Journal of Algorithms and Computation

{f.:—{;:)

NAKHOD> journal homepage: http://jac.ut.ac.ir

Remarks on a rendering method for limit sets of
Kleinian groups

Alessandro Rosa*!

ISottware Developer, Brindisi, Italy.

ABSTRACT ARTICLE INFO

We revised our technique for generating graphical ren- Article history:

derings of the limit sets of Kleinian groups. The algo- Research paper

rithm, relying on numerical base conversion, has been Received 05, August 2022
improved to shorten computation times. This method Received in revised form 18,
easily applies to any family of Kleinian groups with an November 2022

arbitrary number of generators. Following an overview Accepted 03, December 2022
of this problem, we present the implementation guide- Available online 30, December
lines in the form of pseudo-code. 2022

Keyword: Kleinian groups, limit sets, rendering, coding,
Moébius transformations.

AMS subject Classification: 05C78.

1 Introduction

The subject of this article has been dragged into the caravan of fractal shapes since
the beginning of their modern revival through the computer graphics in the late 1970s.
The intricate shapes of Julia sets stunned the audience first; mathematicians went on to
render another family of similar limit sets generated by Kleinian groups later on. Both
environments come up from researches conducted around the turn of the last two centuries
using processes involving infinitely many compositions of maps in one complex variable z.
Julia’s are limit sets coming from the iteration of any of such functions f(z) of non-linear

*Corresponding author:A. Rosa. Email: alessandro.a.rosa@gmail.com

Journal of Algorithms and Computation 54 issue 2, December 2022, PP. 13 — 19

14 A. Rosa / JAC 54 issue 2, December 2022, PP. 13 — 19

degree, whereas those for Kleinian group&ﬂ are generated by the combinations of linear
fractional transformations (or ‘Mdobius maps’) in the form M (z) = (az +b)/(cz + d).
The imagery of these two mathematical environments evolved from hand-made pictures
to the high quality offered by modern computer graphics. While Julia sets cracked to
the top and became a popular topic, Kleinian groups remained on the sidelines. The
reason that stopped them entering the mainstream is the entry level, far higher than it is
required to display Julia sets.

Figure 1: An example of similar shapes between Julia sets (left) and Kleinian groups
(right).

1 INTRODUCTION

Both renderings basically calculate the combinations generated from the composition
procedure being peculiar to the environments: whereas this problem is trivial for iteration
as there is only one input element coming into play, namely a function f(z) — combinations
will be f, ff, fff,...— it becomes more difficult for Kleinian groups because of multiple
group elements generating an infinite variety of arbitrarily long combinations: for example,
the maps M, (z) in the group can be tagged by letters in order to obtain combinations
like a, ab, aaaabbb, abababbaaabb; thus, this variety would intuitively suggest to use some
storage tool to keep track of them all. The management of the combinations is the greatest
complication that wraps any approach to the rendering of Kleinian groups. The classic
method was devised long ago by Robert Fricke, Felix Klein [I] and Friedrich Schottky
[5] in the end of the XIX'" century and its design was not naturally geared to modern
computational features, such as speed, efficiency, and memory resource optimization. The
book Indra’s Pearls [3] contains an in-depth presentation of this approach. The above
scenario may have been too technically demanding for the non-mathematical audience,
who was more concerned with displaying their shapesﬂ We attempted to lessen this issue
as much as we could. The goal of this paper is to improve the implementation of an
approach that we previously published in this same journal [4]. Then we will not revisit
the underlying theory here; we will just resume the problem in the next section. Readers
may refer to the bibliography for delving the concepts discussed further.

IThe term ‘group’ refers here to a set of elements that are closed under composition and include one
neutral element I. Hence, every element g is included together with its inverse ¢~ !, so that gog~! = I.
2While there exist many documental resources and computer programs for rendering Julia sets, only
a few have been dedicated to Kleinian groups, such as ‘OPTi’ by Masaaki Wada and ‘Kleinian’ by Danny
Calegary. There is also a work in progress by the author at http://alessandrorosa.altervista.org/

http://alessandrorosa.altervista.org/circles
http://alessandrorosa.altervista.org/circles

15 A. Rosa / JAC 54 issue 2, December 2022, PP. 13 — 19

.6 1 “w%?” TRELEY WE R

ol ¥ < N
Sty AS '@&v
~
B
A

N ﬁ
&
P §*¢ ﬁ‘x sﬁ&% I'g i iz‘gsl..n(\).

