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ABSTRACT ARTICLE INFO

Artificial neural networks that have been so popular in
recent years, are inspired from biological neural networks
in the nature. The aim of this work is to study the
properties of biological neural networks to find out what
is actually happening in these networks. To do so, we
study on Caenrohibditis elegans neural network, which
is the simplest and the only biological neural network
that is fully mapped. We implemented the sub-circuit
of C.elegans neural network that is associated with the
sensation of aversive stimuli which results in forward
and backward locomotion, and we found out that some
of its neurons are ineffective in developing considered
outputs. However, removing these neurons together has
considerable effect on these outputs.
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1 Introduction

Artificial neural networks, known as ANN, have been so popular in recent years due to
their extensive applications in many fields such as pattern recognition, pattern prediction,
classification, and clustering [1]. The main idea of these networks is inspired from biolog-
ical neural networks in the nature, except that, in ANNs, in order to avoid complexity,
the minimal set of biological concepts are used [32].
Thus, it is so helpful to study the features of biological neural networks in the nature, in
order to apply these features on ANNs.
The aim of this paper is to study on the properties of biological neural networks to find
out what is actually happening in these networks, and how these experiments could be
applied in artificial neural networks. The simplest and the only biological neural network
that is fully mapped, is Caenrohabditis elegans (C.elegans) neural network [19].
While studying this biological neural network, we recognize that its structure is different
from common structures that are defined for ANNs. Thus, we were motivated to study
this biological neural network, identify its properties, and evaluate the effect of these
properties on ANNs.
ANNs are a type of networks, in which, nodes represent artificial neurons, and each link
is a model for synapse that transmits signals among neurons. The signal in ANNs is
modeled by a real number, and the output signal of each neuron is computed by a non-
linear function that is applied on the sum of inputs. Typically, each link in the ANN
has a special weight that is proportional to its strength. In the standard forms of ANNs,
the neurons are grouped into layers. The first layer is the input layer which receives the
input signal, and after processing, transmits it to the next layer. Finally, the last layer
transmits the output signal as the output of network.
Many studies have been done to evaluate the effect of different network topologies on
the ANN’s efficiency so far. In some of these studies such as [8] and [17], considering
the standard structure of an artificial neural network, as special topology of complex
neural network has been applied on it. In some other researches such as [31] the concepts
of complex network, for example the property of randomness is applied on the neural
networks.
The structure of this paper is as follows: In part II, we review some related works that
have been done in this field, in part III, we represent some information about C.elegans
neural network, and extract some of its main structural features, in part IV, we represent
the datasets that we have used in order to implement C.elegans neural network, in part
V, we describe our hypothesis and results, and in part VI we represent our conclusion.

