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ABSTRACT ARTICLE INFO

We can apply any method for organizing a supply chain,
but contracting is more viable. Among many contracts
that does so, the Insurance contract is more efficient.
The problem is tuning the contract’s parameters (for a
two-level two-period supply chain with one supplier and
one retailer) to achieve the optimum point where there
is more gain for everyone separately, and the predictable
risks all have been covered. The insurance contract cov-
ers every predictable risk that the downstream is facing.
Instead, the retailer gives the supplier some money as a
side payment (Premium). So, it has two main parame-
ters, first, the fraction (β) of every predictable loss by
the retailer, which the supplier must pay, and second,
the side payment (M), which the retailer must pay. We
will find the best one-supplier one-retailors β for a
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1 Abstract continued

supply chain with two main sale periods. But for reaching the optimum state of all the
insurance contract’s possible forms, we designed some mathematical models based on
scenarios. Then we optimize these stochastic models to find the best contract possible for
1000 initial scenarios. Every scenario indicates one possible number for price and one for
demand in each period (generating 4000 possible numbers for the independent demand
and price). We needed to know the maximum possible profit for the whole supply chain.
First, we designed a centralized supply chain where the maximum profit is possible, then
a decentralized supply chain to know the minimum of what’s possible. When we have the
ends of our range, we can design the final model with an insurance contract applied. In
this model, we insert the β and M into the model as the insurance contract does. First,
we reduce the number of scenarios to 20 with a novel method. Then we find the optimum
point by solving the final model for each β. The result was better at β=0.25. In the next
step, by supposing an equal negotiating power for sides, we split the extra money into
two equivalent sizes, and the M amount was measured as half of the extra money that
the contract can reach. The extra money was at 0.9893 of our range means the contract
earns 99.97% of what is possible.

2 Introduction

A supply chain is a system with agents working on it; it’s evident that when there is
harmony in decision making, the system works better, and there is more profit for the
whole system. A centralized supply chain is a chain in which one central agent decides
about every issue, and there is maximum profit possible for the entire supply chain. We
call the maximum profit the endpoint of the potential profit range. A decentralized supply
chain is a chain in which every agent decides separately and independently from other
agents’ choices.
In this case, the minimum profit is possible for the whole system, and we call the profit
amount the start point of the likely range. So, we have a range for the possible profit the
whole supply chain can make.
This is showing a range for all possibilities of profit that the whole system is going to
achieve at the end of two periods, as it is obvious when there is no coworking and they
(the agent) are paying no attention to each other at all, the decentralize case happens.
The profit is minimum in the opposite side when the harmony is in the highest amount
and all decisions are all made by one central agent the profit is maximum but it’s not
practical. What’s real is the contracted one, when we use the insurance contract as an
organizing instrument, we can achieve nearly the centralize case’s profit just like the figure.
Agreements and other coordination methods for a supply chain are workable in this range,
and the goal is to reach what’s possible in real because the centralized case is not entirely
practical. The insurance contract is one of the coordination’s methods that reach nearly
the maximum potential profit, but the problem is how can we get a better point in this
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range. Like any other contract, an insurance contract has its condition. And it has three
main content.
[?][?][?][?][?][?][?] [?][?][?][?][?][?][?] [?][?][?][?][?][?] [?][?][?][?][?][?][?][?]

Figure 1: Range of the whole supply chain’s possible profit

2.1 An insurance contract, in theory

In this contract, the upstream (here is one supplier) ensures the downstream (here is one
retailer) pays a fraction of the retailer’s predictable loss; instead, the retailer gives some
side payment to the supplier and warranty that the supplier gains profit as much as before
signing the contract did. In this manner, no one loos, and all the predictable risks are
covered. Predictable risk means the risks caused by mismatching the order quantity from
market demand, such as shortage risk, keeping risk, and salvage risk, not the loss caused
by earthquake, fire, tornado, or any other disaster.

Table 1: definitions and notation
Decentralized SC A supply chain with separated levels in which every agent decides

independently
Centralized SC It is a supply chain that one central agent runs. It has the most

profit, and one central agent makes every decision
Contracted SC A supply chain in which the levels are dependent, making decisions

in a contracted manner.
α Insurance contract’s parameter. Retailer’s share of losses caused

by mismatching its forecasted demand (order quantity) from the
actual demand

β Insurance contract’s parameter. Supplier’s share of losses caused
by mismatching retailer’s forecasted demand (order quantity) from
the market demand

M or Premium Insurance contract’s parameter. The side payment that retailer
gives to supplier for sharing risks
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A supply chain can move from a decentralized model to a centralized one by contract.
The contract must increase everyone’s profit, but in the centralized case, despite a more
significant whole gain, there is no warranty for not decreasing the firm’s profit. So, when
an insurance contract has been signed, the sides know that there is no reduction in their
profit.
We consider a supply chain with one supplier and one retailer, where the retailer faces
the stochastic independent demand and price.

2.2 Paper Structure

In this section, we told what’s necessary to understand the upcoming sections. In the next
section, we review the literature on contracts that coordinate the supply chain and the
literature about what’s done in the supply chain management by stochastic programming.
Then we define the problem with all aspects and have a schematic model of a two-period
supply chain in the problem definition section. Then the mathematical models based on
scenarios are developed, three stochastic models of decentralized, centralized, and insured
supply chains. In the next step, we generate 1000 scenarios for price and demand in each
period (4000 random numbers in whole). We reduce the number of scenarios to 20 by a
novel and fast method without any change in the properties of the initial scenarios. After
lowering the number of the scenario to 20, we optimize the objective function of our three
models for these 20 scenarios (solving the models). We find the best β for the insurance
contract by solving the final model for each β. in the next step; we split the extra money
earned by the contract into the agreement’s sides. At last, we discuss the limitation of
the insurance contract. We have managerial insights and a conclusion in the end.

3 Literature review

This literature review brings together all of the past works done in this field and is nec-
essary to know. The fundamental matter of inventory management is to assure product
availability for the final consumer at the lowest possible cost while subjected to various
specific conditions. In that sense, inventory management plays a prominent role in an-
swering crucial questions such as when to order, how much to request, and how much
to keep as safety stock [18]. The literature delivers different inventory control plans re-
lated to mathematical models to minimize the total inventory management cost. Such
models can be separated into two main groups: deterministic models, which study that
all parameters are formerly known, and probabilistic models, in which one or more pa-
rameters are considered uncertain. The reflection of uncertain parameters cracks these
models more supporters to a real-world problem at the cost of becoming more interesting
in terms of real fitness due to regular severe computational necessities. The literature
delivers many inventory control strategies seeing demand ambiguity, such as the classi-
cal systems (R,Q),(R,S),(R,s,S),(s,S)and(s,Q). In these systems R,Q,s and S denote the
evaluation period, the fixed order quantity, ordering point, and the target inventory level,
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one-to-one.

