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1 Introduction
We will study the following linear optimization model whose constraints are formed as

a fuzzy system defined by the harmonic mean operator:

min cx
Aφx = b
x ∈ [0, 1]n

(1)

where I = {1, 2, ...,m}, J = {1, 2, ..., n} , A = (aij)m×n, 0 ≤ aij ≤ 1 (∀i ∈ I and ∀j ∈ J),
is a fuzzy matrix, b = (bi)m×1,0 ≤ bi ≤ 1 (∀i ∈ I), is an m–dimensional fuzzy vector, and
“φ” is the max-Harmonic composition, that is:

φ(x, y) =

{
2

1
x
+ 1

y

x ̸= 0, y ̸= 0

0 otherwise

Furthermore, let denote S(A, b) the feasible solutions set of the problem (1), that is,
S(A, b) = {x ∈ [0, 1]n : Aφx = b}. Additionally, if ai denotes the ith row of the matrix A,
then problem (1) can be also expressed as follows:

min cx
φ (ai, x) = bi , i ∈ I
x ∈ [0, 1]n

(2)

where the constraints mean φ (ai, x) = maxj∈J{φ (aij, xj)} = bi , (∀i ∈ I) and,

φ(aij, xi) =

{
2

1
aij

+ 1
xj

aij ̸= 0, xj ̸= 0

0 otherwise

The theory of fuzzy relational equations (FRE) was firstly proposed by Sanchez and
applied in problems of the medical diagnosis [39]. Nowadays, it is well known that many
issues associated with body knowledge can be treated as FRE problems [35].
In addition to the preceding applications, FRE theory has been applied in many fields,
including fuzzy control, discrete dynamic systems, prediction of fuzzy systems, fuzzy
decision making, fuzzy pattern recognition, fuzzy clustering, image compression and re-
construction, fuzzy information retrieval, and so on. Generally, when inference rules and
their consequences are known, the problem of determining antecedents is reduced to solv-
ing an FRE [7, 25, 33].

The solvability determination and the finding of solutions set are the primary (and the
most fundamental) subjects concerning FRE problems. Actually, the solutions set of FRE
is often a non-convex set that is completely determined by one maximum solution and
a finite number of minimal solutions [2]. This non-convexity property is one of the two
bottlenecks making a major contribution to the increase of complexity in problems that
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are related to FRE, especially in the optimization problems subjected to a system of
fuzzy relations. The other bottleneck is concerned with detecting the minimal solutions
for FREs [2]. Markovskii showed that solving max-product FRE is closely related to
the covering problem which is an NP-hard problem [32]. In fact, the same result holds
true for a more general t-norms instead of the minimum and product operators [2] and
[3, 16, 12, 13, 15, 29, 28, 32].

Over the last decades, the solvability of FRE defined with different max-t compositions
have been investigated by many researchers [16, 15, 34, 36, 37, 40, 43, 42, 45, 48, 22].
Moreover, some researchers introduced and improved theoretical aspects and applications
of fuzzy relational inequalities (FRI) [12, 13, 14, 17, 18, 26, 21]. Li and Yang [26] studied
an FRI with addition-min composition and presented an algorithm to search for minimal
solutions. Ghodousian et al. [13] focused on the algebraic structure of two fuzzy relational
inequalities Aφx ≤ b1 and Dφx ≥ b2, and studied a mixed fuzzy system formed by the
two preceding FRIs, where φ is an operator with (closed) convex solutions.

The problem of optimization subject to FRE and FRI is one of the most interesting
and ongoing research topics among the problems related to FRE and FRI theory [2] and
[8, 11, 16, 12, 13, 15, 14, 23, 27, 30, 38, 41, 46, 21]. Fang and Li [9] converted a lin-
ear optimization problem subjected to FRE constraints with max-min operation into an
integer programming problem and solved it by branch and bound method using the jump-
tracking technique. In [23] an application of optimizing the linear objective with max-min
composition was employed for the streaming media provider. Wu et al. [44] improved the
method used by Fang and Li, by decreasing the search domain. The topic of the linear
optimization problem was also investigated with max-product operation [20, 31]. Loeta-
monphong and Fang defined two subproblems by separating negative and non-negative
coefficients in the objective function and then obtained the optimal solution by combining
those of the two subproblems [31]. Also, in [20] some necessary conditions of the feasi-
bility and simplification techniques were presented for solving FRE with max-product
composition. Moreover, some generalizations of the linear optimization with respect to
FRE have been studied with the replacement of max-min and max-product compositions
with different fuzzy compositions such as max-average composition [46] and max-t-norm
composition [16, 15, 19, 27, 41].