2 Related Works

One of the first attempts for applying the concepts of complex networks on ANNs was
in [24], which the efficiency of Hopfield neural network with asymmetric weight updating
was studied in different topologies such as regular lattice, random network, small world
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network, and scale-free network. They showed that, with the same number of nodes, neu-
ral networks with random structure have better efficiency compared to neural networks
with other topologies. Moreover, according to the latest studies, the pattern of neurons
connectivity is some animal’s brain such as C.elegans worm is not fully random, but fol-
lows small world structure [5]. Thus, in [24] they concluded that neural networks with
small world topology and a balanced number of shortcut links have a higher efficiency,
as, in these networks, the cost of neuron connectivity is less than neural networks with
random topology.
In [5], a Hopfield neural network was simulated with scale-free topology, in which, each
new neuron was connected to only m other neurons. In this case, although for small values
of m, the quality of retrieving data is reduced, for the values of m that are grate enough,
the neural network has suitable efficiency.
In [22], they proved that, the more the neural network topology is close to random struc-
ture and the less the network clustering coefficient is, the higher stability and quality of
data retrieving occurs. Thus, adding random components and shortcut links to the neural
network can improve its efficiency.
In [7], using Watts-Strogatz rewiring algorithm, a feedforward neural network with small
world topology was represented. After applying this neural network on the dataset, its
efficiency was computed, and the result was that with the same number of nodes and lay-
ers, feedforward neural network with small world topology shows higher efficiency than
feedforward neural network with standard structure.
Inspired by the brain structure of living organisms, in [34] ANNs were implemented with
sparse structure. The result was that neural networks with fully regular structure had
weak efficiency in data retrieval, while random neural network could retrieve data with
grate efficiency. Moreover, in [34] they concluded that a combination of random and reg-
ular connections yields to the best result.
In [31], inspired by this fact that neurons are not fully connected in the neural network
of living organisms [13], the concept of StochasticNet was represented. According to [31],
a StochasticNet is a deep neural network defined with random graph concepts, in which
the neural connections are formed randomly and followed by a probability distribution
pattern. Using this approach, neural connections in a deep neural network can be formed
in a way that the efficiency will be increased, and it results to a neural network that the
number of its connections is much less than a standard deep neural network with the
same number of neurons, while it is as accurate as a standard deep neural network.
In order to analyze and predict the traffic data, in [16] a new type of LSTM neural net-
work called RCLSTM is represented, in which, unlike LSTM, the neural connections are in
random structure. Thus, due to the sparsity property in RCLSTM most of the potential
links are removed, which leads to the reduction of learning parameters and computational
cost.
In [29] a decentralized version of Evolution Strategy algorithm called NetES was repre-
sented to study the effect of random, small world, scale-free, and fully connected topologies
on the efficiency. The results show that ANNs with random topology not only act better
than others but they also have higher efficiency even with 1/3 number of neurons com-
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pared to fully connected topologies.
In [9] Feedforward neural networks with small-world topology (SW-FFANNs) with an-
other network constructing method called Newman-Watts (NW) were explored, and their
classification performance was compared with WS and conventional FFANN. According
to the proposed method in [9], Newman-Watts SW-FANN network is obtained by adding
extra shortcuts to regular FANN. In [150] they claimed that WS and NW small-world
structures have better performance than the conventional FFANN. Moreover, they claimed
that NW-FFANN outperforms the WS-FFANN. Thus, by applying these neural network
structure on PIDD dataset, they concluded that the NW structure shows the best perfor-
mance in the diagnosis of the diabetes. In order to evaluate the classification performance
of each structure, they calculated metrics such as the learning error, accuracy, sensitivity,
and specificity. The results of [9] show that in WN-FFANN there is 2% improvement of
accuracy while for sensitivity and specificity the results in WN-FANN structure are the
same as in WSFANN structure.
In [18] they explored [24], in which different complex structures have been compared. In
this work, which is one of the pioneering works of applying SFs on Hopfield associative
memory along with other structures such as random, SW, FC networks. In [18], they
claimed that the performance of SFs is the same as the performance of random structures
even with a large amount of stored patterns. In addition, among all structures compar-
ing in this paper, they reported that SFs are the most efficient in partial recognition of
patterns due to their highly connected hubs. It is also showed that removing the neurons
with low connectivity does not affect the performance.
Scale-free ANNs are investigated in [28], in which the focus is on hybrid networks and
the role of power-law exponents has not been considered. The most important point in
these complex systems based ANN studies is that the more the ANNs become similar to
biological networks, which shows SW and SF properties, the more improves their perfor-
mance. Consequently, it is inferred that high clustering coefficient, low mean path length,
and power-law degree distribution play a key role in optimizing ANNs structure in order
to obtain high-quality performance.