3.1 Coordinating Supply Chain with Contract & Negotiating
on excess Profit

A supply chain contains different members with usually disagreeing objectives. If a supply
chain member does not act according to the overall supply chain’s optimum solution,
coordination problems arise. If one can find a contract so that each member works wisely
according to the supply chain’s ideal solution, this contract is said to coordinate the
supply chain [25]
[22] established an outline for choosing reliable suppliers and order distribution, which
increases the supply chain’s income concerning the risk reduction tactics and organization
between the buyer and the supplier. Since the centralized decision-making assembly is
not practical in real problems, additional agreements are applied to advance decentralized
assembly decisions to raise SCs’ total profitability [2].
A game-theoretical method is used in most of them, and different games are well-thought-
out, such as Stackelberg, Nash bargaining, and/or Rubinstein bargaining games.
In most manufacturing and service administrations, supply chain planning (SCP) can
be considered the front line of business roles, from discovering raw materials to satisfy-
ing customer demands. SCP can be classified into strategic, tactical, and operational
decisions conferring on the time limit taken into justification. Today’s multifaceted busi-
ness situation is considered by enormous ambiguity, everyday disruption, and substantial
inconsistency, so keeping a practical and workable supply chain becomes the primary con-
test for many businesses. A supply chain working in such an aggressive setting has to
survive with scheduling parameters such as cost, demand, and supply that have essential
ambiguity. Additionally, major natural or man-made disruptions can aggravate a supply
chain, such as earthquakes, floods, terrorist attacks, and economic crises. So, SCP is often
made in the existence of ambiguity, for which stochastic programming is a practical tool
to assist in the attainment of SCP choices.

3.2 Scenario-based Stochastic programming for Inventory con-
trol in an SC

Conferring to [4], one alternative for relaxing the proposition of having a summarized
model when facing stochastic demands is to use two-stage stochastic programming as a
modeling outline.
The two-stage assembly is well-matched with the earlier stated inventory plans when
used to model the control parameters (i.e.,R,S,s, and Q) as the first-stage variables in
each scheme, on behalf of the decisions that should be made before the uncertainties
are exposed. One of the significant rewards of the two-stage stochastic programming
pattern is that the stochastic parameters can be displayed without adopting any limiting
hypothesis for the stochastic phenomenon if an isolated set of scenarios can approximate
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it. Yet, an inherent trade-off between the excellence of this estimate and computational
necessities must be detected correctly.
Improved estimates naturally need a massive number of scenarios and numerous repeti-
tions to be solved. Then, it becomes apparent the need for computational approaches that
can solve resultant large-scale deterministic corresponding problems professionally. The
appropriateness of two-stage stochastic programming as an outline for lecturing inventory
management complications has been proved in the papers done by [8],[4] , and [6].
Up to now, the only papers originating in the literature and using stochastic programming
functional to inventory management were those performed by [8],[4] , and [6]. Built on
the constant system (s,S) [8] demonstrated a two-layer net wit hone manufacturer, one
retailer, one item, ambiguity in the demand parameter, and pure lost sales analyzed
the model in its centralized and decentralized forms. [4]projected a refill regulator and
inventory model via two-stage stochastic programming, as periodic review (R,S) one item,
and uncertain demand. In their model, there is no parameter representative of the initial
inventory. Otherwise, they assume the limiting idea that the first order must be positioned
at the start of the planning period, which needs the planning period to be insincerely
amplified and the cost parameters to be measured at zero in the first few planning prospect
periods so that (a not manageable) initial inventory can be gathered. Also, the model
planned by [4] studies the pure lost sales occasion or the pure back-order situation with
some modifications of the restraints. With the version of the model planned by [4], [6]
projected a red blood cells inventory managing model that decreases the operative cost
and perishability of blood multi-periods, multi-products, and ambiguous demand.
In the context of inventory control structures most of the literature stresses on strate-
gic choices of single-echelon logistics nets. Papers such as [12] , [23] and [20] discourse
on multi-echelon complications over stochastic programming. Those papers do not re-
port inventory plans despite seeing inventory management and SC application together.
Yet,[5],[26] report multi-echelon SC plans and inventory rules deprived of using the stochas-
tic programming method. Lately,[8] projected an inventory plan for a two-echelon logistics
net based on the (s, S) constant review system, seeing a single item with ambiguous de-
mand using stochastic programming.
Stochastic programming, counting two-stage stochastic programming (2SSP), has been
used to model inventory supply schemes. [8] proposed 2SSP models for a multi-period
renewal problem, using a safety-stock-based plan to examine one retailer and one man-
ufacturer supply chain.[4] established a 2SSP model for a refill control system using pe-
riodic review for a single layer logistic net, then applied Sample Average Approximation
to get approximated ideal results.[21] considered a single-item single echelon invention
scheduling problem as stochastic programming typical with an accidental restraint and
non-stationary demand for a perishable product with a static lifetime. [1] planned an
estimated dynamic programming model to see the stochastic supply and demand for the
platelet inventory problem.
The most general in this arena is the two-stage stochastic programming based on scenario
preparation in the modeling methods to deal with ambiguity within mathematical pro-
gramming. Yet, it is naturally vital to instrument solution strategies that overwhelm the
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computational difficulty for problems with many scenarios. Numerous solution strategies
are projected in the literature. [26]You (2013) primarily considered the consequence of
supply and demand uncertainties using a Multi-cut L-shaped decomposition method. You
compared it with the L-shaped approach to catch the influence of biomass supply and
technology ambiguity. [16] merged Lagrangian relaxation and L-shaped solution meth-
ods. The paper projected by [?] mutually studies three substantial causes of uncertainties:
switchgrass return due to random weather conditions, demand for bioethanol, and bioen-
ergy sale price. The work suggests a solution technique concerning the serial application
of a revised Sample Average Approximation approach and Benders decomposition to solve
the anticipated stochastic optimization model capably and effectually.
However, to the best of our knowledge, no issued work tries scenario reduction approaches,
like those projected by [13]. These scenario reduction approaches are obliging when many
scenarios are imminent, falling it to a reduced set of scenarios that denote a decent
estimate of the first set of scenarios. These approaches have the power to get control of
the computational difficulty allied with the design of any supply chain when using scenario-
based two-stage stochastic programming models with numerous causes of ambiguity.
[7]offered a multi-period stochastic mixed 0–1 problem rising in tactical supply chain
planning (TSCP). An identical deductive model was projected to signify the parameters’
ambiguity in a multi-stage scenario tree. They recommended the novel risk-averse tactic’s
added value using stochastic dynamic programming for TSCP. Likewise,[17] established
a two-stage stochastic programming model for the complete strategic arrangement of
supply chains under demand and supply ambiguity with the petition of the wind turbine
business. Academic and arithmetical findings more confirmed this anticipated model.
Usually, reservations ascend with the reflection of sourcing in the supply chain. Among
other processes, sourcing includes high unpredictability due to supply disruption. Hence,
[15] explored supply disruption with stochastic programming to maximize the anticipated
effectiveness under loss aversion and portray the sole optimal order quantities.
Supply chain network (SCN) reform gains significant attention in the supply chain frame-
work due to its sympathy for physical formation. It is essential to deal with the SCN
reform under supply chain planning. [10] established a multi-stage stochastic program
(MSSP) with SCN reform. This paper lectured two main subjects: i) that building a
suitable scenario tree to model current ambiguity in stochastic parameters is a thought-
provoking task, and ii) even with an appropriate scenario tree, an MSSP can bring about
a large-scale optimization problem so that commercial solvers may not be professionally
employed to solve it. Still, this study contributes to the literature through many critical
novelties.