Recently, many interesting generalizations of the linear programming subject to a system
of fuzzy relations have been introduced and developed based on composite operations
used in FRE, fuzzy relations used in the definition of the constraints, some developments
on the objective function of the problems, and other ideas [6, 10, 16, 15, 18, 24, 30, 47].
For example, Dempe and Ruziyeva [4] generalized the fuzzy linear optimization problem
by considering fuzzy coefficients.
The optimization problem subjected to various versions of FRI could be found in the
literature as well [12, 13, 14, 17, 18, 49, 21]. Xiao et al. [21] introduced the latticized linear
programming problem subject to max-product fuzzy relation inequalities. Ghodousian et
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al. [12] introduced a system of fuzzy relational inequalities with fuzzy constraints (FRI-
FC) in which the constraints were defined with max-min composition.
In this paper, an algorithm is proposed to find all the optimal solutions to the problem
(1). Firstly, we describe some structural details of harmonic-FREs such as the theoretical
properties of harmonic-fuzzy equalities and necessary and sufficient conditions for the
feasibility of the problem. Then, the feasible region is completely determined by a finite
number of convex cells. Finally, an algorithm is presented to solve the main problem.
The remainder of the paper is organized as follows. Section 2 gives some basic results on
the harmonic-fuzzy equalities. Also, some feasibility conditions are derived. In section
3, the feasible region is characterized in terms of a finite number of closed convex cells.
The optimal solution of the problem is described in Section 4, and finally, in section 5 an
example is presented to illustrate the algorithm.

2 Basic properties of harmonic – FREs
The fuzzy system Aφx = b consists of m fuzzy relational equalities

φ (ai, x) = maxj∈J{φ (aij, xj)} = bi. In this section, the structural properties of each
fuzzy equation φ (ai, x) = bi is investigated and its solutions are found. As will be shown
later, the feasible solutions of the main problem can be derived based on the solutions of
these fuzzy equations. Let S (ai, bi) denote the feasible solutions set of ith equation, that
is, S (ai, bi) = {x ∈ [0, 1]n : φ (ai, x) = bi}. So, it is clear that S (A, b) = ∩i∈IS (ai, bi).
From the definition of the harmonic mean operator φ, the following three basic properties
are obtained.

Lemma 1. Let i ∈ I, and j ∈ J . If aij < bi
2−bi

, then φ (aij, xj) < bi, ∀xj ∈ [0, 1].

Proof. The result follows from the equality φ
(

bi
2−bi

, 1
)

= bi and the fact that φ is an

increasing function on [0, 1]2 in both variables.

Lemma 2. Let i ∈ I, and j ∈ J . If aij ≥ bi
2−bi

, and aij > 0, then xj =
aijbi

2aij−bi
is the

unique solution to the equality φ (aij, xj) = bi.

Proof. Since aij ≥ bi
2−bi

, and bi
2−bi

≥ bi
2
, then aij ≥ bi

2
that means aijbi

2aij−bi
≥ 0. Also,

aij ≥ bi
2−bi

implies that aijbi
2aij−bi

≤ 1. Hence, aijbi
2aij−bi

∈ [0, 1] . Moreover, it is easy to verify

that φ
(
aij,

aijbi
2aij−bi

)
= bi. Now, since|varphi is an increasing function on [0, 1]2, we have

φ (aij, xj) < bi if xj <
aijbi

2aij−bi
, and φ (aij, xj) > bi if xj >

aijbi
2aij−bi

. This completes the
proof.

Lemma 3. Let i ∈ I, and j ∈ J . If aij = bi = 0, then φ (aij, xj) = bi, ∀xj ∈ [0, 1].

Proof. The proof is directly resulted from the definition of harmonic operator φ.
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The following lemma gives a necessary and sufficient condition for the feasibility of the
set S (ai, bi).

Lemma 4. For a fixed i ∈ I, S (ai, bi) ̸= ∅ if and only if there exists at least some j ∈ J
such that aij ≥ bi

2−bi
.