Extensive evaluations were done on the architectures corresponding to different types of
random graphs in [17], and the effect of different structural and numerical properties of
graphs were studied on the accuracy of neural networks. The result was that none of these
traditional graphs alone has the best efficiency. Thus, a new structure was represented
which had the best efficiency compared to classic structures.
Sparse neural networks (SNN), in which layers are not fully connected to each other have
received much attention by researchers and have achieved many improvements [11, 39,33,
35].
In [25] a novel study on deep neural networks (DNN) sparsity was started which consid-
ered hybrid structures containing both scale-free and small-world characteristics. In [25],
they aim to explore the main components of deep learning which are Restricted Boltz-
mann Machines (RBM) and Gaussian RBMs (GBMs) using complex network concepts
and from topological point of view.
In [26], they proposed another type of sparsity which is implemented in multi-layer per-
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ceptron (MLP) and Boltzmann Machine. That is a FFANN learning a supervised manner
with two types of supervised and unsupervised learning. To generate a sparse ANN, a new
algorithm is proposed in [26] in which the network evolves from ER topology containing
two successive layers of neurons towards a BA topology using a Drawinian evolutionary
approach while training that is dubbed sparse evolutionary training (SET) method which
is based on natural evolutionary process in complex systems.
In [27], previous method of ANN evolution by SET from ER random graph into scale-free
structure was expanded, and the application of the SET procedure on convolutional neu-
ral networks (CNN) was investigated. By evaluating metrics such as accuracy, P-value,
and log-probability it was inferred that CNN networks outperform their fully connected
and non-evolutionary counterparts.
In [23], an investigate is done on the generation of locomotory behavior in C.elegans brain
with focus on neuronal and muscular activity patterns that control forward locomotion.
To do so, the neuronal network of C.elegans is mapped as a multilayer neuronal network.
The neurons of locomotory subnetwork is predicted in [23] by logistic regression analy-
sis, the dynamics in this subnetwork is studied, and using a harmonic wave model the
forward locomotion of C.elegans is predicted. Furthermore, for a coordinated locomotory
behavior in this subnetwork, the significance of a certain neuron is determined by making
its activity silent while analyzing the synchronicity.
In [21] inspired by C.elegans neural network, novel recurrent neural networks are designed
for robotic control. The authors used the neurons communication property of C.elegans
neural network, by which the neurons communicate through a nonlinear time-varying
synaptic links established among them. As a result, the network can show complex be-
haviors with small number of neurons. In order to generate sequential robotic tasks, in
[21], neuron-pair communication motifs are identified as design operators and used to con-
figure compact neuronal network structure. The topology of neural networks represented
in [21] resembles C.elegans neural network in which the topology is hierarchical from sen-
sory neurons through recurrently wired interneurons to motor neurons. This property
enables the networks map the environmental observations to motor actions. These recur-
rent neural networks are configured by a search-based algorithm in a supervised-learning
scheme, and their performance is evaluated in controlling mobile and arm robots and
compared to other artificial neural network-based control agents.
In [6] a suit of unified web-based Graphical User Interfaces is represented and their un-
derlying methods and technologies are considered. Using a worm locomotion and neural
activity viewer, the framework presented in [6] enables users to graphically visualize the
simulation results. Furthermore, by this framework users can graphically create neuron
and network models, and behavioral experiments. This framework is generated using a
novel XML-based behavioral experiment definition encoding format, which is a NeuroML
XML-based model generation along with network configuration description language.
In [36] a method was proposed to visualize the connections in C.elegans neural network,
and using the structure of this neural network, its statistical and topological properties
such as degree distribution, synapse multiplicity, and small world properties were com-
puted. In addition, the neurons playing a key role in processing information are identified
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using linear systems theory, and neuron activities in response to sensory inputs are stud-
ied. Finally, the interactions between chemical synapse networks and gap junctions were
analyzed.
A control framework for C.elegans neural network was represented in [38] according to
which, it can be predicted that which neurons of C.elegans neural network are involved
in its locomotion behaviors. According to [38], it is predicted that 12 neural classes are
required to control motor neurons in C.elegans neural network. The aim of [38] was to
predict that which neurons play a vital role in response to gentle touch, in a way that
removing these neurons causes reduction in the number of controllable muscles.
Although C.elegans neural network is accurately mapped, its excitatory or inhibitory
property of its synapses is yet unknown [20]. To address this problem, in [20] a recurrent
model of C.elegans neural network is represented, which can simulate known behaviors of
C.elegans. This approach is used to study neural sub-circuits involved in aversive stimuli
with escape response. Thus, a study on stimuli-response behaviors of C.eleganse was done
in [20] and the results were collected into a dataset used in a recurrent neural network,
in which all the connections are the same as C.elegans neural network, but the excitatory
or inhibitory property of connections is determined randomly.