3.3 Research-GAP

Most of the studies done by other researchers, which have the insurance contract as an
organizing instrument, are for supply chains with one sale period. However, our study
uses an insurance contract for coordinating a supply chain with two consecutive periods
of sale. From another perspective, this paper probabilistically models two-period systems
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with one thousand scenarios for stochastic demand and price in two consecutive periods.
It is like a model for all probabilities that would happen for two periods in the future.
This paper’s main contribution is the algorithm used to reduce the number of scenarios
with no change in the problem’s initial data’s properties (one thousand initial scenarios’
configuration). Besides these points, our study has two significant challenges that fill this
field’s gaps, making us write and publish it.

• An essential characteristic of scenario-based stochastic programming methods is to
make a well-organized set of scenarios to model current ambiguity in an optimization
problem. More significantly, the supply chain planning area should examine the
scenario generation procedures concerning solidity and quality standards. Lately,
scenario reduction approaches and sample average approximation methods have
been established in supply chain planning under ambiguity, and this feature needs
more consideration than this

• Numerous stochastic optimization problems in supply chain planning with the multi-
period set can cause a Multi-Stage Stochastic Program (MSSP). Developing MSSPs
and giving effective answer tactics to them is a challenging matter. To the best of
our knowledge, there has been no paper mattering this issue until recently; just four
essays did so. ([11], [9],[10] and [7]just have dealt with this issue)

4 Methodology

4.1 Problem definition

We study a two-period SC model when the info is symmetrical. At the start of the
selling period, the vendor commands an order Q with the provider built on his prediction
of market demand D. The market demand D is a constrained, positive value random
variable with probability density function f(x) and cumulative density function F (x).
Price and demand both are stochastic and behave like a Brownian motion. The provider
products the invention with an item cost c and asks the retailer a distributing price w.
The retailer charges the clients with a selling price p. The lack (shortage) cost is v per
item, and the re-claim (salvage) worth of any unsold invention is s per item. To keep away
mistakes, we accept that 0 < s < c < w < p and 0 < v < w for each period. π signifies
stochastic profit and Π signifies the expected value of stochastic profit. Superscript ∗
signifies optimality; subscripts s, r, and sc denote one-to-one supplier, retailer, and supply
chain. Subscripts i signify insurance agreement. Earlier in the vending periods, the
provider and the vendor settle on an insurance agreement with two main parameters. The
first parameter β(βϵ[0, 1]) is the provider’s part of losses made by the deviation of the
vendor’s demand amount from the market demand. The retailer’s share is α(α = 1− β).
The Next parameter is the cross(side) payment M, from the vendor to the provider. It is
vital to memo that the cross payment is autonomous with the demand amount and can
be negative. When M is negative, the provider gives a cross payment to the vendor. This
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Figure 2: system schematic model
This figure shows the primary schematic model of paper, and it shows the flow of material
throw the supply chain in two periods. The mathematical models’ constraints came from
here by counterbalancing items (good) on the four rectangles in the above figure.

insurance agreement specifies that the provider must share some or all of the vendor’s
losses, whereas the vendor gives a premium to the provider; the act of this SC is then
enhanced.
This figure is designed to understand better where the models came from. The objective
functions and all constraints are made by focusing on this schematic model for an SC
with two periods of sale
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Table 2: Definitions
Sets

S Scenarios Set with “s” as an Indices
I Periods Sets, with “i” as an Indices

Parameters

Di,s Product’s Demand for the ith period in sth scenario
Pi,s Retailing Price for the ith period in sth scenario
Ks sth Scenario’s Happening Probability
wi The wholesale price in ith period
ci Production cost in the ith period
vi Retailer’s Shortage cost in the ith period
H Keeping cost until the second period
γ Salvage’s ratio (a percentage of product’s price)

Variables

Qi Quantity of ordered production in the ith period
Lacki,s Shortage amount for ith period in sth scenario
Selli,s Retailer’s sold amount for ith period in sth scenario
Invi,s Retailer’s inventory for the ith period in sth scenario
β It is a number between 0 and 1. A percentage of the retailer’s

loss is caused by mismatching forecasted and the actual amount of
demand, which the supplier gives to the retailer.

α α = 1− β.The retailer’s share of the loss is caused by mismatching
forecasted and the market’s demand.

M It is premium or the money which the retailer gives to the supplier.
It is independent of the volume of orders, and when it is negative,
the supplier provides it to the retailer.

Π Profit
Index

I Insurance Contract
C Centralized
Dc Decentralized
R Retailer
S Supplier
SC Supply Chain

4.2 Model development

In this section, we designed three models; first, a two-level decentralized supply chain for
two consecutive periods in which no one knows each other, and every decision made is
independent of another’s choices (to know about the minimum profit the supply chain
system can make). Second, a centralized supply chain has been designed where only one
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agent (central agent) has decided (to know about the maximum profit the supply chain
system can make). The third is a supply chain with an insurance contract with two
parameters β and M.
Before explaining, let’s go straight to stochastic programming (mathematical models
based on scenarios). Every mathematical model in the operation research field has an
objective function subject to some constraints. Usually, we will optimize the objective
function with the constraint’s limitation. Here is no exception. We define and create the
whole supply chain’s profit function as an objective function subjected to 4 primary re-
strictions. “Inventory level and demand limitation in each period.” These four constraints
come from 4 counterbalances on item (good) in the inventory or at the customer’s hand
in each period (item counterbalance on four rectangles in figure 2).

4.2.1 Decentralized supply chain model

In this case, to create the whole system’s profit function, we need to generate supplier
and retailer’s profit functions separately and then add them together. So, we first write
the retailer’s profit function as follows:

Πr = −
∑
iϵI

wiQi+
∑
sϵS

ks

(∑
iϵI

Pi,sSelli,s −
∑
iϵI

viLacki,s − Inv1,sh+ Inv2,sγP2,s

)
(1)

With a little algebraic progress, it changed to:

Πr = −
∑
iϵI

wiQi+
∑
sϵS

ks

(∑
iϵI

Pi,sSelli,s + P2,sInv2,s

)
−
∑
sϵS

ks

(∑
iϵI

viLacki,s + Inv1,sh+ Inv2,s(1− γP2,s)

)
(2)

Πr = −
∑
iϵI

wiQi +
∑
sϵS

ks

(∑
iϵI

Pi,sSelli,s + P2,sInv2,s

)
− U(Q1, Q2) (3)

the term U(Q1, Q2) is the expected losses generated by the retailer’s order quantity de-
viation from the market demand. Here is the summation of the shortage, keeping, and
salvage costs.