Proof. By contradiction, suppose that x′ ∈ S (ai, bi), and aij ≤ bi
2−bi

, ∀j ∈ J . So, from
Lemma 1, we have φ

(
aij, x

′
j

)
< bi, ∀j ∈ J . Therefore, φ (ai, x

′) = maxj∈J{φ
(
aij, x

′
j

)
} <

bi that contradicts x′ ∈ S (ai, bi).

Definition 1. Let J1 (i) = {j ∈ J : aij > 0, aij ≥ bi
2−bi

}, J2 (i) = {j ∈ J : aij = bi = 0},
and J3 (i) = {j ∈ J : aij <

bi
2−bi

}.

Corollary 1. Let x′ ∈ S (ai, bi). Then, xj ≤ aijbi
2aij−bi

, ∀j ∈ J1 (i). Also, either J2 (i) ̸= ∅
or there exists some j0 ∈ J1 (i), such that, xj0 =

aaj0bi
2aij0−bi

.

Lemma 5. (a) Let j0 ∈ J1 (i), for some i ∈ I, and j0 ∈ J . Also, suppose that x′ ∈ [0, 1]n,
such that,

x′
j =


aaj0bi

2aij0−bi
, if j = j0

r , if j ∈ J1 (i)− {j0}
s , if j ∈ J2 (i)

t , if j ∈ J3 (i)

where 0 ≤ r ≤ aajbi
2aij−bi

, and s, t ∈ [0, 1]. Then, x′ ∈ S (ai, bi).

(b) Let j0 ∈ J2 (i), for some i ∈ I, and j0 ∈ J . Also, suppose that x′ ∈ [0, 1]n, such that,

x′
j =


r , if j ∈ J1 (i)

s , if j ∈ J2 (i)

t , if j ∈ J3 (i)

where 0 ≤ r ≤ aajbi
2aij−bi

, and s, t ∈ [0, 1]. Then, x′ ∈ S (ai, bi).

Proof. (a) The result follows from Lemmas 1, 2, and 3, and the following equations:

φ (ai, x
′) = maxj∈J{φ

(
aij, x

′
j

)
} = max

{
maxj∈J1(i){φ

(
aij, x

′
j

)
},

maxj∈J2(i){φ
(
aij, x

′
j

)
},maxj∈J3(i){φ

(
aij, x

′
j

)
}
}

= max

{
maxj∈J1(i){φ

(
aij, x

′
j

)
},maxj∈J2(i){φ

(
aij, x

′
j

)
}
}

= max

{
φ
(
aij0 , x

′
j0

)
,maxj∈J2(i){φ

(
aij, x

′
j

)
}
}

= bi

(b) The proof is similar to that of part (a).
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Definition 2. Suppose that S (ai, bi) ̸= ∅. We define X (i) ∈ [0, 1]n, such that,

X (i)j =

{
aajbi

2aij−bi
, if j ∈ J1 (i)

1 , otherwise

Theorem 1. Suppose that S (ai, bi) ̸= ∅. Then, X (i) is the maximum solution of
S (ai, bi).

Proof. Based on Lemma 5, X (i) ∈ S (ai, bi). Suppose that x′ ∈ S (ai, bi). So, from
Lemmas 1, 2, and 3, x′

j ≤
aajbi

2aij−bi
, ∀j ∈ J1 (i), and x′

j ≤ 1, ∀j ∈ J2 (i) ∪ J3 (i). Therefore,
x′
j ≤ X (i)j, ∀j ∈ J .

Definition 3. Let i ∈ I, and S (ai, bi) ̸= ∅. For each j ∈ J1 (i) ∪ J2 (i), define X(i,j) ∈
[0, 1]n, such that,

X (i, j)k =

{
aajbi

2aij−bi
, k = j , j ∈ J1 (i)

0 , otherwise

Remark 1. Suppose that S (ai, bi) ̸= ∅, and j ∈ J1 (i). Then, from Definitions 2, and 3,
we have X (i)j = X (i, j)j.

Theorem 2. Suppose that S (ai, bi) ̸= ∅, and j0 ∈ J1 (i) ∪ J2 (i). Then, X (i, j0) is a
minimal solution of S (ai, bi).