3 C.elegans Worm

C.elegans worm is a tiny living organism found in all over the world. The length of its
newly hatched larvae is about 0.25mm and the adult is about 1mm long. Since its body
structure is transparent, all cellular details are observable. Using electron micrographs,
researchers have reconstructed this worm’s neural network, which is the most complete
neural network wiring diagram [38].
Researchers have studied different types of simple and complex behaviors of C.elegans
including chemotaxis, thermotaxis, multiple responses to touch, nourishment, and asso-
ciative and non-associative learning [2]. In other words, C.elegans reacts to sensory stimuli
by regulated behaviors [14]. These behaviors are as follows:

− It will react to chemical attractant or repellant [4].

− It will avoid environments with high osmolarity [14].

− It will actively retain itself in an optimal temperature [12].

− In the case of gentle touch, it will react by receding [3].

C.elegans also experiences time periods in which it is in resting state that is like sleeping
in mammalians [30].
C.elegans neural network includes 302 neurons and the majority of these neurons are
located in head, tail, and ventral parts of its body [14]. These neurons are grouped into
three categories [38]:
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1. 1. Sensory neurons: This category forms the input neurons of neural network. All
the input stimuli into the neural network is received by the neurons in this group.

2. Interneurons: Sensory neurons transmit their output signals into the interneurons
to be processed. Neurons in this category act as hidden layer in ANN.

3. 1. Motor neurons: Neurons in this category receive the output signals from in-
terneurons, and after processing, transmit the output signal of neural network to
the muscular cells. In other words, neurons of this category are the output neurons
of neural network.

In C.elegans neural network, each neuron has a unique combination of properties such
as morphology, connections, and location resulting in a unique label for each neuron.
Neurons that differ only in location are put in the same class. There are 118 classes of
neurons in this network, and the number of neurons in each class varies from 1 to 13 [14].
Neurons in C.elegans neural network are connected through about 6400 chemical synapses
and 900 gap junctions. Also, output neurons of this network, transmit output signals to
muscular cells through 1500 links connecting motor neurons to muscular cells [19]. Fig.
1. shows C.elegans neural network.

Figure 1: C.elegans neural network [38]. Each label specifies the corresponding neuron
name. Blue nodes represent sensory neurons, orange nodes represent interneurons, yellow
nodes represent motor neurons, and purple nodes represent muscular cells.

In Fig. 1., There are 4 groups of nodes represented in 4 colors: Blue nodes represent
sensory neurons, which is the input of neural network, orange nodes represent interneu-
rons, which the signals received from sensory neurons, yellow nodes are motor neurons,
which receive signals from interneurons, process it, and produce the output signals of the
neural network. Finally, purple nodes represent muscular cells that receive the output of
motor neurons. Also, the name of each neuron is specified by its label. Moreover, as it is
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shown in Figure1, there are some nodes such as AVAL and AVAR, which are the hubs of
network. Some parts of layer structure of this neural network are shown in Figure 2.

Figure 2: A fragment of layer structure of C.elegans neural network adopted from [38]

In Fig. 2., sensory neurons PLML and PLMR, that are represent in blue, receive gentle
touch stimuli, and transmit the input signals into interneurons such as PVC, AVB, AVD,
and AVA [14]. The functionalities of these neurons are described as follows [14]:

− AVA and AVD neurons regulate backward locomotion in response to gentle touch.
The output signals of these neurons are received by DA motor neurons including
DA01, DA02, DA03, DA04, DA05, DA06, DA07, DA08, DA09

− PVC and AVB neurons regulate forward locomotion in response to gentle touch.
The output signals of these neurons are received by DB motor neurons including
DB01, DB02, DB03, DB04, DB05, DB06, represented in green color in Fig. 2.

The nodes in the last layer in Fig. 2., that are shown in purple, represent muscular cells,
that receive locomotion signals from motor neurons [14].
As it was mentioned earlier, there are some properties in C.elegans neural network, which
are not seen in standard ANNs. Some of these properties are shown in Fig. 3.
In Fig. 3., blue nodes are sensory neurons PLML and PLMR, that as the input layer of
neural network, receive gentle touch stimuli signals. Purple nodes are muscular cells that
receive the output signals of neural network. Yellow nodes represent neurons that are
in the neighborhood of muscular cells, and green nodes are DD class of motor neurons
including DD01, DD02, DD03, DD04, DD05, and DD06.
Structural properties observed in Fig. 3. Are as follows:

− Links that are highlighted in pink color, are two samples of back link, observed in
this neural network. The first one connects neuron VA07 in the third layer, to the
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Figure 3: A representation of some properties in C.elegans neural network (Adopted from
[38])

neuron HSNL in the second layer. And the second one, connects neuron CB03 in
the 12th layer, to the DD04 in the 11th layer.

− Links specified in the yellow frame, are samples of intralayer links in the neural
network.

− Links specified by *, are samples of shortcut links, that connect neurons in two
non-consecutive layers.

− Also, by observing this neural network, we realize that this neural network is not
fully connected. For example, there is no link connecting neurons PHAR in 10th
layer and DA07 in 11th layer.