Figure 2: The limit set for a two-generators Picard group.

2 The problem

The process of building of group elements combinations up to bounded length consists
first in assuming a subset of them, known as ‘generators set’ G. The successive stage,
where combinations are expressly produced, is extremely delicate and potentially prone
to produce duplicate or null-action combinations, mainly due to the formal composition
of generators and their inverses (see footnote ; thus rigid checks are required. The
classic approach binds each element of G to a unique alphabetical letter and runs the
branching action of a tree-like structured model that keeps track of the formation of
combinations, each represented by a string of letters: there is no risk of intersections
between the branches and any combination shows as only formally unique [4, p. 54
in fact, it shall be tested through a predefined set of rules for preventing duplicates or
null-actions in practice. The run of elements in the combination is numerically equivalent
to a sequence of values, known as ‘orbit’ in the literature of dynamical systems; orbits are
proven to converge to some limit set or ‘attractor’. Therefore the rendering simply reads
every literal string/combination to obtain and display the equivalent numerical value.

&

-ff RS o . ,@%
sy o Fx £ " o
53 at/:'.;« "n‘v% aa{;a.:v g:w% u%
Y 3
?’\‘ ,’{'::v "?:‘g\ Q\:@; "33?"\‘ ,’{'::“ 5
Fow.. P 2 B &
¥ s '\,:: kS “'ﬁ‘aﬁ‘}‘i\ ¥ """a“’*-}&k
P 2, B e
% x':“a % +
¥ ! F 1 M
e *'1‘_" o ;a;'}c ‘% of siaw “;’5 o)
o T ot
K Yo o e "q/g’ e P e
ey " w g
o o o

Figure 3: The limit set for a parabolic Kleinian group whose parameters lie on the bound-
ary of the Riley slice.

High quality pictures of limit sets for Kleinian groups require a large number of combina-
tionsE| With regard to the classic approach, we shall consider that, though the conversion

circles|
3Such as hundreds of millions for the images here shown.

http://alessandrorosa.altervista.org/circles
http://alessandrorosa.altervista.org/circles
http://alessandrorosa.altervista.org/circles
http://alessandrorosa.altervista.org/circles
http://alessandrorosa.altervista.org/circles
http://alessandrorosa.altervista.org/circles
http://alessandrorosa.altervista.org/circles
http://alessandrorosa.altervista.org/circles
http://alessandrorosa.altervista.org/circles
http://alessandrorosa.altervista.org/circles
http://alessandrorosa.altervista.org/circles
http://alessandrorosa.altervista.org/circles
http://alessandrorosa.altervista.org/circles
http://alessandrorosa.altervista.org/circles
http://alessandrorosa.altervista.org/circles
http://alessandrorosa.altervista.org/circles
http://alessandrorosa.altervista.org/circles
http://alessandrorosa.altervista.org/circles
http://alessandrorosa.altervista.org/circles

16 A. Rosa / JAC 54 issue 2, December 2022, PP. 13 — 19

of each combination from letters to digits is a simple procedure that involves additional
arrays that match generators with letters and the related indexes, the overall process even-
tually results long and laborious. Additionally, fine renderings want long combinations;
and not to mention the huge memory resources that the classic approach needs to keep
track of all combinations produced during the branching action of the tree. In response
to these drawbacks, our approach aims to drastically reduce the amount of resources re-
quired by avoiding convoluted or unnecessary steps such dropping the tree model. The
new paradigm is the numerical base conversion from a given integer to a base whose or-
der matches with the generators set cardinality. This conversion simply rewrites the same
numerical value as a concatenation of symbols, here digits not letters: the base conversion
theorem assures the uniqueness of such string of digits ranging from 0 to the cardinality
of the generators set minus one. No tracking is required: the combination is hidden in the
input number and it is unveiled and pulled out by the base conversion.