Proof. From Lemma 5, X (i, j0) ∈ S (ai, bi). Suppose that x′ ∈ S (ai, bi), x′ ≤ X (i, j0),
and x′ ̸= X (i, j0). So, x′

j ≤ X (i, j0)j, ∀j ∈ J , and x′ ̸= X (i, j0). Therefore, x′
j = 0,

∀j ∈ J − {j0}, and x′
j0
<

aajbi
2aij−bi

(if j0 ∈ J2 (i), we must have x′
j0

that is a contradiction).
However, in this case we will have

φ (ai, x
′) = maxj∈J{φ

(
aij, x

′
j

)
} = max

{
maxj∈J−{j0}{φ

(
aij, x

′
j

)
}, φ

(
aij0 , x

′
j0

)}
= bi

= φ
(
aij0 , x

′
j0

)
< bi

that contradicts x′ ∈ S (ai, bi).

By Theorem 3 below, the solutions set S (ai, bi) ̸= ∅ is completely determined. The
theorem shows that S (ai, bi) can be stated in terms of a finite number of closed convex
cells.

Theorem 3. S (ai, bi) =
⋃

j∈J1(i)∪J2(i)
[
X(i, j), X(i)

]
.

Proof. Let x′ ∈ S(ai, bi). From Theorem 1, x′ ≤ X(i). On the other hand, from Corollary
1, either J2(i) ̸= ∅ (e.g. there exists j0 ∈ J2(i)), or there exists some j0 ∈ J1(i), such
that, xj0 =

aajbi
2aij−bi

. In both cases, X(i, j0) ≤ x′. Hence, x′ ∈ [X(i, j0), X(i)]. Conversely,
let x′ ∈

⋃
j∈J1(i)∪J2(i)

[
X(i, j), X(i)

]
. Therefore, φ(aij, x′

j) ≤ φ(aij, X(i)j) ≤ bi, ∀j ∈ J .
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Moreover, there exists some j0 ∈ J1(i) or j0 ∈ J2(i), such that, x′ ∈ [X(i, j0), X(i)]. In
the former case, Remark 1 implies x′

j0
= X(i, j0)j0 , and therefore, φ(aij0 , x′

j0
) = bi. In the

latter case, Lemma 3 implies φ(aij0 , x
′
j0
) = φ(0, x′

j0
) = 0 = bi. Thus, we have

φ (ai, x
′) = maxj∈J{φ

(
aij, x

′
j

)
} = max

{
maxj∈J−{j0}{φ(aij, x′

j)}, φ(aij0 , x′
j0
)

}
= φ(aij0 , x

′
j0
) =

bi
which implies that x′ ∈ S(ai, bi).

3 Feasible region of Problem (1)
In this section, a necessary and sufficient condition is derived to determine the feasibility

of the main problem.

Definition 4. Let X(i) be as in Definition 1, ∀i ∈ I. We define X = mini∈I X(i).

Definition 5. Let e : I →
⋃

i∈I Ji, so that e(i) ∈ Ji, ∀i ∈ I and let E be the set of all
vectors e. For the sake of convenience, we represent each e ∈ E as an m–dimensional
vector e = [j1, j2, ..., jm] in which jk = e(k), k = 1, 2, ...,m.

Definition 6. Let e = [j1, j2, ..., jm] ∈ E. We define X(e) ∈ [0, 1]n, such that, X(e)j =
maxi∈I{X(i, e(i))j} = maxi∈I{X(i, ji)j}, ∀j ∈ J .

The following theorem indicates that the feasible region of problem 1 is completely found
by a finite number of closed convex cells.

Theorem 4. S(A, b) =
⋃

e∈E[X(e), X].

Proof. Since S(A, b) =
⋂

i∈I S(ai, bi), from Theorem 3, we have

S(A, b) =
⋂
i∈I

⋃
j∈Ji

[X(i, j), X(i)]

Now, from Definitions 5 and 6, S(A, b) =
⋃

e∈E
⋂

i∈I [X(i, e(i)), X(i)], i.e., S(A, b) =⋃
e∈E

[
maxi∈I{X(i, e(i))},mini∈I{X(i)}

]
. Now, the result follows from Definitions 4 and

6.

The following Corollary gives a simple necessary and sufficient condition for the feasibility
of S(A, b).

Corollary 2. S(A, b) ̸= ∅ iff X ∈ S(A, b).
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4 Resolution of Problem (1)

It can be easily verified that X is the optimal solution for min{Z1 =
∑n

j=1 c
−
j xj : Aφx =

b, x ∈ [0, 1]n}, and the optimal solution for min{Z2 =
∑n

j=1 c
+
j xj : Aφx = b, x ∈ [0, 1]n}

is X(e∗) for some e∗ ∈ E, where c+j = max{cj, 0}, and c−j = min{cj, 0} for j = 1, 2, ..., n
[9, 13, 19, 28]. According to the foregoing results, the following theorem shows that the
optimal solution to the problem (1) can be obtained by the combination of X, and X(e∗).