4 Dataset

In this work, in order to study C.elegans neural network, we have used some resources
that are described as follows.
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4.1 WormAtlas Dataset

WormAtals website [14] includes a database representing all the information of behavioral
features and anatomical structure of C.elegans. dataset that WormAtlas represents about
C.elegans neural network includes:

− Information about neurons: neuron name, neuron type, neuron location, etc.

− Information about neuron connectivity in C.elegans neural network: In this part, the
type of synapse and the number of synapse connecting each two individual neurons
are represented.

4.2 WormWiring Dataset

In WormWiring website [15], C.elegans neural network data is represented along with
some tools to visualize and analyze these data. WormWiring dataset includes:

− C.elegans neural network adjacency matrix: Each entry of this matrix represents
the number of synapses connecting neurons of corresponding row and column.

− Synapses in C.elegans neural network: In this part of dataset, a list of all synapses
in C.elegans neural network is represented along with their features.

− Neuron names and neuron types

− C.elegans adjacency matrix along with neuron classes

− Diagrams of C.elegans neural network

5 Our Proposed Method

In this section, we focus on a sub-circuit of C.elegans neural network that is associated
with the sensation of aversive stimuli which results in forward and backward locomotion.
Out of total 302 neurons and about 6400 chemical synapses, there are 125 neurons and
about 950 links involved in this sub-circuit [20]. This sub-circuit is shown in Fig. 4.
In Fig .4., triangle nodes represent sensory neurons that receive input signals, hexagonal
nodes represent for interneurons, and circle nodes represent motor neurons which result
in forward or backward locomotion
In order to study the features of this network, we implemented this network using adja-
cency matrix and synapse weights reported in [14]. Also, we used information reported
in [20], [10], [14], and [15] to determine the polarity of synapses.
We considered sensory neurons ASHL, ASHR, PVDL, and PVDR, among which activa-
tion of ASHL and ASHR causes DA and VA motor neurons to be activated that results
in backward locomotion. On the other hand, activation of PVDL and PVDR causes DB
and VB motor neurons to be activated which results in forward locomotion [14].
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Figure 4: The sub-circuit of aversive stimuli in C.elegans neural network [20]

We use McCulloch-Pitts model [37] to describe the dynamics of neural network. Accord-
ing to this approach, the state of neural network is described by the vector described as
follows [20]:

σ = {σ1, σ2, ..., σn} (1)

Where n is the number of neurons in the network, and each element σi is a binary number
that represents the activation of corresponding neuron. In other words, if σi = 1, it means
that neuron ‘i’ in the network is activated, and conversely, if σi = 0, it means that neuron
‘i’ is inactivated.
In order to determine the next state of the neural network, we need adjacency matrix of
chemical synapses weights JC, and the matrix of synapse sign S in addition to vector.
The next state of the neural network is computed by Eqn. (2) [20].

σi(t+∆t) = θ(ΣK
j=1σj(t).JCji.Sji − τ) (2)

Where θ is the Heaviside step function with threshold , and K is the number of input
neighbors of neuron ‘i’. That is, if the sum of signals entering a neuron is greater than ,
it will be activated.
In the first step, we compute the output result for each sensory neuron ASHL, ASHR,
PVDL, and PVDR. To do so, we first make all neurons inactivated except the single
considering input sensory neuron, for example ASHL. Then, for each neuron in the network
we compute its activation using Equation 2. We repeat the computation step for several
times until it reaches a stable state in the neural network. We consider the state of motor
neurons activation as the output signal called MS, which is described in Eqn. (3):

MSinput neuron = {σ1, σ2, ..., σm} (3)

Where m is the number of motor neurons in the neural network, σi represents motor
neuron ‘i’ activation, and input neuron is the sensory neuron for which we aim to compute
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output signal. Thus, for each single of these sensory neurons we have a set MS that
indicates the state of motor neurons as an output. We consider the result outputs as
follows:

− MSASHL: Indicates the state of motor neurons in the case that the only sensory
neuron activated is ASHL.

− MSASHR: Indicates the state of motor neurons in the case that the only sensory
neuron activated is ASHR.

− MSPV DL: Indicates the state of motor neurons in the case that the only sensory
neuron activated is PVDL.

− MSPV DR: Indicates the state of motor neurons in the case that the only sensory
neuron activated is PVDR.