U(Q1, Q2) =
∑
sϵS

ks

(∑
iϵI

viLacki,s + Inv1,sh+ Inv2,s(1− γP2,s)

)
(4)
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The Model By adding the constraints to the profit function of the retailer, the complete
model is as follows:

Maxπr = −
∑
iϵI

wiQi +
∑
sϵS

ks

(∑
iϵI

Pi,sSelli,s + P2,sInv2,s

)
− U(Q1, Q2) (5)

Subject to:

Inv1,s = Q1 − Sell1,s ∀sϵS (6)

Inv2,s = Inv1,s +Q2 − Sell2,s ∀sϵS (7)

Sell1,s + Lack1,s = D1,s ∀sϵS (8)

Sell2,s + Lack2,s = Lack1,s +D2,s ∀sϵS (9)

U(Q1, Q2) =
∑
sϵS

ks

(∑
iϵI

viLacki,s + Inv1,sh+ Inv2,s(1− γP2,s)

)
(10)

Q1, Q2, Inv1,s, Inv2,s, Sell1,s, Sell2,s, Lack1,s, Lack2,s, U(Q1, Q2) ≥ 0 ∀sϵS (11)

The objective function is the expected profit for Q1 and Q2 order amounts, and it has
to be maximized. The term U in the objective function (discussed earlier) is noted as a
constraint. The first two constraints (7&6) are derived from a counterbalance on inventory
in two periods. The third and fourth constraints (9&8) balance demand with sold and
lacked amounts in two periods. (for a better understanding, refer to figure 2)
As the supplier is not decided in this case, the profit function for the supplier is:

π∗
s =

∑
iϵI

(wi − ci)Q
∗
i (12)

By putting the resultant amount for Q∗
1 and Q∗

2 in the above equation, the maximum
profit the supplier could make is π∗

s .
By adding the two amounts derived, the whole system’s maximum profit is:

π∗
sc = π∗

s + π∗
r (13)
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4.2.2 Centralized supply chain model

In this case, agents decide together, and the goal is to maximize the whole system’s profit
(not the agent’s profit separately). By adding the retailer and supplier’s profits together,
we have:

πsc = πs+πr =
∑
iϵI

(wi−ci)Qi−
∑
iϵI

wiQi+
∑
sϵS

ks(
∑
iϵI

Pi,sSelli,s+P2,sInv2,s)−U(Q1, Q2)

(14)

= −
∑
iϵI

ciQi +
∑
sϵS

ks(
∑
iϵI

Pi,sSelli,s + P2,sInv2,s)− U(Q1, Q2) (15)

The Model By adding the inventory balancing and the demand balancing constraints
to the above function, the mathematical model of the problem forms like this:

Maxπsc = −
∑
iϵI

ciQi +
∑
sϵS

ks(
∑
iϵI

Pi,sSelli,s + P2,sInv2,s)− U(Q1, Q2) (16)

Subject to:

Inv1,s = Q1 − Sell1,s ∀sϵS (17)

Inv2,s = Inv1,s +Q2 − Sell2,s ∀sϵS (18)

Sell1,s + Lack1,s = D1,s ∀sϵS (19)

Sell2,s + Lack2,s = Lack1,s +D2,s ∀sϵS (20)

U(Q1, Q2) =
∑
sϵS

ks

(∑
iϵI

viLacki,s + Inv1,sh+ Inv2,s(1− γP2,s)

)
(21)

Q1, Q2, Inv1,s, Inv2,s, Sell1,s, Sell2,s, Lack1,s, Lack2,s, U(Q1, Q2) ≥ 0 ∀sϵS (22)
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As we are paying attention to this driven model, we now understand it is like the de-
centralized model when only one agent decides about orders’ quantities. It is no more a
retailer; the supplier produces and distributes the product itself. Therefore, the supplier
makes the goods by costing c and selling them by Pi,s . with another perspective; it is like
the retailer purchasing the products at a cheaper cost (w ≤ c). Same as the decentralized
case, this problem is linear programming (with scenarios indeed), and it can solve by
optimal founder software. Here the whole system’s profit is more than the decentralized
and every contracted supply chain.
Most harmonies in co-working happen when the supply chain is centralized. In this case,
agents completely trust each other. They let some agents’ profit decrease in a situation
where the system’s profit increases (then they can split the extra profit so that every
agent sees the rise in profit). The best and perfect contracts are those which tend the
agents to decide like the centralized case. An agreement has to make the necessary trust
between agents, so everyone is helping the whole as they decrease their risks and have
no reduction in the final profit. (Profit at the end of splitting the extra amount that the
contract made)

4.2.3 Insured supply chain model

When a solution is proposed to splits the risk between the agents, the retailer orders
more, and everyone sees an increase in profit. In this contract, the retailer proposes
the supplier pay some (or all) of the losses caused by not matching the forecasted and
actual happened demand. Then the retailer pays some amount (Premium) to the supplier
and guarantees that the supplier has no losses compared to when there is no contract.
It is worth mentioning that every arrangement can increase the whole system’s profit
just to the centralized case’s profit because the most harmony happens when one central
agent makes all the decisions. The insurance contract unifies the supply chain with two
parameters ß and M. By inserting these parameters into the developed model (actually by
signing the contract), the model has some changes to the following model: (consider that
it is possible to summarize the objective function by using just one U, but it is better to
understand when we do not factor U)

The Model for the retailer

Maxπi
r = −

∑
iϵI

wiQi+
∑
sϵS

ks

(∑
iϵI

Pi,sSelli,s + P2,sInv2,s

)
−U(Q1, Q2)+βU(Q1, Q2)−M

(23)

Subject to:

Inv1,s = Q1 − Sell1,s ∀sϵS (24)
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Inv2,s = Inv1,s +Q2 − Sell2,s ∀sϵS (25)

Sell1,s + Lack1,s = D1,s ∀sϵS (26)

Sell2,s + Lack2,s = Lack1,s +D2,s ∀sϵS (27)

U(Q1, Q2) =
∑
sϵS

ks

(∑
iϵI

viLacki,s + Inv1,sh+ Inv2,s(1− γP2,s)

)
(28)

∑
iϵI

(wi − ci)Qi − βU(Q1, Q2) ≥ Π∗
s (29)

β ≤ 1 (30)

Q1, Q2, Inv1,s, Inv2,s, Sell1,s, Sell2,s, Lack1,s, Lack2,s, U(Q1, Q2) ≥ 0 ∀sϵS (31)

