n, the new algorithm can be more efficient.

In the next section backtracking algorithm with the constraints propagation option is
implemented on the famous example of Australia’s states coloring and the improvement
rate when using AC-New compared to AC-3 is shown in the form of a table.
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4 Example implementation

Let’s consider the Australia’s states coloring with red, blue, and green CSP. The constraint
is that no two neighboring states can have the same color.

Figure 3: Map of Australia with its states

In this example, in order to be able to measure the performance of the constraint prop-
agation or arc consistency algorithm, first we will not use any heuristic function in the
overhead backtracking algorithm shown in Figure 1 at the steps specified by I and II.
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Therefore, the selection of variables for coloring and also the assignment of colors to the
variables will be based on the letters sort of the English alphabet.

We first assume that the backtracking algorithm with AC-3 is used to solve this problem.
The staining steps and the active arcs of the constraint graph in each step are shown in
Figure 4.

NSW NT ¢ S4

14 WA T
B R (R (EECEE.

NN A AT

NSwW NT SA4

0o 1% WA T
(R XE 0UH EECE

N SA AT

NSW  NT 0 s4 v WA T

T I [ | [ mCE

~~ AT S

NSW NT 0 SA Vv WA T

T 1 1 [ 0 mfm|

~_ N

Figure 4: Steps were taken in coloring the states of Australia by backtracking algorithm
and AC-3

The six steps of arc inspection are shown in Figure 4, and in the last two steps, WA and
T are colored and the arcs are no longer checked.
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Now let’s assume to solve the same problem with the general backtracking algorithm and
the AC-New auxiliary algorithm proposed in this paper. In the first cycle, the performance
of this algorithm is similar to the previous one and 18 arcs each are checked three times.
In the second cycle, there are 15 arcs and in this arcs investigation, priority is given to
(SA, NSW) then (Q, NSW) and then (V, NSW) and in the first three checks, blue color is
removed from three variables domain and no checked arc will re-enter the queue. Through
these 15 arcs, eight arcs three times and seven arcs two times are checked. Details of the
third cycle are given in the first part of Figure 5. At this cycle, (WA, NT) is the first
arc that should be checked where the blue color is removed from it, and this is the only
arc that is checked three times. Therefore, at this cycle, nine arcs are checked, of which
one arc is checked three times and eight arcs are checked two times. In the fourth cycle,
the details of which are given in the second part of Figure 4, first the arcs (SA, Q), (V,
SA) and (W, SA) are checked, respectively and one color is removed from each of their
domains.

NSW NT 0 S4 4

I:II:I.:EI.:EI

AN

NSW NT 0 SA Vv

T XE Ol %A

Figure 5: cycles taken in coloring the states of Australia by backtracking algorithm and
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AC-New

At this cycle, five arcs are checked, of which 3 arcs are checked twice and two arcs are
checked once. In the fifth cycle, red is assigned for SA, and only two arcs with the
source of V and WA are checked once, and in the other cycles, no arc remains to be
checked. The results of solving this example using the two algorithms AC-3 and AC-New
are summarized in Table 1.

Table 1: backtracking algorithm testing by using the Ac-3 and AC-New on the coloring
example of the Australian states

AC-3 algorithm AC-New algorithm
Arcs num | Checks num | Arcs num | Checks num

First cycle 18 54 18 54

Second cycle | 19 53 15 38

Third cycle | 13 27 9 19

Fourth cycle | 11 18 5t 8

Fifth cycle 4 4 2 2

Sixth cycle | 2 2 0 0

Total 67 158 49 121

It can be seen that a tangible relative improvement has been created.

5 Conclusion

According to the result obtained in Table 1 and all the cases mentioned at the end of the
two previous sections, the number of arcs and the number of times the arcs are checked has
been reduced in general and the constraint propagation algorithm’s time complexity has
been improved. Briefly, through the five modifications which have been done over AC-3
algorithm, each of the first four modifications is seen in some way in the AC-i versions,
which are integrated in this paper and we have completed the discussion with the fifth
modification. Theoretically, according to the discussion has been done in section 4, since
in the example 9 > log 6, the result obtained in the table is also justifiable.
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