After determining these output sets, we try to examine the role of neurons in this network
for sensory neurons ASHL, ASHR, PVDL, and PVDR as input. To do so, we make some
hypothesis:

Hypothesis 1. There are neurons in this neural network, whose existence is neutral
in terms of affecting the considered output when the input neuron is ASHL/R or PVDL/R.

In order to test Hypothesis 1, we first remove each single neuron from the network, acti-
vate the sensory neuron and measure the similarity of resulted output and the standard
output. For example, with the ASHL sensory neuron activated, each time, we remove
a single neuron and measure the similarity of the resulted motor neurons state with the
MSASHL (MSASHL is the state of motor neurons when ASHL is activated and neither of
neurons is removed) using Jaccard similarity. The less the similarity is, the more impor-
tant is the role of the removed neuron. The output similarity for each neuron z and input
sensory neuron x is computed as it is shown in Eqn. (4):

Output Simx,z = Jac(MSx,MSx/z) (4)

where Jac is Jaccard similarity function, MSx represents the state of motor neurons in
the case that the only sensory neuron activated is neuron x, and MSx/z represents the
state of motor neurons in the case that the only sensory neuron activated is x, and neuron
z is removed from the network.

For each neuron z and input neuron x, we define a metric called importancex,z that is
computed by Eqn. (5):

importancex,z = 1−Output Simx,z (5)

Where Output Simx,z is defined by Eqn. (4)
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In our network, for each neuron z, and each sensory input neuron x, where x ∈ {ASHL,ASHR,PV DL, PV DR},
we compute importancex,z. The results are shown in Table 1.

Table 1: The Importancex,z for x ∈ {ASHL,ASHR,PV DL, PV DR}. Background color
of each cell denotes the rate of importance for corresponding neuron.

Input Removed
Neuron

Importanceinput,removed neuron

ASHL

AVAL 0.439
AVAR 0.273
ADFL 0.037
AWBL 0.037
ADLL 0.037
AVBR 0.037
AIAL 0.037
AIBL 0.037
AIBR 0.036
ADAL 0.037

ASHR AVAL 0.410
AVAR 0.313
AIBR 0.038
RIML 0.038
AVER 0.038

PVDL PVDR 0.806
PVCL 0.550
PVCR 0.812

PVDR PVCL 0.778
PVCR 0.778

For all other neurons y that are not in Removed Neurons in Table 1, the Importancex,y
is equal to 0. Thus, we could infer that Removed Neurons reported in Table 1 might play
a key role for each sensory neuron.
On the other hand, for neurons y whose removal resulted in the Importancex,y of 0 or
close to 0, we could infer that in the case of removing them singly, these neurons could be
neutral. However, in the case of removing multiple neurons we could not certainly claim
that they are neutral. Thus, we make Hypothesis 2:

Hypothesis 2. There are some neurons in this neural network that are redundant.
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In order to test Hypothesis 2, we remove all neurons whose removal resulted in Impor-
tance equal to 0 in the last step. So, in this case, the presented neurons in the network
consist of ASHL, ASHR, PVDL, PVDR, AVAL, AVAR, PVCL, PVCR, ADFL, AWBL,
ADLL, AVBR, AIAL, AIBL, AIBR, ADAL, RIML, RIMR, and AVER, along with motor
neurons. The corresponding network is shown in Fig 5.

Figure 5: The neural network after removing neurons with importance equal to 0 in
Table1. Yellow triangle nodes represent input sensory neurons, green hexagonal nodes
represent interneurons, and circle nodes represent motor neurons. Blue links represent
excitatory connections, and red links represent inhibitory connections. In this figure, the
connections among motor neurons are not shown.

Then, for each single sensory neuron activation, we measure the similarity of resulted
motor neurons state and the standard MS. Table 2 shows the results:

Table 2: The similarity between standard MS and motor neurons state after removing all
neutral neurons

Input Similarity

ASHL 0.719
ASHR 0.194
PVDL 1
PVDR 1

As it is shown in Table 2, for input sensory neurons ASHL and ASHR, although there
are some neurons that their single removal does not affect the result, if we remove these
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neutral neurons together, the result will seriously be affected. So, these neurons could be
redundant for each other.
On the other hand, for neurons PVDL and PVDR, even if we remove all those neutral
neurons together, it won’t have any effect on the result. Thus, for PVDL and PVDR,
these neurons are neutral not only in the case of single removal, but also in the case that
all of them be removed together.
In the next step, we want to find the minimal set of neurons whose existence in the net-
work results the suitable outputs for input neurons PVDL and PVDR. In order to do
that, for each input neuron, we remove neurons used in Hypothesis2 (ASHL, ASHR,
PVDL/PVDR, AVAL, AVAR, PVCL, PVCR, ADFL, AWBL, ADLL, AVBR, AIAL,
AIBR, ADAL, RIML, RIMR, and AVER ) one by one, and for each neuron removal
we measure the ImportancePV DL,removed neuron .
Considering neuron PVDL as input, for each removed neuron ImportancePV DL,removed neuron

is shown in Table 3.