In this model, the expected value for the retailer’s profit in the contracted supply chain is
the objective function. The first two constraints (25, 24) show inventory balancing. The
third and fourth constraints (27, 26) demonstrate the counterbalance on demand. The
fifth constraint (28) is just a part of the objective function (U). The sixth constraint (29)
shows the retailer’s warranty to the supplier about not reducing profit after signing the
contract. The two final constraints (31, 30) show that ß is a fraction between zero and
one. Therefore, the objective function of the supplier’s profit is:

πi
s =

∑
iϵI

(wi − ci)Qi − βU(Q1, Q2) +M (32)

the whole system profit is:

πsc = πs + πr (33)

The problem is finding the best ß and M, which maximizes the contract’s effect, as there
is no reduction in any agent’s profit.
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4.3 Validation

Profit in a centralized supply chain is more than any contract can achieve. One factor
for validating any agreement is the amount of profit that has been made divided by the
centralized case profit. Another way to validate a new contract with new parameters is
by comparing it with a similar agreement. In this case, we can use the revenue sharing
contract for comparison because it has the most likeliness with the insurance contract in
many ways.

5 Numerical analysis

5.1 Scenario Making

Demand and price are random parameters that are assumed to be independent, and both
follow the spontaneous process of Geometric Brownian Motion (GBM). We need to create
scenarios based on this random process to identify their behavior in each period. GBM
is a continuous stochastic process in which the logarithm of the variable follows Brow-
nian motion. Therefore, it can predict demands and prices in two consecutive periods.
ACCORDING TO THE FOLLOWING EQUATION, the GBM process of predicting the
desired parameter (demand or price) is performed.

St = S0e
(µ−σ2

2
)t−σωt t = 1, 2, ..., N (34)

In this equation, S is a parameter that we want to estimate its value in periods one to
N. As it seems, its value in each period is determined based on its predicted value in the
previous period. We have to have S0 to estimate the value of S in periods 1 through N. µ
and σ are the mean and standard deviation of the growth rate, respectively, which affect
the predicted parameter value during the planning period, and ωt is a random process
that follows the Brownian motion.
We first generate one thousand initial scenarios based on the Brownian distribution for
demand and price. The initial demand (D0) equals 50 (item), and the average and stan-
dard deviation of demand growth in each period (µD and σD), respectively. We considered
it equal to 0.6 and 0.15. In the same way, we assumed the initial price value (P0) to be
30,000 and the average and standard deviation of price growth in each period (µp and
σP ) to be 0 and 0.2, respectively. You can see the scenarios for demand and price in the
following figures (figures 2 and 3).
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Figure 3: initial 1000 scenarios for demand in 2 periods
One thousand scenarios tree in two period for demand
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Figure 4: initial 1000 scenarios for price in 2 periods
One thousand scenarios tree in two period for price

Since working with many scenarios is very difficult and takes much time (to solve the
model). It is necessary to reduce the generated scenarios for each of the two random
parameters by using a scenario reduction method. We use the [13] method called Fast
Forward Scenario Reduction.

5.2 Scenario Reduction

The volume of calculations to solve scenario-based optimization models depends on the
number of scenarios. Therefore, it is necessary to reduce the set of main scenarios so
that the characteristics of the potential problem do not change harshly. The number
of decreased scenarios depends on the type and nature of the optimization problem and
should be less than a quarter of the generated scenarios [13].
The primary idea of reducing the scenario is to eliminate low-probability and close-up
scenarios. Therefore, scenario reduction algorithms identify a subset of scenarios and
calculate the probabilities for the new scenarios so that the probabilities of the reduced
scenarios are added to the nearest scenario in terms of probability distance. The scenario
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reduction algorithm reduces the batch scenarios using the Kantrovich distance matrix.
For example, each scenario consists of twenty-four hours for the next day’s hour-by-hour
scenarios, and deleting a scenario is equivalent to deleting a twenty-four-hour string. The
Kantrovich distance is the probability distance between two different sets of scenarios,
and the small space between the two scenarios indicates two identical possible processes.
The Kantrovich distance ensures that the maximum probability scenarios are reduced
without tolerable error. The probability of all deleted scenarios is considered zero. The
new probability of the preserved scenario is equal to the sum of the prior probabilities
and the probabilities of the closest deleted scenarios.
To build and reduce the scenarios. Using this method, we converted the number of
scenarios to 20 final scenarios, shown for demand and price in the following figures (figures
5 & 6), respectively.
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Figure 5: 20 final scenarios for demand in 2 periods
Reducted (20) scenarios tree in two period for demand
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Figure 6: 20 final scenarios for price in 2 periods
Reducted (20) scenarios tree in two period for price

Now there are twenty different scenarios, each with a specific probability. Table 3 sum-
marizes the results of the scenario-making and reducing process
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Table 3: final scenarios configuration
SCENARIO’S
NUMBER

FIRST
PERIOD’S
PRICE

SECOND
PERIOD’S
PRICE

FIRST
PERIOD’S
DEMAND

SECOND
PERIOD’S
DEMAND

SCENARIO’S
PROBA-
BILITY

1 37000 37000 71 92 0.07
2 32000 33000 61 73 0.054
3 27000 24000 67 83 0.034
4 26000 25000 72 103 0.052
5 26000 26000 62 73 0.071
6 27000 24000 58 78 0.041
7 24000 22000 72 95 0.038
8 28000 31000 67 96 0.051
9 32000 35000 70 106 0.039
10 28000 27000 67 81 0.038
11 26000 28000 70 90 0.053
12 28000 26000 81 111 0.051
13 32000 31000 60 83 0.086
14 30000 32000 71 119 0.036
15 31000 35000 66 92 0.054
16 31000 27000 71 95 0.073
17 36000 34000 75 98 0.038
18 28000 26000 71 94 0.051
19 31000 37000 64 79 0.042
20 34000 44000 60 83 0.028

5.3 Solving Models (Optimizing objective function for these 20
scenarios)

First, we must add value to the known parameters:

Table 4: amounting the known parameters
Assumed amount Parameters

6000 c1
6500 c2
15000 w1

15500 w2

2500 v1
5000 v2
2000 h
0.2 γ
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5.3.1 Decentralized

Table 5: results of solving the decentralized model
The optimal order quantity for the first period 71
The optimal order quantity for the second period 94
Retailer’s optimal profit 2188400
Supplier’s optimal profit 1485000
Whole System’s profit 3673400

5.3.2 Centralized

Table 6: results of solving the centralized model
The optimal order quantity for the first period 71
The optimal order quantity for the second period 121
Whole System’s profit 3763700

The difference between profits of the whole supply chain in both centralized and decen-
tralized states indicates the lost profits due to the lack of coordination for the supply
chain’s components. As can be seen in this chain, the difference between these two profits
is equal to 90300 and nearly 2.4% of the total profit of the chain (in the centralized mode).
Therefore, by using various methods of chain coordination, including contracts, part of
this lost profit can be compensated.