3 The new implementation

In whatever version we intend to run the rendering of Kleinian groups, the main guideline
consists in looping this block of three essential actions: (1) the generation of a combina-
tion, (2) its validationf] and (3) graphical rendering.

The early version of our algorithm either relied on an auxiliary function for computing
the base conversion [4, p. 58|, performing a transformation from quantitative values to
concatenations of digits, which represent the formal output of base conversion: it would
be then inappropriate to claim that we simply convert from base 10 to base n. The run
of that auxiliary function could be very time-consuming because it involves a large num-
ber of function calls in the overall economy of the rendering process, potentially lowering
the specific benefits we intend to achieve through our approachﬁ The first enhancement
affects the performance of base conversion, here tagged by <convert-to-base>: the afore-
mentioned auxiliary function [4, p. 58] has been replaced by built-in function (inherently
to the chosen programming language): this choice is due to its low level coding which

4Formally distinct combinations may refer to equivalent computations however. It is then necessary
to prevent the processing of such duplicates using a set of composition rules specific to the given Kleinian
group. This set could be implemented into a so called ‘Cayley Table’ or a ‘group presentation’ (also
known as ‘defining relations’). The latter are writings in the form

(a,b,A,B | aA = Aa=bB=DBb=1I). (1)

On the left, we read the letters corresponding to the elements of G. The transformations a,b and the
related inverse A, B: this is a ‘2-generators group’, which counts elements only, not their inverse ones.
On the right, we see a number of relations which shall be verified for dropping the combination or not.
For theoretical details, see [2] and [3] respectively. Despite their same task, presentations cannot be
simplistically intended as shorter versions of Cayley tables because the latter follows the composition of
symbolic combinations step by step, which may not follow the same rules as the natural appending of
consecutive symbols because of the specific algebraic nature of the group.
5The literature developed in the 80s and 90s referred to renderings taking several hours.

© 00 N O U e W N =

I I T e
= O © 0 N oUW N RO

© W0 N O U AE W N -

e e
W N = O

17 A. Rosa / JAC 54 issue 2, December 2022, PP. 13 — 19

grants much faster performance than any higher level language implementation. The ben-
efits of increased speed were immediate since the earliest tests. On this train of ideas,
we shall also consider that an input number n, assumed in base 10, misses to generate
all the combinations with leading zeros, which are numerically but not computationally
equivalent to the original input value: given n € Z, we will also generate the family of
strings ‘On’ up to the desired length. This additional stage can be worked out by applying
the same method to convert each input integer n and fill the resulting string with leading
zeros up to the desired length. More technical information can be obtained directly from
the pseudo-coding below.

Main code
/* We assumed a two-generators group with four elements. These are the global
variables required for the sub-routines too. The generators gn are objects

performing Mdbius maps computations (i.e., composition, computation, ...) */

var _gens_objs = [g1, g2, g3, g4 1, _gens_num = _gens_objs.length; var
_max_depth = 10, _max_value = power(_gens_num, _max_depth); var _proc_str =

nn nn

, _zero_fill_proc_str = , _index; var _str_length = 1, _rec_start = 0,
_rec_end = -1; var _b_length_change = 0, _b_crash_found = 0;

for(var _i = 0; _i < _max_value; _i++){

//base conversion and string generation

_proc_str = _i.<convert-to-base>(_gens_num);

//this test possibly triggers the leading zeros management
_b_length_change = _str_length !'= _proc_str.length;

//validation

if (<call-to-sub-routine-#1.x: cancellation-rule-test_of_proc_str>) continue;
<call-to-sub-routine-#2: process-the-numerical-string-in-base-n>
<call-to-sub-routine-#3: leading-zeros-management>

Readers will notice that this approach uses a single for-loop, instead of the nested two
we applied in [4, p. 60]. The orbits resulting from combinations has been computed
starting from one of the periodic points of the first element. The resulting strings of
digits are read from right to left as it is conventionally assumed for the chains of function
compositions. We will check the resulting string for compliance with the group ruledf]
once the input index _i has been converted to the chosen numerical base. This task is
resolved by <sub-routine-#1.x>, with regard to the Cayley Table

test via Cayley Table

//<sub-routine-#1.1>
function __check__cayley_table__(_digitized_word = ""){

<let a boolean flag and set it to 0>

//we assume that the index has been converted into the required base
<split-the-digitized-word-into-an-array-of-single-digits—->
<get-the-first-digit-in-the-word>