Table 3: . The measured ImportancePV DL,removed neuron for each neuron removal

Removed Neuron ImportancePV DL,removed neuron

ASHL 0
ASHR 0
PVDR 0.2
AVAL 0
AVAR 0
PVCL 0.7
PVCR 1
ADFL 0
AWBL 0
ADLL 0
AVBR 0
AIAL 0
AIBR 0
ADAL 0
RIML 0
RIMR 0
AVER 0

The rows highlighted in Table 3., represent important neurons whose removal causes
similarity decrease. For other neurons, the similarity is 1 when they are removed, so their
importance is equal to 0. Thus, for PVDL as input neuron, the minimal set is PVDR,
PVCL, PVCR. Fig 6 shows the sub-circuit corresponding to PVDL minimal set.
In Fig 6, input sensory neurons PVDL and PVDR are represented by yellow triangles, in-
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Figure 6: The sub-circuit corresponding to PVDL minimal set. Yellow triangle nodes
represent input neurons PVDL and PVDR, green hexagonal nodes represent interneu-
rons PVCL and PVCL, and circle nodes represent motor neurons. Blue links represent
excitatory connections, and red links represent inhibitory connections. In this figure, the
connections among motor neurons are not shown.

terneurons PVCL and PVDR are represented by green hexagonal, and motor neurons are
represented by orange circles. Also, in this sub-circuit inhibitory connections are shown
in red links, and excitatory connections are shown in blue links.
Considering input neuron PVDR as input, for each removed neuron ImportancePV DR,removed neuron

is shown in Table 4.
As it is shown in Table 4., The importance of neurons PVCL and PVCR is equal to 1. On
the other hand, removing other neurons doesn’t change the similarity, meaning that their
importance is equal to 0. Thus, for PVDR as input neuron, the minimal set is PVCL,
PVCR. Fig 7 shows the sub-circuit corresponding to PVDL minimal set.
In Fig 7., input sensory neuron PVDR is represented by yellow triangle, interneurons
PVCL and PVDR are represented by green hexagonal, and motor neurons are represented
by orange circles. Also, in this sub-circuit inhibitory connections are shown in red links,
and excitatory connections are shown in blue links.

6 Conclusion

In this paper, we studied the structure of the sub-circuit of C.elegans neural network that
is associated with the sensation of aversive stimuli which results in forward and backward
locomotion to understand the role of neurons in C.elegans locomotion.
We also defined a metric called Importance for each neuron, by which it is possible to
measure the effect of removing each neuron on the output of motor neurons. By imple-
mented this system and creating the corresponding network, we found out that some of
its neurons are ineffective in developing considered outputs. However, removing these
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Table 4: . The measured ImportancePV DR,removed neuron for each neuron removal

Removed Neuron ImportancePV DR,removed neuron

ASHL 0
ASHR 0
PVDL 0
AVAL 0
AVAR 0
PVCL 1
PVCR 1
ADFL 0
AWBL 0
ADLL 0
AVBR 0
AIAL 0
AIBR 0
ADAL 0
RIML 0
RIMR 0
AVER 0

neurons together causes a decrease in C.elegans locomotion efficiency, which supports
this hypothesis that some neurons in this network are redundant and they are possibly
in common with each other in their tasks. Finally, for input sensory neurons PVDL and
PVDR we found the minimal set of neurons whose existence in the network results the
suitable outputs.
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Figure 7: The sub-circuit corresponding to PVDR minimal set. Yellow triangle node
represents input neuron PVDR, green hexagonal nodes represent interneurons PVCL and
PVCL, and circle nodes represent motor neurons. Blue links represent excitatory con-
nections, and red links represent inhibitory connections. In this figure, the connections
among motor neurons are not shown.
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