Theorem 5. Suppose that S(A, b) ̸= ∅, and X and X(e∗) are the optimal solutions of
subproblems Z1 and Z2, respectively. Then, cTx∗ is the lower bound of the optimal objective
function in 1, where x∗ = [x∗

1, x
∗
2, ..., x

∗
n] is defined as follows:

x∗
j =

{
Xj , cj < 0

X(e∗)j , cj ≥ 0

for j = 1, 2, ..., n.

Proof. For a general case, see the proof of Theorem 4.1 in [13].

Corollary 3. Suppose that S(A, b) ̸= ∅. Then, x∗ as defined in Theorem 5, is the optimal
solution to the problem 1.

Proof. According to the definition of vector x∗, we have X(e∗)j ≤ x∗
j ≤ Xj, ∀j ∈ J , which

implies x∗ ∈
⋃

e∈E[X(e), X] = S(A, b).

5 Numerical example
Consider the following linear programming problem constrained with a fuzzy system

defined by the harmonic operator:

minZ = −4.1634x1 + 2.4461x2 + 4.3181x3 − 4.3854x4 − 1.7545x5 − 2.7559x6 + 5.6278x7


0.0752 0.0240 0.0609 0.7027 0.0026 0.0006 0.0688
0.4476 0.9959 0.4585 0.6420 0.6218 0.2835 0.3448
0.2198 0.0237 0.0422 0.0323 0.0693 0.1433 0.2735
0.8347 0.1614 0.3268 0.1427 0.2021 0.2888 0.7064
0.0334 0.4273 0.9385 0.0093 0.4441 0.1234 0.5963

φx =


0.1355
0.9022
0.2896
0.4995
0.7836


x ∈ [0, 1]7.

From Definition 1, we have J1(1) = {1, 4}, J1(2) = {2}, J1(3) = {1, 7}, J1(4) = {1, 7}, and
J1(5) = {3}. According to Definition 2, the maximum solution of S(ai, bi) (i = 1, ..., 5)
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are as follows:

X(1) = [0.6839, 1, 1, 0.0750, 1, 1, 1],

X(2) = [1, 0.8246, 1, 1, 1, 1, 1],

X(3) = [0.4244, 1, 1, 1, 1, 1, 0.3077],

X(4) = [0.3564, 1, 1, 1, 1, 1, 0.3863],

X(5) = [1, 1, 0.6726, 1, 1, 1, 1].

So, by Definition 4, we obtain X = [0.3564, 0.8246, 0.6726, 0.0750, 1, 1, 0.3077]. It is easy
to verify that X ∈ S(A, b). Therefore, Corollary 2 implies that S(A, b) is feasible.

In this example, |E| = 8, that is, there are 8 solutions X(e) that may be minimal solutions
of the feasible region (see Definitions 5 and 6). By a pairwise comparison between the
solutions X(e), it turns out that the feasible region has only one minimal solution. This
unique minimal solution is generated by e = [4, 2, 7, 1, 3] as follows:

X(e) = [0.3564, 0.8246, 0.6726, 0.0750, 0, 0, 0.3077]

Since the minimal solutions set is a singleton set, the unique minimal is converted to the
minimum solution. Also, it is obvious that X(e∗) = X(e) is the optimal solution of the
subproblem Z2 that is obtained by e∗ = e. Finally, based on Theorem 5, the optimal
solution to the Problem 1 is resulted as:

x∗ = [0.3564, 0.8246, 0.6726, 0.0750, 1, 1, 0.3077]

with optimal objective value Z∗ = 0.33017.

6 Conclusion
In this paper, we proposed an algorithm to solve the linear optimization model con-

strained with harmonic fuzzy relational equalities. The feasible solutions set of each
harmonic-FRE was obtained and their feasibility conditions were described. Based on the
foregoing results, the feasible region of the problem is completely resolved. It was shown
that the feasible solutions set can be write in terms of a finite number of closed convex
cells. As future works, we aim at testing our algorithm in other type of fuzzy systems and
linear optimization problems whose constraints are defined as FRI with other averaging
operators.
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