5.3.3 Insured

Now that we know the endpoints of our range, we solve the insured model for every β
between 0 and 1, and the result is as follows:
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Figure 7: Effects of β on Retailer’s cost function
This figure shows the main result of this research, which is optimizing β for the insurance
contract. As you can see, it came out to nearly .25, which means that two-period supply
chains work better and with more gain for everyone when the upstream share .25 % of
predictable loss of downstream.

The problem was not feasible out of this range (0to.35). And it was usually for not
satisfying the warranty content restriction.
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Figure 8: Effects of β on Extra profit percentage in the whole
Here again, you can see at β = .25 we have our maximum, and the extra gain which is
the contract brings is maximum there, and it means that two-period supply chains work
better and with more gain for everyone when the upstream share .25 % of predictable loss
of downstream
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Figure 9: Effect of β on Second order’s amount
This figure shows that when β increases Q2 increases too, and it’s better for upstream
when the downstream order more, so in the insurance contract and in its feasible area,
it’s better for upstream and, of course, the downstream to sign a contract with big β.

5.4 Comparing the results

Table 7: Overall Results compared to each other
Insured at β = 0.25 Centralized Decentralized

The optimal order quantity for the first period 71 71 71
The optimal order quantity for the second period 123 121 94
Retailer’s optimal profit 2277738 2188400
Supplier’s optimal profit 1485000 1485000
Whole System’s profit 3762738 3763700 3673400

After arranging the supply chain, retailer’s and the whole system’s profit increase by the
insurance contract, these results are before splitting the extra money that the contract
earns. After splitting the excess gain caused by the contract, the supplier profit rises too.
It depends on how to break the extra income.
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5.5 Managerial Insight

In this article, we advocate a logistic insurance agreement. Similar to various other
arrangements, it organizes the supply chain by transferring the risk from the retailer
to the supplier. This risk-transferring protects the retailer from dealing with ambiguous
demands to a confident grade. And it advances the supply chain’s efficiency. The proposed
agreement maximizes the yield of all agents. Furthermore, compared with the provider,
the vendor expresses the bazaar straight; thus, it is easier to gather bazaar demands. Still,
bazaar demand is always uncertain, and collecting data and forecasting demand includes
high expenses. If the vendor carries all the risks produced by the ambiguous request, he
will try to gather as much data as possible to predict well. Usually, vendors, providers,
and supply chain executives can use the outcome of an insurance contract to make a more
suitable supply chain model.

6 Conclusion and Future Research

We confirmed that the insurance agreement organizes the supply chain if the parame-
ters amounted properly. While the insurance agreement efficiently coordinates the supply
chain, it also has some boundaries. The most severe extraordinary restraint is that the
supplier sustains a managerial charge in monitoring the retailer’s sales state. A critical
hypothesis of the insurance agreement is that the vendor shares the data of bazaar de-
mand and invention sales condition with the provider decently; so, the provider needs to
monitor the vendor’s sales condition to avoid the vendor from magnifying his lost sales.
Based on this restriction, agreement application and monitoring instruments to perfect the
insurance agreement should be considered. The second restriction is that the insurance
agreement may decrease retailers’ interest. Numerous articles on sales efforts (e.g.,[19];
[24]) share the joint declaration that bazaar demand is artificial by vendors’ sales efforts.
Under the insurance agreement, the vendor only shares a risk fraction. This situation may
decrease the vendor’s sales energy mirrored in data updates. This circumstance could be
a likely future research path. In conclusion, when using an insurance contract, the supply
chain’s expected profit function is a concave function concerning α. The study shows that
the supplier’s expected profit increases as α increases, while the retailer’s expected profit
decreases as α increases. This phenomenon agrees with our insight: a higher α means a
higher risk and a higher possibility of losses for the retailer. This makes the retailer order
smaller and, consequently, receives a smaller expected profit.
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7 Appendix

7.1 Matrices

To solve or optimize an objective function constraint to some restrictions, you must first
define seven matrices (maybe big matrices) for the solver. MATLAB solver is not an
exception. For every linear programming which is done by the computer, you must design
seven matrices.

7.1.1 “A”

A matrix: the left side of none equal constraints In this problem, we have just one none
equal constraint, and that is the limitation which warranty content of the contract is
creating. This means that the supplier’s profit has no reduction compared to the case in
which there is no contract. The warranty that the retailer gives to the supplier. So, it’s
just one none equal constraint, and it is like the following:

∑
iϵI

(wi − ci)Qi − βU(Q1, Q2) ≥ Π∗
s

7.1.2 “b”

B matrix: the right hand of none equal constraints (the limits, the boundaries) The
optimal value of π∗

s can be reached as:

π∗
s =

∑
iϵI

(wi − ci)Qi − βU(Q1, Q2)

= (w1−c1)Q1+(w2−c2)Q2−β
∑
sϵS

ks(v1Lack1,s+v2Lack2, s+Inv1,sh+Inv2,s(1−α)P2,s) = 1485000
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7.1.3 “Aeq”

Aeq matrix: the left side of equal constraints

Figure 10: Northwest corner of Aeq matrix
This figure shows the north west corner of the Aeq matrix.

7.1.4 “beq”

beq matrix: the right hand of equal constraints

Table 8: beq matrix: the right hand of equal constraints
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first cons scenario 1 0 third cons scenario 1 71
first cons scenario 2 0 third cons scenario 2 61
first cons scenario 3 0 third cons scenario 3 67
first cons scenario 4 0 third cons scenario 4 72
first cons scenario 5 0 third cons scenario 5 62
first cons scenario 6 0 third cons scenario 6 58
first cons scenario 7 0 third cons scenario 7 72
first cons scenario 8 0 third cons scenario 8 67
first cons scenario 9 0 third cons scenario 9 70
first cons scenario 10 0 third cons scenario 10 67
first cons scenario 11 0 third cons scenario 11 70
first cons scenario 12 0 third cons scenario 12 81
first cons scenario 13 0 third cons scenario 13 60
first cons scenario 14 0 third cons scenario 14 71
first cons scenario 15 0 third cons scenario 15 66
first cons scenario 16 0 third cons scenario 16 71
first cons scenario 17 0 third cons scenario 17 75
first cons scenario 18 0 third cons scenario 18 71
first cons scenario 19 0 third cons scenario 19 64
first cons scenario 20 0 third cons scenario 20 60
second cons scenario 1 0 forth cons scenario 1 92
second cons scenario 2 0 forth cons scenario 2 73
second cons scenario 3 0 forth cons scenario 3 83
second cons scenario 4 0 forth cons scenario 4 103
second cons scenario 5 0 forth cons scenario 5 73
second cons scenario 6 0 forth cons scenario 6 78
second cons scenario 7 0 forth cons scenario 7 95
second cons scenario 8 0 forth cons scenario 8 96
second cons scenario 9 0 forth cons scenario 9 106
second cons scenario 10 0 forth cons scenario 10 81
second cons scenario 11 0 forth cons scenario 11 90
second cons scenario 12 0 forth cons scenario 12 111
second cons scenario 13 0 forth cons scenario 13 83
second cons scenario 14 0 forth cons scenario 14 119
second cons scenario 15 0 forth cons scenario 15 92
second cons scenario 16 0 forth cons scenario 16 95
second cons scenario 17 0 forth cons scenario 17 98
second cons scenario 18 0 forth cons scenario 18 94
second cons scenario 19 0 forth cons scenario 19 79
second cons scenario 20 0 forth cons scenario 20 83
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7.1.5 “f”