<get a reference pointer to the related row inside the table>

//we prevent to raise conditional if-statement in the loop
<remove the first digit from the word>

<for each digit in the of rest this array> //sequential read

6See footnote

14
15
16
17
18
19
20
21

© W N O U W N

=
= o

© W N O U W N

e e
w N = O

© 00 N O U e W N =

= e
N o= O

18 A. Rosa / JAC 54 issue 2, December 2022, PP. 13 — 19

<get the next-index in the current row at the index expressed by the digit>
<if the next-index is invalid, then (1) set the above flag to 1>
<(2) break the loop and (3) skip this word processing>
<get a reference pointer to the row inside the-table and related to the next-index>
<end-of-for-loop>

<return the flag>

or via group presentation

test via group presentation

//<sub-routine-#1.2>
function __check__group_presentation__(_digitized_word = ""){

<let a boolean flag and set it to 0>

<for each entry inside the group presentation>
<check if the input digitized word includes the current entry>
<if so, set the above flag to 1 and break this loop>
<end-of-for-loop>

<return the boolean flag>

After the validation, we will process the input string and then draw the resulting value
on the complex plane:

process-the-numerical-string-in-base-n

//<sub-routine-#2>

//right-to-left reading order

_index = <turn-the-symbol-to-integer>(_proc_str[_proc_str.length-1]);
//initialization of the fixed point _fp

_fp = _gens_objs[_index].get_one_fixed_point();

//process the rest of the string

for(var _wr = _proc_str.length-2; _wr >= 0; _wr--){
_index = <turn-the-symbol-to-integer>(_proc_str[_wr]);
_fp = _gens_objs[_index].map_point(_fp);

}

<call-a-sub-routine-for-drawing-the-pixel-at-the-fixed-point-coordinates>

Finally, we compute the family 0_i of strings with leading zeros for each index value
_i. This is the second enhancement that concludes this revision; the code in the next
subroutine implements again two nested for-loops that runs the same actions as in the
main block, but it resolves strings with leading zeros exclusively.

leading-zeros-management

//<sub-routine-#3>
if (_b_length_change) //refer to the main for-loop for the role of this flag

{

_rec_end = _n - 1;

for(var _r = _rec_start; _r <= _rec_end; _r++)

{
_zero_fill_proc_str = _r.toString(_n_gens);
for(var _filler = _zero_fill_proc_str.length; _filler <= _max_depth; _filler++)
{

_zero_fill_proc_str = "O" + _zero_fill_proc_str;

if (<call-to-sub-routine-#1.x: cancellation-rule-test_of_proc_str>)
continue;

13
14
15
16
17
18
19
20
21
22
23

19 A. Rosa / JAC 54 issue 2, December 2022, PP. 13 — 19
Figure 4: A limit set for a Jorgensen 2-generators group of parabolic type.
<call-to-sub-routine-#2.x: process-the-numerical-string-in-base-n>
}
}
_rec_start = _rec_end + 1;
_rec_end = -1;

//reset the flag to default state to track the next change
_b_length_change = 0;

}

References

Fricke R., Klein F., Vorlesungen tber die Theorie der automorphen Functionen,
1897, Leipzig, B.G. Teubner.

Lyndon R.C., Schupp P.E., Combinatorial Group Theory, Springer, 2001.

Mumford D., Series C., Wright D., Indra’s pearls: The Vision of Feliz Klein,
Cambridge University Press, 2002 (reprinted in 2015).

Rosa A., A new indexed approach to render the attractors of Kleinian Groups,
Journal of Algorithms and Computation, 49, issue 2, December 2017, pp. 53-62.

Schottky F., Ueber die conforme Abbildung mehrfach zusammenhdangender ebener
Fldchen, Journal fiir die reine und angewandte Mathematik, 83, 1877, pp. 300-351.

	Introduction
	The problem
	The new implementation