And f matrix: variables coefficients in the objective function

Variables’ coefficients in the objective function of the decentralized model
Table 9 demonstrates Variables coefficients’ in the objective function of the decentralized
model

Table 9: Variables’ coefficients in the objective function of the decentralized model (fwo)
350 Lack2,1 175 Lack1,1 -518 Inv2,1 140 Inv1,1 -2590 Sell2,1 -2590 Sell1,1
270 Lack2,2 135 Lack1,2 -356.4 Inv2,2 108 Inv1,2 -1782 Sell2,2 -1728 Sell1,2
170 Lack2,3 85 Lack1,3 -163.2 Inv2,3 68 Inv1,3 -816 Sell2,3 -918 Sell1,3
260 Lack2,4 130 Lack1,4 -260 Inv2,4 104 Inv1,4 -1300 Sell2,4 -1352 Sell1,4
355 Lack2,5 177.5 Lack1,5 -369.2 Inv2,5 142 Inv1,5 -1846 Sell2,5 -1846 Sell1,5
205 Lack2,6 102.5 Lack1,6 -196.8 Inv2,6 82 Inv1,6 -984 Sell2,6 -1107 Sell1,6
190 Lack2,7 95 Lack1,7 -167.2 Inv2,7 76 Inv1,7 -836 Sell2,7 -912 Sell1,7
255 Lack2,8 127.5 Lack1,8 -316.2 Inv2,8 102 Inv1,8 -1581 Sell2,8 -1428 Sell1,8
195 Lack2,9 97.5 Lack1,9 -273 Inv2,9 78 Inv1,9 -1365 Sell2,9 -1248 Sell1,9
190 Lack2,10 95 Lack1,10 -205.2 Inv2,10 76 Inv1,10 -1026 Sell2,10 -1064 Sell1,10
265 Lack2,11 132.5 Lack1,11 -296.8 Inv2,11 106 Inv1,11 -1484 Sell2,11 -1378 Sell1,11
255 Lack2,12 127.5 Lack1,12 -265.2 Inv2,12 102 Inv1,12 -1326 Sell2,12 -1428 Sell1,12
430 Lack2,13 215 Lack1,13 -533.2 Inv2,13 172 Inv1,13 -2666 Sell2,13 -2752 Sell1,13
180 Lack2,14 90 Lack1,14 -230.4 Inv2,14 72 Inv1,14 -1152 Sell2,14 -1080 Sell1,14
270 Lack2,15 135 Lack1,15 -378 Inv2,15 108 Inv1,15 -1890 Sell2,15 -1674 Sell1,15
365 Lack2,16 182.5 Lack1,16 -394.2 Inv2,16 146 Inv1,16 -1971 Sell2,16 -2263 Sell1,16
190 Lack2,17 95 Lack1,17 -258.4 Inv2,17 76 Inv1,17 -1292 Sell2,17 -1368 Sell1,17
255 Lack2,18 127.5 Lack1,18 -265.2 Inv2,18 102 Inv1,18 -1326 Sell2,18 -1428 Sell1,18
210 Lack2,19 105 Lack1,19 -310.8 Inv2,19 84 Inv1,19 -1554 Sell2,19 -1302 Sell1,19
140 Lack2,20 70 Lack1,20 -246.4 Inv2,20 56 Inv1,20 -1232 Sell2,20 -952 Sell1,20

variables’ coefficients in the objective function of the centralized model (fcen-
ter)(the exact amount) it’s a matric like Table9. the only difference between fcenter
and fwo is about the Qi coefficients and those are like Table10:

Table 10: Difference between Qi Coefficients in fcenter and fwo
fwo fcenter

Q1 Coef 15000 6000
Q2 Coef 15500 6500
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7.1.6 “ub”

The upper bounds of each variable

7.1.7 “db”

The lower bounds of each variable
Here the 7 matrices for inserting in a linear programming solver is over, in continue we
describe other matrices such as answer matrices

7.2 Answer matrices

7.2.1 answers to the decentralized models

answers to the decentralized models are in table 11
Q1=71,Q2=94

Table 11: answers to the decentralized models
0 Lack2,1 0 Lack1,1 73 Inv2,1 0 Inv1,1 92 Sell2,1 71 Sell1,1
0 Lack2,2 0 Lack1,2 31 Inv2,2 10 Inv1,2 73 Sell2,2 61 Sell1,2
0 Lack2,3 0 Lack1,3 15 Inv2,3 4 Inv1,3 83 Sell2,3 67 Sell1,3
10 Lack2,4 1 Lack1,4 0 Inv2,4 0 Inv1,4 94 Sell2,4 71 Sell1,4
0 Lack2,5 0 Lack1,5 30 Inv2,5 9 Inv1,5 73 Sell2,5 62 Sell1,5
0 Lack2,6 0 Lack1,6 29 Inv2,6 13 Inv1,6 78 Sell2,6 58 Sell1,6
2 Lack2,7 1 Lack1,7 0 Inv2,7 0 Inv1,7 94 Sell2,7 71 Sell1,7
0 Lack2,8 0 Lack1,8 2 Inv2,8 4 Inv1,8 96 Sell2,8 67 Sell1,8
11 Lack2,9 0 Lack1,9 0 Inv2,9 1 Inv1,9 95 Sell2,9 70 Sell1,9
0 Lack2,10 0 Lack1,10 17 Inv2,10 4 Inv1,10 81 Sell2,10 67 Sell1,10
0 Lack2,11 0 Lack1,11 5 Inv2,11 1 Inv1,11 90 Sell2,11 70 Sell1,11
27 Lack2,12 10 Lack1,12 0 Inv2,12 0 Inv1,12 94 Sell2,12 71 Sell1,12
0 Lack2,13 0 Lack1,13 22 Inv2,13 11 Inv1,13 83 Sell2,13 60 Sell1,13
25 Lack2,14 0 Lack1,14 0 Inv2,14 0 Inv1,14 94 Sell2,14 71 Sell1,14
0 Lack2,15 0 Lack1,15 7 Inv2,15 5 Inv1,15 92 Sell2,15 66 Sell1,15
1 Lack2,16 0 Lack1,16 0 Inv2,16 0 Inv1,16 94 Sell2,16 71 Sell1,16
8 Lack2,17 4 Lack1,17 0 Inv2,17 0 Inv1,17 94 Sell2,17 71 Sell1,17
0 Lack2,18 0 Lack1,18 0 Inv2,18 0 Inv1,18 94 Sell2,18 71 Sell1,18
0 Lack2,19 64 Lack1,19 22 Inv2,19 71 Inv1,19 143 Sell2,19 0 Sell1,19
0 Lack2,20 60 Lack1,20 22 Inv2,20 71 Inv1,20 143 Sell2,20 0 Sell1,20

7.2.2 answers to the centralized models

answers to the centralized models are in table 12
Q1=71,Q2=121
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Table 12: Answer to the centralized model
0 Lack2,1 0 Lack1,1 100 Inv2,1 0 Inv1,1 92 Sell2,1 71 Sell1,1
0 Lack2,2 0 Lack1,2 58 Inv2,2 10 Inv1,2 73 Sell2,2 61 Sell1,2
0 Lack2,3 0 Lack1,3 42 Inv2,3 4 Inv1,3 83 Sell2,3 67 Sell1,3
0 Lack2,4 1 Lack1,4 17 Inv2,4 0 Inv1,4 104 Sell2,4 71 Sell1,4
0 Lack2,5 0 Lack1,5 57 Inv2,5 9 Inv1,5 73 Sell2,5 62 Sell1,5
0 Lack2,6 0 Lack1,6 56 Inv2,6 13 Inv1,6 78 Sell2,6 58 Sell1,6
0 Lack2,7 1 Lack1,7 25 Inv2,7 0 Inv1,7 96 Sell2,7 71 Sell1,7
0 Lack2,8 0 Lack1,8 29 Inv2,8 4 Inv1,8 96 Sell2,8 67 Sell1,8
0 Lack2,9 0 Lack1,9 16 Inv2,9 1 Inv1,9 106 Sell2,9 70 Sell1,9
0 Lack2,10 0 Lack1,10 44 Inv2,10 4 Inv1,10 81 Sell2,10 67 Sell1,10
0 Lack2,11 0 Lack1,11 32 Inv2,11 1 Inv1,11 90 Sell2,11 70 Sell1,11
0 Lack2,12 10 Lack1,12 0 Inv2,12 0 Inv1,12 121 Sell2,12 71 Sell1,12
0 Lack2,13 0 Lack1,13 49 Inv2,13 11 Inv1,13 83 Sell2,13 60 Sell1,13
0 Lack2,14 0 Lack1,14 2 Inv2,14 0 Inv1,14 119 Sell2,14 71 Sell1,14
0 Lack2,15 0 Lack1,15 34 Inv2,15 5 Inv1,15 92 Sell2,15 66 Sell1,15
0 Lack2,16 0 Lack1,16 26 Inv2,16 0 Inv1,16 95 Sell2,16 71 Sell1,16
0 Lack2,17 4 Lack1,17 19 Inv2,17 0 Inv1,17 102 Sell2,17 71 Sell1,17
0 Lack2,18 0 Lack1,18 27 Inv2,18 0 Inv1,18 94 Sell2,18 71 Sell1,18
0 Lack2,19 64 Lack1,19 49 Inv2,19 71 Inv1,19 143 Sell2,19 0 Sell1,19
0 Lack2,20 60 Lack1,20 49 Inv2,20 71 Inv1,20 143 Sell2,20 0 Sell1,20

7.3 Scenario Reduction Algorithm

The volume of calculations to solve scenario-based optimization models depends on the
number of scenarios. Therefore, it is necessary to reduce the set of main scenarios so
that the characteristics of the potential problem do not change harshly. The number
of decreased scenarios depends on the type and nature of the optimization problem and
should be less than a quarter of the generated scenarios (Heitsch and Römisch, 2000).
The primary idea of reducing the scenario is to eliminate low-probability and close-up
scenarios. Therefore, scenario reduction algorithms identify a subset of scenarios and
calculate the probabilities for the new scenarios so that the probabilities of the reduced
scenarios are added to the nearest scenario in terms of probability distance. The scenario
reduction algorithm reduces the batch scenarios using the Kantrovich distance matrix.
For example, each scenario consists of twenty-four hours for the next day’s hour-by-hour
scenarios, and deleting a scenario is equivalent to deleting a twenty-four-hour string. The
Kantrovich distance is the probability distance between two different sets of scenarios,
and the small space between the two scenarios indicates two identical possible processes.
The Kantrovich distance ensures that the maximum probability scenarios are reduced
without tolerable error. The probability of all deleted scenarios is considered zero. The
new probability of the preserved scenario is equal to the sum of the prior probabilities
and the probabilities of the closest deleted scenarios.
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7.3.1 Probability interval for scenario reduction

If the probability distance is the measurement norm in probabilistic programming prob-
lems, a set of scenarios is reduced to a more straightforward set of scenarios close to the
original state. Assume that the initial probability distribution Q is defined on the sce-
nario set Ω. The problem of optimal reduction of the Ω set can be accurately expressed
as follows: Specify a subset of the Ωs(Ωs ⋐ Ω) scenario and assign a new distribution
to the remaining scenarios. The reduced probability distribution Q defined on the Ω set
is the closest distribution to the original Q distribution in terms of probability distance.
The Kantrovich distance can be expressed as follows:
KD (S, S’) =probs d (S, S’)
S is a scenario string with an H subset is in the above relation. d (S, S ’) is the vector
distance between the two scenarios S and S’ and is expressed as follows:

d(S, S ′) =

( H∑
i=1

(si − s′i)

)2
 1

2

We use the reversal reduction technique to reduce the demand and price scenarios.

7.3.2 Scenario reduction algorithm

In this subsection, a step-by-step method for reducing the scenario is described.

1. Collect the generated scenarios (scenarios are made with the algorithm described in
the scenario-making section for random parameters). Determine the probabilities
of the gotten scenarios. The sum of the probabilities of the scenarios of each stage
must be one. In the first stage, the likelihood of each scenario is considered to be
1/N, where N is the total number of scenarios.

2. Calculate the Kantrovich distance matrix. Calculate the distance matrix for each
pair of scenarios and the Kantrovich distance matrix by multiplying the probabilities
of the scenarios.

3. Scenario selection. Find the lowest Kantrovich distance scenario and mark it in the
Kantrovich distance matrix.

4. Delete Scenario. Select the scenario with the least Kantrovich distance and the
scenario with the closest Kantrovich distance to it. Eliminate the scenario with the
shortest Kantrovich distance due to the low probability of occurrence and proximity
to another scenario, and add the probability to the closest scenario. This work allows
the sum of the probabilities of the remaining scenarios to remain one. The likelihood
of individual scenarios must be greater than or equal to the ratio of the aggregated
scenarios to the whole production scenarios. Reducing the scenario will lead to
creating a lower-order probability matrix.
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5. Update the probability matrix. Update the initial probability matrix with the new
matrix.

6. Go to step 2.
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